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Abstract

Mast cells are innate immune cells that intersect with the adaptive immunity
and play a crucial role in the initiation of allergic reactions and the host
defense against certain parasites and venoms. When activated in an
allergen- and immunoglobulin E (IgE)-dependent manner, these cells
secrete a large variety of allergenic mediators that are pre-stored in
secretory granules or de novo-synthesized. Traditionally, studies have
predominantly focused on understanding this mechanism of mast cell
activation and regulation. Along this line of study, recent studies have shed
light on what structural features are required for allergens and how IgE,
particularly anaphylactic IgE, is produced. However, the last few years have
seen a flurry of new studies on IgE-independent mast cell activation,
particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies
have greatly advanced our understanding of how mast cells exert
non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting
with sensory neurons. Recent studies have also characterized mast cell
activation and regulation by interleukin-33 (IL-33) and other cytokines and
by non-coding RNAs. These newly identified mechanisms for mast cell
activation and regulation will further stimulate the allergy/immunology
community to develop novel therapeutic strategies for treatment of allergic
and non-allergic diseases.
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Introduction

Mast cells (MCs) play a crucial role in allergic reactions
and the host defense against certain parasites, bacteria, and
venoms. Morphologically, MCs are featured by a large number
of secretory granules containing various bioactive molecules,
including histamine, serotonin, proteoglycans, and proteases.
Upon encounter with multivalent antigen (or allergen),
antigen-specific immunoglobulin E (IgE)-bound high-affinity
IgE receptors (FceRI) on the surface of MCs are cross-linked or
aggregated. Consequently, activation of the FceRI signaling
system is triggered, leading to the release of granular contents
(degranulation) and de novo synthesis and secretion of lipid
mediators, cytokines, and chemokines. Activation of MCs
entails immediate hypersensitivity and late-phase allergic
inflammation. With regard to the IgE-mediated MC activa-
tion, recent years have seen a deeper understanding of IgE
synthesis, structural features of allergens, FceRI signaling
mechanisms, and counter-mechanisms. Non-IgE-dependent
MC activation mechanisms have been studied at a slow pace for
many years. However, we have witnessed significant progress
in this area more recently.

Murine MCs are classified as connective tissue MCs (CTMCs)
and mucosal MCs (MMCs) on the basis of their tissue distribu-
tion. CTMCs and MMCs are also characterized by the heparin
content of their granules: CTMCs contain a large amount of
heparin in their granules, whereas MMCs have very little or
no heparin. Human MC proteases include tryptases (mMCP-6
and -7 in mouse), chymases (mMCP-1, -2, and -4), an elastase
(mMCP-5), and a carboxypeptidase-A3 (CPA3). Human MCs
are categorized by expression of MC tryptase (MC,) or MC
chymase (MC_) or both (MC ). A recent transcriptional
analysis demonstrated that the MC is one of the most tran-
scriptionally variable cell types of the immune system’.
Murine MCs that were purified from different tissues shared an
“MC-specific” transcriptional signature of at least 100 genes.
Also, these MCs showed a tissue-specific regulation of their
transcriptomes.

Substantial progress has recently been made in several areas of
MC research, such as degranulation machinery, cancer, micro-
biota, and food allergy. Readers interested in these topics are
referred to recent review articles™.

Allergen, immunoglobulin E, and FceRI

A comprehensive understanding of the IgE-mediated MC activa-
tion requires a better knowledge of allergens, IgE synthesis and
structure, and FceRI structure and signaling pathways. Here,
we highlight recent advances in this area, particularly aller-
gens and IgE synthesis. We certainly know three-dimensional
structures of many parts of IgE and FceRI (composed of an
IgE-binding o and receptor-stabilizing and signal-amplifying
B and activation signal-triggering y subunits)”'’ and important
principles in signaling, such as tyrosine phosphorylation of
B and y subunits at the immunoreceptor tyrosine-based acti-
vation motif (ITAM) by Src family kinases, the essential
functions of Syk, Ca** flux, several adaptor molecules, mitogen-
activated protein kinases (MAPKSs), and several transcription
factors'"'”.
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However, we feel obliged to note that our understanding of
FceRI signaling pathways is still in the early stages in light of
an incomplete understanding of degranulation processes and
a large number of genes regulated by MC activation.

