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Abstract: Oxidative stress can be induced by various stimuli and altered in certain conditions,
including exercise and pain. Although many studies have investigated oxidative stress in relation
to either exercise or pain, the literature presents conflicting results. Therefore, this review critically
discusses existing literature about this topic, aiming to provide a clear overview of known interactions
between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain,
and to highlight possible confounding factors to keep in mind when reflecting on these interactions.
In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of
action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that
the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward,
as it is dependent on the characteristics of exercise, but also on which population is investigated.
To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of
several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain,
and the underlying mechanisms of action can be revealed and validated via independent studies.

Keywords: oxidative stress; exercise; chronic pain; chronic fatigue syndrome; fibromyalgia; autonomic
nervous system; epigenetics

1. Introduction

Reactive oxygen species (ROS), including radical (e.g., oxygen, hydroxyl, superoxide ion,
nitric oxide) and non-radical (e.g., hydrogen peroxide, peroxynitrite, hypochlorous acid, aldehydes)
oxygen species, are pro-oxidant molecules produced during oxygen metabolism. Although their
production is a physiological and regulated process [1], high levels of ROS are harmful. In normal
circumstances, ROS are cleared by antioxidants. When ROS levels rise due to an increased production
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and/or decreased clearance, the cell enters a state of stress, called oxidative stress, which potentially
leads to lipid, protein, and DNA damage [1–4].

Oxidative stress is known to be influenced by various stimuli and altered in certain conditions.
Two of such stimuli or conditions are exercise and pain. For instance, an imbalance between pro-oxidants
and antioxidants has been found in patients with chronic pain, suggesting that it might cover a relevant
role in nociceptive processing [5–8]. Indeed, oxidative stress is capable of inducing deleterious changes,
particularly to the central nervous system, given the intrinsic high vulnerability of neurons and glial
cells to metabolic changes [9,10], and it has been shown to play an important role in many mechanisms
involved in nociceptive modulation and central sensitization [11,12]. Additionally, both a single
bout of exercise and physical training affect expression levels of ROS as well as antioxidants [13,14].
Exercises of different type, duration, and frequency have different effects on oxidative stress [14,15],
which is in turn related to beneficial or harmful health outcomes. For instance, resistance exercises and
aerobic physical activity are beneficial for patients with diabetes mellitus type 1 or 2 [16,17]—which
are both conditions where oxidative stress plays a major role (for a review, see [18]). Exercise is
also able to influence pain symptoms, and several studies proposed oxidative stress as a mediating
factor between exercise and pain [19–22]; however, findings do not always appear to be consistent.
Therefore, we critically review the available literature linking oxidative stress to either exercise or
pain separately before diving into the possible interplay between oxidative stress, exercise, and pain.
This way, the reader will have a clear overview of evidence on the involvement of oxidative stress and
possible confounding factors. As the interplay between oxidative stress, exercise, and pain has never
been reviewed before, this narrative review provides a unique compilation of information that might
explain concepts such as exercise-induced hypoalgesia and pave the way toward new therapeutic
possibilities for chronic pain. In addition, as the underlying mechanisms explaining the interplay
between exercise, oxidative stress, and pain are poorly understood, we explain that autonomic nervous
system functioning and epigenetic mechanisms hold the potential to unravel the puzzle.

Of important note, that this is a narrative review. We acknowledge that narrative reviews might
be prone to selection bias. However, we did base our review on a literature search, which was
conducted in Medline using broad search terms (detailed in Appendix A Table A1). To minimize
selection bias, the search was primarily focused on systematic reviews, meta-analyses, and recent
articles not included in the systematic reviews. Publications on humans were preferred over animal
studies. However, animal studies were also selected in case human studies on a specific matter were
not available, aiming to review all possible interactions between oxidative stress, exercise, and pain
that are currently available.