One of the most important hypotheses on structural features
of allergens stemmed from the requirement of cross-linking of
cell surface IgE molecules by various allergens for MC activa-
tion and IgE synthesis. This line of thinking led Jensen-Jarolim
et al. to recognize that allergens display repetitive motifs, which
they designate allergen-associated molecular patterns''".
Indeed, many allergenic molecules occur as dimers or multim-
ers. Some allergens—small proteins, in particular—have just a
single immunodominant B-cell epitope and thus do not fulfill
the requirement for cross-linking as a single molecular unit.
Oligomerization provides the necessary means for efficient IgE
cross-linking. Examples where only single dominant epitopes
have been found are the allergens Der p 1 from house dust mite
(HDM) and Bet v 1 from birch. Also, the occurrence of repeti-
tive epitopes on single native allergen molecules has been
shown on high-molecular-weight proteins of wheat and for
HDMs and insects, cockroach Bla g 1, latex Hev b 5, and
tropomyosin from shrimp.

IgE concentrations in serum are kept to the lowest level among
immunoglobulin subtypes by several layers of regulation: in
addition to the high rate of turnover, low efficiency of class-
switch recombination to IgE, and lower surface expression
of membrane IgE than that of IgGl on germinal center (GC)
B cells, IgE* B cells are predisposed to swiftly exit GCs and
differentiate into plasma cells (PCs) and IgE-producing GC
B cells die by apoptosis'*~"". Therefore, IgE* memory B cells
are scarce'®. Class switching of antigen-specific IgG1* cells
to become IgE* cells, via the so-called sequential switching,
was proposed as the mechanism involved in the production
of affinity-matured IgE antibodies in memory responses'”.
Using a culture system of induced GC B cells, Haniuda
et al. showed that the CDI19-phosphatidylinositol 3-kinase
(PI3K)-Akt-IRF4 axis is the essential pathway for PC differ-
entiation and the BLNK-JNK-p38 axis serves an enhancing
role in PC differentiation”’. They also showed that BLNK
is essential for B-cell apoptosis and that CD19 is rather
anti-apoptotic.

Recent studies have shown that T follicular helper (Tfh) cells
are the primary T-cell subset responsible for IgE responses.
Interleukin-4 (IL-4) is required to generate and sustain IgE
production in mice’’. In response to allergens, T helper type
2 (Th2) and Tfh cells show unique cytokine responses, tissue
localization, and phenotypes. In vivo, Tfh cells assist the
sustained production of IgE antibody. But conditional deficiency
of Bcl6, the master regulator of Tfh, in CD4* T cells* results in
a significant decrease in IgE antibody levels and Tth cell
numbers. However, eosinophilic inflammation and type 2
cytokine responses in the airways are not affected. Thus,
Tth-derived IL-4, but not Th2-derived IL-4, is necessary for IgE
production”. Gowthaman et al. recently discovered a new Ttfh
subset in mice with T cell-specific Dock8 deficiency”*. These
mice made allergen-specific anaphylactic IgE with the help
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of an IL-4- and IL-13-producing Ttfh cell population called
Tth13 cells. Tfh13 cells have an unusual cytokine profile
(IL-13MTL-4MTL-SMTL-21")  and  co-express the  transcrip-
tion factors Bcl6 and GATA3. These cells are required for
production of high- but not low-affinity IgE and subsequent
allergen-induced anaphylaxis. Single-cell RNA sequencing
analysis confirmed that Tfh13 cells are distinct from related
Th2 or IL-4-expressing Tth2 cells. Conditional ablation of
Tth13 cells or isolated loss of IL-13 in Tfh cells resulted in
impaired anaphylactic IgE responses to allergens. Thus, block-
ing Tth cells might represent a therapeutic means to ameliorate
anaphylaxis.

We have known effects of monomeric IgE on FceRI surface
levels™® and on survival of MCs*** in the absence of
allergen for a long time. A recent study showed that IL-3
but not monomeric IgE regulates FceRI expression and cell
survival in primary human basophils, in contrast to human and
murine MCs™.