2. The Effect of Exercise on Oxidative Stress in Healthy People

Since the first observation on the topic appeared—42 years ago [23]—our knowledge on the
relation between oxidative stress and exercise has significantly expanded. However, it is not yet
clear whether exercise-induced oxidative stress is beneficial or harmful to health [24]. The relation
between exercise and oxidative stress is not always straightforward but related to many aspects [25].
First, sampling time is crucial for oxidative stress measurement, as biomarkers indicative of oxidative
stress or antioxidant systems seem to respond to exercise in a time-specific manner [26]. For instance,
thiobarbituric acid reactive substances (TBARS) and protein carbonyl levels, two commonly used
biomarkers indicative of oxidative stress, reach a peak at one and four hours after a single bout of
exercise, respectively [26]. Secondly, oxidative stress is the result of complex interactions, and many
different biomarkers have been used to assess it. When reading the research on oxidative stress,
it is important to consider that different biomarkers aimed at measuring the same oxidative status
might lead to different results, depending on their specific function [27]. Illustratively, lymphocyte
glutathione peroxidase and catalase activities (markers for antioxidant capacity) increased in response
to moderate exercise while superoxide dismutase (SOD, a marker for antioxidant capacity) activity
remained stable [27]. In addition, the characteristics of exercise as well as a person’s nutritional status
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and physical activity level may have an effect and lead to different results [15,27–30]. In the next
sections, we review oxidative stress and antioxidant capacity changes in response to a single session of
intense or moderate exercise, and to more prolonged physical training. The results of these sections are
summarized in Table 1.

Table 1. Overview of different markers to assess oxidative stress, their behavior in response to a single
bout of intense exercise, a single bout of moderate exercise and physical training, and their expression
in patients with chronic widespread pain.

Category Commonly Used
Markers

Single Bout of
Intense Exercise

Single Bout of
Moderate Exercise

Physical
Training

Chronic
Widespread

Pain

ROS H2O2, NO, O2
−

↑ Conflicting results ↑
1 and ↓ 2

↑
1,2

Oxidation
products

TBARS, MDA,
Protein carbonyls ↑ Conflicting results ↑

1 and ↓ 2
↑

1,2

Antioxidant
capacity

TAC, SOD,
Catalase, GPX, GR ↓ Conflicting results ↑

1,2
↓

1,2

1 At rest compared to untrained/pain-free people. 2 After a single bout of exercise compared to untrained/pain-free
people. ↑: increased; ↓: decreased; GPX: glutathione peroxidase; GR: glutathione reductase; H2O2: hydrogen
peroxide; MDA: malondialdehyde; NO: nitric oxide; O2: superoxide; ROS: reactive oxygen species; SOD: superoxide
dismutase; TAC; total antioxidant capacity; TBARS: thiobarbituric acid reactive substances. Adapted from Powers
and Marrocco et al. [31,32] (first two columns) and based on the results of this review (last four columns).

2.1. A Single Bout of Intense Exercise and Oxidative Stress

Exercise intensity is commonly defined by using a percentage of the maximum oxygen uptake
(%VO2max) [33]. However, precise cut-offs to classify exercise intensities are lacking, as the existing
literature provides multiple ranges for measures indicating exercise intensity [34,35]. As a result,
studies investigating the same exercise intensity in terms of definition (i.e., low, moderate, or high)
might not use the same %VO2max. Therefore, this review reports the exact exercise intensity in
between brackets.

The effect of a single bout of intense exercise on oxidative stress status has been explored in several
conditions such as cycling, intermittent running, sprints, jumps, and swimming in both animal models
and humans [28,36–39]. An intense swimming session (75—80% of individual maximal capacity) of one
hour increased malondialdehyde (MDA, a marker for lipid peroxidation) and protein carbonyl levels
and decreased antioxidant enzyme levels in neutrophils and lymphocytes of amateur swimmers [36].
Another study implementing exercise until exhaustion also found indicators of increased oxidative
stress, which was expressed via increased TBARS levels and decreased reduced glutathione (GSH,
inversely related to oxidative stress) [38].

Of note, when comparing intense and moderate exercise, Wang and Huang found intense exercise
(80% of VO2max) to cause a reduction in GSH, while this was not the case for moderate exercise (60% of
VO2max), indicating that oxidative stress changes in response to exercise might be dose-dependent [15].
On the contrary, a more recent study concluded that all exercise intensities (low (40% of VO2max),
moderate (60% of VO2max), and high (80% of VO2max)) significantly increased MDA levels immediately
after exercise without being significantly different from each other [40]. However, these studies did not
assess the same markers for oxidative stress status and thus, they are difficult to compare, as different
markers for oxidative stress status respond differentially to exercise [26,27].

In general, the literature suggests that high intensity, strenuous exercises can increase oxidative
stress in both trained and untrained people [28,36,38]. Furthermore, parameters reflecting antioxidant
status (e.g., glutathione and total antioxidant capacity) decrease immediately after exhaustive
exercise [26,38,41,42] and rapidly increase in the recovery phase, starting at approximately 30 min after
activity [41,43].
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2.2. A Single Bout of Moderate Exercise and Oxidative Stress

Existing literature linking oxidative stress changes to moderate exercise is less consistent.
While some reported a marked increase in blood markers for oxidative stress after submaximal
cycling [44,45], swimming [46], or resistance training [47,48], others did not [15,49–52]. Moreover,
several studies found that submaximal exercise increased total antioxidant status in active [45,48,52] as
well as sedentary individuals [45,53,54]. However, the results of a recent study are not in line with this,
as they show that moderate exercise (60% of VO2max) did not increase SOD levels, whereas intense
exercise (85% of VO2max) did [55].