Mast cell activation by interleukin-33

IL-33 belongs to the IL-1 family and is expressed by several
cell types, including epithelial cells**. IL-33 binds to a spe-
cific receptor called T1/ST2 (ST2) that belongs to the Toll-like
receptor/IL1R family. ST2 forms heterodimers with the IL-1
receptor accessory protein (IL-1RAcP), namely a transmem-
brane form (ST2 or ST2L) and a soluble form (sST2). ST2L
isoform is expressed on MCs, basophils, Th2 cells, and natu-
ral killer cells and coordinates spatially and temporally with
IL-33 signaling, which might trigger a key regulatory ampli-
fication loop involved in immune homeostasis. IL-33 is
considered an alarmin as it is released after necrosis or tissue
damage. However, apoptosis leads to the inactivation of
IL-33 by cleavage of IL-33 by caspases. In contrast, MC serine
proteases cleave the full-length 1L-33 (IL-33, ) and liberate
active forms: IL-33,, .. IL-33, . and IL-33 . These
cleaved forms have 10 times greater potency than the full-length
protein®. MC chymase also degrades IL-33 that leads to
higher bioactivity”. Downstream of ST2, the IL-33-mediated
®signaling pathway involves MyD88, IRAKI1, IRAK4, and
TRAF6 as well as activation of MAPKs (ERK1/2, p38, and
JNK1/2) and nuclear factor-kappa B (NF-xB)***’.

IL-33 can induce full activation of MCs, including
degranulation® and production of several cytokines and chem-
okines®’, and elicits systemic MC-dependent anaphylaxis®.
Several studies have shown that IL-33 plays a significant role in
severe asthma® and refractory nasal polyposis'. Earlier stud-
ies have been summarized in excellent reviews” . Here, we
touch on newer reports that showed a possible role of IL-33 in
various allergic conditions: IL-33-mediated airway constriction
was exacerbated through increased secretion of serotonin from
MCs®. Staphylococcus aureus—derived serine protease-like pro-
tein (Spl) D is a potent allergen and induces a Th2-biased inflam-
matory response in the airways in an IL-33-dependent manner.
Aspirin-exacerbated respiratory disease (AERD) is a severe
eosinophilic disorder of the airways and is characterized by
overproduction of cysteinyl leukotrienes, activation of airway
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MCs, and bronchoconstriction in response to non-selective
cyclooxygenase inhibitors that deplete prostaglandin E, (PGE,)
(Figure 1). A study using clinical samples and mice deficient
in PGE, synthase (a model of AERD) found up-regulation
of TL-33 in airway epithelium*. Deletion of leukotriene C4
synthase in the AERD model mice eliminates the increased
IL-33, lung eosinophilia, and aspirin-induced MC activation and
bronchoconstriction. MCs have been shown to play a cru-
cial role in a model of skin inflammation by IL-33-mediated
recruitment of leukocytes and resulting inflammation in an
MK?2/3 (MAPK-activated protein kinases 2 and 3)-dependent
manner”. In a murine model of food allergy, IL-33 and MCs
promote inflammation in the gastrointestinal tract through
IL-4 production by IL-33-stimulated ILC2s, as IL-4 blocks the
generation of allergen-specific regulatory T (Treg) cells*~'.
However, on the positive side, IL-33 and MCs play a
protective role in intestinal helminth infections by activating
ILC2, leading to helminth expulsion™’. MCs can ameliorate
IL-33-mediated inflammatory effects under certain circum-
stances. Stimulation of MCs with IL-33 in the absence of IgE
cross-linking can induce Treg cell expansion by producing
IL-2 and reduce the inflammation in a papain-induced innate-type
airway inflammation model™.

Mast cell activation via Mrgprb2/MRGPRX2

Mas-related G protein—coupled receptor-X2 (MRGPRX?2)
has been the hottest receptor in MC research over the last
few years™. Mrgprb2 is the murine ortholog of MRGPRX2.
Under homeostatic conditions, CTMCs in the skin and perito-
neum of mice express Mrgprb2, whereas MMCs do not express
Mrgprb2>. Mrgprb2/MRGPRX2 recognizes a wide range of
cationic molecules, including substance P (SP), basic secreta-
gogues (for example, compound 48/80), numerous US Food and
Drug Administration—approved drugs, and endogenous protein
fragments™~’.  Mrgprb2/MRGPRX2-mediated activation of
MCs by these ligands results in their rapid degranulation of indi-
vidual granules and MC-dependent local inflammation, whereas
FceRlI-elicited secretion is delayed but progressive and is
characterized by granule-to-granule fusions™.

MRGPRX?2 has been implicated in allergic and chronic inflam-
matory diseases. LL-37, the catheliciden peptide and MRGPRX2
agonist™®, is up-regulated in rosacea’’, and MCs play a key role
as the primary source of LL-37 in a murine model of rosacea®.
The pathology in asthma® and urticaria® correlates with
MC-specific expression of MRGPRX2. Mrgprb2 inactive mutant
Mrgprb2™/mt mijce show reduced itch in multiple models of
allergic contact dermatitis (ACD), a pruritic inflammatory skin
disorder. MC numbers and PAMP1-20 (MRGPRX2 agonist)
concentrations are increased in human ACD skin®, which is
associated with pathogenic CD8 T-cell responses®. MCs are
found in close proximity to peripheral nerve endings®’~.
Atopic dermatitis, another pruritic skin disease, has been stud-
ied by using a mouse model sensitized and challenged with
HDMs in the presence of staphylococcal enterotoxin B”. Using
this model, a recent study shows that HDMs with cysteine
protease activity directly activate peptidergic nociceptors
on sensory neurons expressing the ion channel TRPV1 and
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Figure 1. Mechanisms underlying response to cyclooxygenase 1 (COX-1) inhibitors in patients with aspirin-exacerbated respiratory
disease (AERD). Patients with AERD show lower levels of COX-2 compared with the healthy population. Non-steroidal anti-inflammatory
drugs (NSAIDs) inhibit COX-1 and lower the level of prostaglandin E, (PGE,). The loss of PGE, inhibitory control leads to massive release of
histamine and generation of cysteinyl leukotrienes by mast cells, an event that is unique to AERD. Red arrows represent abnormal baseline
conditions in patients with AERD, and blue arrows indicate changes after COX-1 inhibition. The size of the arrows indicates the magnitude of
change. 5-HPETE, 5-hydroperoxyeicosatetraenoic acid; 5-LO, 5-lipoxygenase; LT, leukotriene (A4, C4, D4, and E4); PG, prostaglandin (G2,

H2, 12, and F2); TXA2, thromboxane A2.

Tacl (gene encoding the precursor for SP)’'. HDM-activated
nociceptors drive the development of allergic skin inflamma-
tion by SP/Mrgprb2-mediated activation of MCs’.. Another
study indicates that activation of the natriuretic polypeptide
b (Nppb)-expressing class of sensory neurons elicits scratching
responses in mice””. Interestingly, however, Nppb* neurons
express receptors for leukotrienes, serotonin and sphingosine-1-
phosphate, and these receptors induce itch by the direct
activation of Nppb* neurons and neurotransmission through the
canonical gastrin-releasing peptide-dependent spinal cord itch
pathway’. Mrgprb2/MRGPRX2 is also involved in inflamma-
tory mechanical and thermal hyperalgesia™. In this case, SP
activates MCs via Mrgprb2/MRGPRX2 to release multiple
pro-inflammatory cytokines and chemokines, which facilitate
the migration of immune cells. It is noteworthy that SP-mediated
activation of MCs does not involve its canonical receptor,
neurokinin 1 receptor (NK-1R). However, activation of NK-1R
by hemokinin-1 likely contributes to allergic airway inflamma-
tion in mice, whereas activation of the human MC line LAD-2
by hemokinin-1 requires MRGPRX2. MRGPRX2 expression
is upregulated in lung MCs from patients with lethal asthma®.

Studies of Mrgprb2/MRGPRX2-mediated MC activation have
been extended to their new ligands, signal transduction, effects

of other MC modulators, and so on. For example, compound
48/80, AG-30/5C (angiogenic defense peptide), and icatibant
(bradykinin B2 receptor antagonist) all activate pertussis
toxin-sensitive G proteins, but only compound 48/80 activates
B-arrestin’. The same study also found resveratrol (polyphe-
nolic compound in peanuts, grapes, red wine, and some berries)
as an inhibitor of MRGPRX2. As the FceRI signaling is initi-
ated by tyrosine phosphorylation with Src, Syk, and Tec family
kinases while Mrgprb2 and MRGPRX2 are G protein—coupled
receptors, FceRI- and MRGPRX2-stimulated pathways are
completely independent of each other’”. Stem cell factor
(SCF) and IL-4, which are the two main MC differentiation
and growth factors, negatively regulate MRGPRX2 expression
in human skin MCs, whereas SCF promotes allergic stimulation
via FceRI°. In contrast, pre-incubation (20 minutes) of human
MCs with IL-33 or IL-6 or both does not affect their activa-
tion with SP, whereas such priming, particularly that with both
IL-33 and IL-6, enhances IgE/allergen-mediated MC activation’’.
Another study shows that chronic exposure (5 weeks) of human
MCs to IL-33 reduces FceRI expression and responsiveness to
its aggregation’®. Short-term (30 minutes) pre-incubation with
IL-33 enhances MRGPRX2-mediated degranulation by SP or
compound 48/80 without changing MRGPRX2 expression,
whereas chronic (5 weeks) pre-treatment with IL-33 reduces
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mRNA and protein expression of MRGPRX2 and its function”.
MCs are also required for cardiac fibrosis in multiple animal
models. Interestingly, NK-1R expression in MCs is not required
in cardiac fibrosis®’. It should be tested whether Mrgprb2 is
involved in this process.