Most part of these conflicting results is likely to be explained by differences in participants’ training
level (see the next section for more details) [49] or physical condition [56,57], or by insufficient exercise
intensity [15,50,58]. For instance, moderate exercise (70% VO2max) increased glutathione reductase
levels in young, sedentary, severely obese volunteers, whereas no significant change was observed
in overweight/moderately obese or normal-weight individuals [56]. Additionally, moderate exercise
(60% of peak workload) increased oxidative stress in patients suffering from cystic fibrosis but not in
healthy volunteers [59]. In conclusion, despite inconsistencies in the literature, most research showed
that moderate exercise has the potential to induce oxidative stress and increase total antioxidant
status [25,53,60–62].

2.3. Physical Training and Oxidative Stress

Many studies explored the effect that prolonged training might exert on oxidative stress in
healthy people. Several studies reported that training alleviates exercise-induced oxidative stress by
modulating the antioxidant capacity in humans (for a review, see [63]). However, not all training
modalities and intensities have the same beneficial effect. For instance, oxidative stress decreased in
rats subjected to high-intensity (85% VO2max) interval training, whereas this was not the case for rats
subjected to continuous low-intensity training (40% VO2max) [14].

The person’s basal training level also influences oxidative stress. Physically active individuals
(more than 150 min of exercise per week) are less prone to DNA damage caused by exercise-induced
oxidative stress than sedentary individuals [64]. This sort of decreased vulnerability to oxidative
damage is probably the result of coping mechanisms taking place in response to oxidative stress
during the recovery phase, including the activation of antioxidant and oxidative damage repair
systems mediated via the increased ROS production. As a detailed description of how pro-oxidants
induce such adaptations is beyond the scope of this review, we refer interested readers to a review
by Gomez-Gabrera [65]. These endogenous coping mechanisms increase the tissue’s ability to cope
with oxidative stress/damage [66,67]. Hence, physical training has the potential to induce oxidative
stress and underlying chemical alterations that are linked to beneficial health outcomes (i.e., oxidative
eustress) (for a review, see [68]). This seems particularly true for moderate exercise training [69].
Conflicting results were found when investigating aerobic exhausting exercise, anaerobic exercise,
or a combination of the two [69]. Nevertheless, more recent studies found that 4 to 12 weeks of
high-intensity training (80% of maximal heart rate (%HRmax)) reduced oxidative stress at baseline and
following exhausting exercise in untrained people [70] and athletes [71].

In practice, the adaptations occurring in response to training result in higher levels of several
antioxidant enzymes in physically active people at rest [45,72,73]. Furthermore, while both trained and
untrained people showed an increase of MDA levels after exercise (cycling until exhaustion), only the
trained ones demonstrated a significant increase of SOD, vitamin E, and glutathione peroxidase in the
recovery phase [73]. However, too intense training can compromise the antioxidant response, even in
athletes. Four weeks of overload training induced an increase of TBARS levels and a decrease in total
antioxidant status, in both rest and exercise conditions [74]. At this stage, physical training results in
oxidative distress instead of oxidative eustress, leading to the loss of beneficial health outcomes related
to physical training. Thus, depending on the characteristics of exercise, physical training will induce
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oxidative eustress or distress, leading to beneficial or harmful chemical adaptations and eventually
health outcomes, respectively (for a review, see [68]).

Of important note, oxidative stress has classically been seen as a dangerous phenomenon [24].
Antioxidant supplementation is commonly used among athletes and physically active people in the
attempt of reducing exercise-induced oxidative stress and increasing performance. However, its benefits
are unclear [75–78]. It is possible that antioxidant supplementation mitigates the above-mentioned
endogenous coping mechanisms which are activated via oxidative eustress [65,79]. A recent study
even demonstrated that moderate training is more beneficial than selenium supplementation (an
antioxidant), improving the antioxidant status and decreasing exercise-induced oxidative damage [80].
Therefore, moderate and controlled physical activity should be considered as a valuable strategy to
promote desirable changes in the balance between pro- and antioxidant products.

3. Oxidative Stress Contributes to Pain

The relation between oxidative stress status and nociception has been evident for decades [81–85].
Following inflammatory stimuli, the production of certain ROS (e.g., H2O2 (hydrogen peroxides),
2O2

− (superoxide), and ONOOH (peroxynitrite)) is increased to mediate various aspects of the immune
response [86,87]. Moreover, oxidative mechanisms mediate thermal and mechanical hyperalgesia
induced by nerve growth factor injections in both peripheral and central nerve fibers. Nerve growth
factor increases the production of oxidized lipids, which in turn modulate transient receptor potential
vanilloid 1 (TRPV1) activity [88,89]—a multimodal receptor known for its involvement in the
transduction of nociceptive, thermal, and acidic stimuli [90]. Additionally, elevated spinal levels
of ROS can alter nociception and lead to the hyperexcitability of both the peripheral and central
nervous system (i.e., referred to as peripheral and central sensitization, respectively), resulting in
hyperalgesia without any nerve damage or tissue inflammation [91,92]. Finally, nitric oxide reduces
receptor thresholds, resulting in peripheral and central sensitization [93], and the inhibitory activity of
the central nervous system, leading to central sensitization of the dorsal horn neurons [94]. In line with
the above observations, oxidative stress has also been associated to chronic pain and proposed to be
a possible contributor to the maintenance of pain symptoms [20,84,95,96]. While both inflammatory
and oxidative processes cover a role in the acute nociceptive phase, it is mainly the production of
ROS that seems to account for the maintenance of nociceptive processes in the chronic phase [97].
These observations linking oxidative stress status and nociception stimulated researchers to investigate
the potential analgesic properties of oxidative stress-modulating compounds and oxidative stress
status in various pain populations, as reviewed in the next sections.

3.1. Oxidative Stress in Chronic Pain Populations

Several underlying mechanisms will likely contribute to the pathophysiology of complex pain
syndromes such as tension-type headache and complex regional pain syndromes [98–101]. Available
research demonstrated that higher MDA levels are present in the serum and saliva of people suffering
from chronic regional pain syndrome [5]. Similarly, patients with tension-type headache showed higher
plasma levels of MDA and TBARS compared to healthy pain-free individuals [6]. Taken together,
these findings suggest an involvement of oxidative stress mechanisms in the pathophysiology of
such conditions. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia
(FM)—two conditions in which widespread persistent pain is a defining symptom—have been
extensively investigated with regard to oxidative stress. Research showed evidence of increased
oxidative stress in both patients and animal models (for a review, see [7,8]). Complex conditions
such as ME/CFS and FM are very challenging to be translated in animal models given the poor
understanding of their etiology (for a review, see [102,103]). However, animal models mimicking the
most important features of FM, including depressive- and anxiety-like symptoms, have recently been
proposed [104–106]. In the reserpine-induced FM model, parameters indicative of oxidative stress were
found to be altered in cerebrospinal fluid (CSF) [107], brain tissue [108], spinal cord, and muscles [105].
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Results of clinical research are in line with those obtained from animal studies. Sanchez-Dominguez
and colleagues collected skin biopsies from patients with fibromyalgia and healthy controls, finding
significant mitochondrial dysfunction and increased levels of oxidative stress [109]. Indications of
oxidative stress were also found in other tissues and fluids, such as plasma, serum, erythrocytes,
and mononuclear cells in patients suffering from ME/CFS [7,110–115]. These patients showed
higher levels of oxidized low-density lipoproteins and protein carbonyl, which are both a result
of oxidative stress [114]. Blood parameters indicative of oxidative stress were also associated with
symptoms, including pain [81]. This has also been observed in animal models [116]. In line with these
observations, several studies reported reduced Coenzyme Q10 (CoQ10) levels [109,117–119], which is
vital for mitochondrial functioning [120] and thus may be a potential cause of impaired mitochondrial
functioning and increased oxidative damage [121].