MicroRNA and mast cell biology

MicroRNA (miRNA), a small non-coding RNA molecule that is
19 to 25 nucleotides in length, functions in post-transcriptional
regulation and RNA silencing of gene expression. miRNAs
work by base pairing with complementary sequences inside
of mRNA molecules. Because of the broad regulatory mecha-
nisms, miRNAs regulate differentiation, proliferation, survival,
apoptosis, stress response, and the effector function as well

as the resolution of an immune response®'**.

Numerous studies have examined the role of miRNAs in MC
biology (Table 1)*. Silencing of Dicer, a key enzyme of miRNA
biogenesis, attenuates degranulation, indicating that miRNAs
are involved in MC activation. Overexpression of miR-142-
3p, which rescues Dicer expression, enhances FceRI-mediated
degranulation in MCs*. IgE/antigen stimulation of bone
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marrow—derived MCs induces up- or down-regulation of
several miRNAs, which affects mRNA expression of some
key signaling molecules, including Lyn, Vav3, and Csf2%:.
miR-155 plays a critical role in FceRI-mediated MC responses
by modulating components of the PI3Ky pathway, and
miR-155—deficient mice show enhanced anaphylaxis®’. Down-
regulation of miR-155 in MCs is also involved in suppres-
sion of IL-33-induced inflammation by lactic acid® or of
IL-33-induced IL-6 production in MCs™. As a basis of
IL-10-mediated MC regulation, IL-10-induced miR-155 expres-
sion enhances protease and cytokine production in MCs by
suppressing SOCS1, a suppressor of cytokine signaling”. A
novel miRNA let7i inhibits MC degranulation by suppressing
expression of Exoc8, which is an exocytosis-related gene’'.
MiR-126 accelerates IgE-mediated MC degranulation, which
is associated with PI3K/Akt activation and increased Ca®
influx”. MiR-223 reduces IL-6 secretion in MCs by inhibiting
the IGFIR/PI3K signaling pathway”. Expression of miR-210
and miRNA-132/212 cluster is increased by IgE-mediated MC
activation”. MiR-21 inhibits MC degranulation by inhibiting
the p38 pathway in a murine model of ACD”. MiR-221-222 is
up-regulated in MC stimulation and regulates the cell cycle by

Table 1. MicroRNA (miRNA) functions in mast cell activation and proliferation.

miRNA Trigger miRNA effect on mast cells Target References
mRNA
miR-142 FceRl Increase degranulation 81
miR-155 FceRl Ca?* influx with degranulation PI3K 84-87
IL-33 Increase cytokine production
IL-10 Increase cytokine production SOCSH
Let-7i Decrease degranulation Exoc8 88
miR-126 FceRlI Increases degranulation 89
miR-223 FceRl Decrease granulation and interluekin-6 (IL-6) IGF1R 90
release
miR-210 FceRl 91
miR-132/212 FceRl HB-EGF 91
miR-21 Allergic inflammation Decrease degranulation and IL-12 production IL-12p35 92
P38
miR-221/222 FceRl Regulate proliferation and cell cycle p27¢e1, PTEN  93-95
Increases degranulation and cytokine
production; reduces migration
miR-302e FceRl Decrease cytokine secretion RelA 96
PMA/IONO
miR-146 FceRl Reduces activation TRAFG, 97-99
IRAKA
miR-143 Allergic inflammation Down-regulate allergic response IL-13Rac1 100
miR-20a PMA/IONO Activate mast cells (MCs) HDAC4 101
Inhibit production of pro-inflammatory cytokines
miR-4443 T cell-derived Increase ERK phosphorylation and IL-8 release  PTPRJ 102-108
microvesicle
miR-490 HCV-E2 Inhibits tumor metastasis 109
miR-9 Increase invasion of neoplastic MCs 110
miR-122 Tumor response Decrease activation SOCS1 111
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inhibiting p27%®" expression’*’’. MiR-221-3p, which is markedly
increased in asthmatics, up-regulates IL-4 secretion from
MCs by targeting phosphatase and tensin homolog (PTEN) as
well as activation of p38 and NF-kB”. MiR-302e negatively
regulates RelA/p65 expression in MCs and ameliorates aller-
gic inflammation through inhibition of the NF-xB signaling
pathway”. MiR-143 and miR-146 reduce MC activation by
targeting IL-13Ral and TRAF/IRAK, respectively, leading to
a reduced allergic response'”~'". miR-20a inhibits expression
of tumor necrosis factor (TNF), IL-1B, and interferon gamma
(IFN-y) while promoting IL-10 in HMC-1 human MCs. miR-20a
also targets histone deacetylase 4 (HDAC4), which contributes
to the epigenetic regulation of IL-10 expression'”.