3.2. Decrease of Pain via Down-Regulating Oxidative Stress

Numerous studies explored the effect of oxidative stress-modulating compounds on pain and
found that pain decreases when oxidative stress is down-regulated [122]. For instance, the effect
of CoQ10 supplementation was assessed in several clinical trials, which found that CoQ10
supplementation restored biochemical parameters and induced a significant improvement in pain,
fatigue, headache, psychopathological, and depressive symptoms in patients with FM [123–128].
Recently, these observations were confirmed in vivo via the use of the reserpine-induced FM model [105].
CoQ10 supplementation also yields favorable results in other pain populations (e.g., statin-associated
myalgia and migraine) [129,130] and models (e.g., neuropathic pain and osteoarthritis) [131–133].
Other antioxidants have also been investigated. For instance, SOD mimetics down-regulate oxidative
stress via its ability to neutralize superoxide and therefore exert an antinociceptive effect in inflammatory
as well as drug-induced pain models [85,91,134]. Next to the analgesic effect of antioxidants,
other compounds are also implicated to alleviate pain via its effect on oxidative stress. Inhibitors of
electron transport chain complexes, which are major ROS producers, decreased pain in neuropathic
and inflammatory pain models [135]. Additionally, it has recently been demonstrated that activators
of Nuclear factor-erythroid 2-related factor 2 (Nrf2), a master regulator of antioxidant defense [136],
significantly reduce pain and delay the onset of pain in various pain models [136–142].

In conclusion, this body of evidence, including oxidative stress status in pain populations as well
as the favorable effect of down-regulating oxidative stress in these populations, further supports the
fact that oxidative stress is involved in nociceptive modulation.

4. Interactions between Oxidative Stress, Exercise, and Pain

Although several studies investigated the relation between exercise and chronic pain [143–149],
only a small number also inquired information about the role of oxidative stress. Figure 1 summarizes
the effect of exercise on healthy controls and patients with chronic widespread pain in relation to
oxidative stress status and pain.
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the recovery period. After physical training, the antioxidant capacity of healthy people increases. Both 
a single bout of exercise and physical training have a hypoalgesic effect in healthy individuals. 
Patients with chronic widespread pain already have elevated ROS levels at baseline and an impaired 
antioxidant capacity. In these patients, a further increase in ROS induced by a single bout of exercise 
is linked to exercise-induced hyperalgesia. Physical training decreases baseline ROS levels and 
improves antioxidant capacity, leading to a decrease of oxidative stress and hypoalgesic effect. 
Created with BioRender.com. 

4.1. Exercise-Induced Hypoalgesia in Healthy Controls and Various Pain Populations 

Several studies reported that exercise decreases pain threshold and intensity, a phenomenon 
known as exercise-induced hypoalgesia, in healthy controls as well as various pain populations, 
including chronic low back pain, rheumatoid arthritis, and osteoarthritis (for review see [150]). The 
phenomenon of exercise-induced hypoalgesia has been linked to oxidative stress status. 
Illustratively, Chen and colleagues reported that an exercise protocol (muscle stretch and 
strengthening exercises) significantly decreased pain in patients with nonspecific low back pain, 
which was accompanied with decreased hydrogen peroxide and increased SOD and catalase activity 
[19]. Animal studies confirm this link between exercise-induced hypoalgesia and oxidative stress. In 
a model of neuropathic pain, mechanical allodynia (i.e., painful response to non-painful stimuli) and 
thermal hyperalgesia (i.e., increased pain response to painful stimuli) were prevented in rats that 
followed physical training (70% VO2max) after surgery but not in rats that followed the same training 
before surgery. Interestingly, total antioxidant capacity and ferric reducing ability of plasma (FRAP, 
a marker for antioxidant power) significantly increased in rats that trained after surgery compared 
to injured rats that did not train. This was not the case for rats that trained before surgery, suggesting 
that oxidative stress status was involved in exercise-induced hypoalgesia [151]. 

4.2. Exercise-Induced Hyperalgesia in Patients with Chronic Widespread Pain 

Figure 1. Effect of exercise on healthy people and patients with chronic widespread pain in relation
to oxidative stress status and pain. In healthy individuals, a single bout of exercise increases reactive
oxygen species (ROS) production, which in turn results in an increased antioxidant capacity during
the recovery period. After physical training, the antioxidant capacity of healthy people increases.
Both a single bout of exercise and physical training have a hypoalgesic effect in healthy individuals.
Patients with chronic widespread pain already have elevated ROS levels at baseline and an impaired
antioxidant capacity. In these patients, a further increase in ROS induced by a single bout of exercise is
linked to exercise-induced hyperalgesia. Physical training decreases baseline ROS levels and improves
antioxidant capacity, leading to a decrease of oxidative stress and hypoalgesic effect. Created with
BioRender.com.

4.1. Exercise-Induced Hypoalgesia in Healthy Controls and Various Pain Populations

Several studies reported that exercise decreases pain threshold and intensity, a phenomenon known
as exercise-induced hypoalgesia, in healthy controls as well as various pain populations, including
chronic low back pain, rheumatoid arthritis, and osteoarthritis (for review see [150]). The phenomenon
of exercise-induced hypoalgesia has been linked to oxidative stress status. Illustratively, Chen and
colleagues reported that an exercise protocol (muscle stretch and strengthening exercises) significantly
decreased pain in patients with nonspecific low back pain, which was accompanied with decreased
hydrogen peroxide and increased SOD and catalase activity [19]. Animal studies confirm this link
between exercise-induced hypoalgesia and oxidative stress. In a model of neuropathic pain, mechanical
allodynia (i.e., painful response to non-painful stimuli) and thermal hyperalgesia (i.e., increased pain
response to painful stimuli) were prevented in rats that followed physical training (70% VO2max) after
surgery but not in rats that followed the same training before surgery. Interestingly, total antioxidant
capacity and ferric reducing ability of plasma (FRAP, a marker for antioxidant power) significantly
increased in rats that trained after surgery compared to injured rats that did not train. This was not
the case for rats that trained before surgery, suggesting that oxidative stress status was involved in
exercise-induced hypoalgesia [151].
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4.2. Exercise-Induced Hyperalgesia in Patients with Chronic Widespread Pain

Although exercise alleviates pain in various pain populations via its effect on oxidative stress,
patients with chronic and more widespread pain, such as chronic whiplash-associated disorders,
FM and ME/CFS, but also some patients with osteoarthritis pain, do not seem to benefit from a single
bout of exercise. According to a recent review, most studies comparing pain thresholds before and
after exercise in patients with chronic pain as well as healthy controls conclude that exercise-induced
hypoalgesia occurs in healthy controls, while exercise-induced hyperalgesia (i.e., increased pain after
exercise) is observed in patients with chronic whiplash-associated disorders, FM, and ME/CFS [150].
This may potentially be explained by the fact that these patients have elevated ROS and decreased
antioxidant enzyme levels at baseline when compared to pain-free controls. It is possible that a
further increase in oxidative stress would contribute to explain the typical exercise-induced symptom
exacerbation in these patients [152,153], as confirmed by Jammes and colleagues. They noted that
maximal exercise (incremental cycling until exhaustion) induced an increase in TBARS levels and
suppressed heat shock proteins—which are known to exert a protective function against ROS—in
patients with ME/CFS that was more pronounced and appeared earlier than in healthy sedentary
controls [20–22]. Moreover, they reported that oxidative stress—rather than pro-inflammatory cytokine
responses [21,154]—contributed to explain muscle pain and post-exertional malaise [22].

In contrast to what happens during a single bout of exercise and in line with the evidence in
healthy people, regular physical activity exerts a desirable effect on oxidative stress and health in
these patients. Twelve weeks of regular exercise (65–85% of %HRmax) seems beneficial in patients
with fibromyalgia while simultaneously reducing oxidative stress markers (TBARS, protein carbonyls,
nitric oxide, MDA), increasing antioxidant capacity (catalase, thiol, glutathione peroxidase, β-carotene,
vitamin A, and vitamin E) and improving symptoms [155–157]. Accumulating evidence showed that
regular moderate aerobic exercise is beneficial for patients with chronic widespread pain [152].

5. The Potential Role of the Autonomic Nervous System in the Interplay between Oxidative
Stress, Exercise and Pain

The autonomic nervous system (ANS) is a control system regulating a variety of crucial body
functions such as cardiac, respiratory, and vasomotor functions. Its branches supply internal organs,
muscles, and the skin and influence their function by releasing neurotransmitters such as acetylcholine,
adrenaline, and noradrenaline [158]. Given its broad extension and numerous extensions, the ANS
is able to influence stress responses, the immune system, and inflammation [159]. In addition, ANS
activity changes have been related to oxidative stress, exercise, and chronic pain (Figure 2) [160–168].
However, whether ANS activity regulates and/or responds to exercise-induced adaptions, oxidative
stress, and chronic pain is yet to be properly investigated, as only one study was found to investigate
these links simultaneously.