Shefler et al. showed that MCs are activated by interaction
with activated T cells or their microvesicles (mvT3*s) %1%,
The physical contact of MCs with activated T cells or with
mvT#*s induces Ras activation and ERK phosphorylation, lead-
ing to degranulation and release of several cytokines in MCs'**'"".
The same group later found that miR-4443 in mvT*s targets
the expression of protein tyrosine phosphatase receptor type J
(PTPRJ), a known ERK inhibitor''". Several miRNAs that play
a role in cancer have recently been discovered: miR-9 increases
the invasion of neoplastic MCs'”. miR-122 targets SOCSI
mRNA and regulates cellular interactions involving cancer
cells, MCs, and macrophages during allergic inflammation'".
Exosomal miRNAs have emerged as mediators of the interaction
between MCs and tumor cells. MCs can inhibit hepatocellular
carcinoma cell metastasis by inhibiting the ERK1/2 pathway
by transferring the exosomal shuttle microRNAs, including
miR-490, into hepatocellular carcinoma cells'"*.

Perspectives on mast cells in diseases

Traditionally, MCs have been implicated in allergic diseases.
Efficacy of omalizumab—humanized anti-IgE monoclonal
antibody (mAb)—and mAbs targeting Th2 cytokines or Th2
cytokine receptors for the treatment of asthma and other aller-
gic diseases supports crucial pathogenic roles for MCs in these
diseases'"'"7. Among the mAbs targeting cytokine/receptors,
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the most illustrative example is dupilumab (mAb for IL4Ro., the
subunit shared by IL-4 and IL-13 receptors). This mAb blocks
the functions of both IL-4 and IL-13 and is highly effica-
cious for the treatment of atopic dermatitis''® and asthma''*'*’.
However, effects of dupilumab likely reflect pleiotropic functions
of IL-4 and IL-13 in immune and non-immune cells.

MCs are considered an important player in inflammation-associ-
ated diseases in general, as recent studies have extended their
potential role in other diseases. For example, MCs seem to
be involved in gastrointestinal diseases such as inflammatory
bowel disease, celiac disease, and irritable bowel syndrome'”'.
The phenotype and the activation status of MCs rather than the
absolute numbers in the intestinal mucosa are important for
the development and progression of the diseases'””. MCs might
also play a role in atherosclerosis. Immunohistochemical
studies in autopsied human subjects and studies in murine
atherosclerotic models have collectively provided evidence that
the compounds released by activated MCs might promote
atherogenesis at various stages during the development of
atherosclerotic lesions'”. MCs can be pro-tumorigenic and
anti-tumorigenic*'**. A recent study found that immune cells such
as MCs, tumor-associated neutrophils, tumor-infiltrating macro-
phages, and myeloid-derived suppressor cells promote prostate
cancer via various types of intercellular signaling'”. With
regard to neural diseases, MCs might contribute to modulate the
intensity of the associated depressive and anxiogenic component
on the neuronal and microglial biological front'*®. Preclinical
evidence suggests that the intestinal microbiota contributes
significantly to behavioral and mood disorders. Microbiotic
conditions have been linked to pain, anxiety, stress, and depres-
sion in humans'”®. Far from being substantiated by other
studies, symptoms of autism spectrum disorder might also
be caused by the mediators derived from MCs which could
activate microglia, causing localized inflammation'”’. MCs
might play a significant role as a neuroimmune connec-
tion between these components. The next decade might see
unexpected developments in MC research and their clinical
translations.
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