As previously mentioned, a number of adaptions occur in response to exercise, which result in
changes in ANS activity. More than 60 years ago, Van Liere et al. found that propulsive motility of the
small intestine was higher in exercised rats compared to sedentary rats, which was possibly due to an
increased parasympathetic tone, and therefore, they were one of the first groups reporting ANS activity
changes in response to exercise [169]. Since then, many others investigated this relation and reported
that acute exercise tends to reduce cardiac vagal modulation (i.e., parasympathetic tone) and increase
sympathetic activity, whereas physical training increases the parasympathetic tone (for a review,
see [168]). Elevated sympathetic tone has the potential to impair local microcirculation and possibly
cause painful ischemia [170–172]. As a result, sympathetically-maintained vasoconstriction leads to
insufficient blood flow for working muscles, producing muscle hypoxia and increased oxidative stress,
which in turn can maintain nociceptive stimuli [173]. On the contrary, increased vagal (parasympathetic)
tone is important for post-exercise recovery [174–179].
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Furthermore, several studies found that changes in ANS activity can also be linked to pain,
ranging from an altered ANS activity in patients with chronic pain to correlations between ANS and
pain parameters. For instance, increased sympathetic and reduced parasympathetic tone have been
reported in patients with chronic pain [160–162]. Additionally, blood pressure changes, which is
considered a measure for sympathetic activity [180–182], have been associated to pain sensitivity [183]
and linked to exercise-induced hypoalgesia [184], suggesting a relevant role for the baroreceptor
reflex [185]. Moreover, heart rate variability (HRV)—a measure for efferent cardiac vagal nerve
activity (i.e., parasympathetic activity) [186]—is inversely correlated with reported pain [187]. In fact,
the parasympathetic branch of the ANS exerts anti-inflammatory functions by dampening the release
of pro-inflammatory cytokines [188–190]. Hence, knowing that pain is one of the cardinal symptoms
of inflammation [191], the anti-inflammatory effect of an increased parasympathetic tone could be a
potential mechanisms of action underlying the inverse correlation between HRV and reported pain.
As a large body of literature demonstrated a close link between inflammation and oxidative stress (for
a review, see [192–195]), parasympathetic branch activity is likely able to regulate both inflammation
and oxidative stress simultaneously.

Preliminary evidence suggests that the ANS might act as a mediator of oxidative stress
responses [52,174]. Blockage of the angiotensin-II receptor induced both inhibition of the ANS
sympathetic branch and reduction of oxidative stress [163]. Additionally, several studies indicate that
the relation between the ANS and oxidative stress might be bidirectional, as oxidative stress is also
able to modulate ANS activity. Increased oxidative stress in the rostral ventrolateral medulla causes
an excitation of the ANS sympathetic branch [163] and experimentally induced increased levels of
oxidative stress alter blood flow regulation, thereby reducing muscle blood flow during exercise in
both animals and humans [163–167]. As mentioned above, insufficient blood flow for working muscles
produces muscle hypoxia and increases oxidative stress, which is in turn linked to pain [173]. Hence,
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combining findings from independent studies suggests that ANS activity might play a role in the
interplay between oxidative stress, exercise, and pain.

In line with this, our group recently investigated the associations between oxidative stress and
pain symptoms in relation to exercise in healthy volunteers and people with ME/CFS, and we assessed
whether the oxidative stress level and parasympathetic (vagal) activity were linked [196]. Even though
exercise did not increase oxidative stress levels, oxidative stress was consistently found to be associated
with ME/CFS patients’ pain symptoms both before and after exercise. Furthermore, HRV was strongly
associated with oxidative stress reduction in healthy people and remained stable during exercise in
healthy volunteers but significantly decreased in patients with ME/CFS [175]. As this association was
only found in healthy controls, it might be a normal physiological response that may be disrupted in
ME/CFS patients. Although research is not conclusive, the aforementioned studies indicate that ANS
activity might cover an important mediating role in the interactions between oxidative stress, exercise,
and pain. More research is warranted, as it might hold important clinical implications.

6. Genetic and Epigenetic Regulatory Mechanisms

The link between genetics and oxidative stress is bidirectional. On one hand, it has long been
known that oxidative stress is able to impair the proliferative capacity of a cell as well as to directly
induce DNA damage. On the other hand, genetic changes such as mutations and polymorphisms can
influence gene expression and thus those functions regulated by the mutated gene. Thus, any genetic
change in mitochondrial DNA influencing mitochondrial functions can potentially have an impact on
redox-sensitive sites and their functions [197]. In the last two decades, it has become clear that gene
expression and regulation is not solely directed by our genes, but rather by a complex interaction of
genetic and epigenetic mechanisms [198]. Epigenetics refers to a set of biological mechanisms able to
change gene expression without interfering with the DNA sequence itself [199]. Importantly, epigenetic
processes are influenced by environmental and lifestyle factors. Epigenetic adaptations occurring
in response to exercise have been extensively investigated as well as epigenetic mechanisms related
to oxidative stress, nociception, and pain. However, epigenetic research on the interplay between
oxidative stress, exercise, and pain is lacking. An overview of known relations between epigenetic
mechanisms and oxidative stress, exercise, and chronic pain is provided in Figure 3.

DNA methylation is one of the most well-known epigenetic mechanisms and may be involved in
the interplay between oxidative stress, exercise, and pain. DNA methylation is characterized by the
transfer of a methyl group to DNA, mainly to the cytosine base of cytosine–guanine di-nucleotides,
via a family of enzymes called DNA methyltransferases (DNMTs) [200]. Methylated DNA is less
accessible to transcription factors and thus is associated with reduced gene expression. Research
showed that DNA methylation was lower in gene promotors of trained men compared to untrained
men. Interestingly, many of these hypomethylated promotors drive the expression of oxidative
stress-responsive genes, such as SOD2 [201]. Several other studies observing altered DNA methylation
patterns in physically active people also reported hypomethylation on oxidative stress-responsive
genes, leading to an increased expression of those genes and indicating that physically active people
cope better with oxidative stress than sedentary individuals [202–205]. Moreover, DNA methylation
patterns showed to be altered in patients with chronic widespread pain compared to healthy people
or their unaffected twin (for a review, see [206]). Genes that were differentially methylated were
involved in diverse processes such as chromatin packaging, oxidative stress responses, nociceptive
and neuropathic signaling, and muscle contraction [207,208].

Another epigenetic mechanism that potentially plays a role in the interaction between oxidative
stress, exercise, and pain is histone acetylation. This process is partially mediated via histone
deacetylases (HDACs), which is a family of enzymes responsible for removing acetyl groups from
histones leading to decreased accessibility of DNA and thus reduced expression. HDACs were
found to be exported from the nucleus during exercise [209]. Even more interesting, this export of
HDACs was found to be fostered by oxidative stress [210], thereby linking increased oxidative stress in
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response to acute exercise to exercise-induced epigenetic adaptations. Additionally, increased HDAC
levels, and subsequently decreased histone acetylation, have been found in animal models of chronic
pain [211–214]. Interestingly, exercise was able to reverse increased HDAC levels and therefore increase
histone acetylation while attenuating mechanical allodynia and thermal hyperalgesia [214]. Hence,
increased histone acetylation levels might contribute to explain exercise-induced hypoalgesia.Antioxidants 2020, 9, x FOR PEER REVIEW 11 of 26 
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directionality (solid red and green arrows) and those without (dashed red and solid black line). Thus,
exercise and oxidative stress decrease DNA methylation and increase histone acetylation, whereas
chronic pain has only been linked to decreased histone acetylation and altered DNA methylation
patterns. Created with BioRender.com.

Not only are expression levels of genes related to oxidative stress influenced by epigenetic
mechanisms, oxidative stress itself is also able to induce epigenetic changes, including alterations in
DNA methylation and histone acetylation patterns [215,216]. Oxidative stress converts methylated
cytosines into hydroxyl-methylated ones, which in turn prevents the maintenance of DNA methylation
and promotes gene expression [217,218]. In line with the increased oxidative stress levels observed
after a single bout of exercise, this type of exercise induces the hypomethylation of DNA in skeletal
muscle of healthy individuals [202]. Oxidative stress is also able to influence chromatin-modulating
enzymes, which are frequently redox-sensitive [219]. Expression levels as well as the activity of several
chromatin-modulating enzymes (e.g., histone acetyltransferases, HDACs, and DNMTs) are affected by
oxidative stress [220,221].

The field of epigenetics holds promise to unravel currently unknown mechanisms of action due
to its interplay with several stimuli. Epigenetics could be a common underlying mechanism of action
explaining the interactions between oxidative stress response, exercise, and pain. However, research
investigating the nature of these interactions is lacking and thus should be conducted in the coming
years to uncover the regulatory and/or responsive role of epigenetics processes.

7. Future Recommendations

To reveal the true interplay between oxidative stress, exercise, and pain, the scientific community
should first agree upon several matters to eliminate many confounding factors limiting advances in
this field of research. With regard to oxidative stress measurement, researchers should invest time in
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determining which biomarkers reflect oxidative stress status most accurately. For instance, even though
new and more accurate biomarkers emerged rather recently, those that have been used for decades
remain the “golden standard” (for a review, see [222]). Moreover, few studies investigating the link
between oxidative stress, exercise, and/or pain targeted more than two markers for oxidative stress,
whereas oxidative stress status is determined by the balance among many of them. Therefore, a variety
of indexes reflecting oxidative stress status have been proposed [223,224]. These indexes will probably
reflect oxidative stress status more accurately and limit false positives or negatives, since they are
dependent on several markers indicative of different aspects contributing to oxidative stress status.

As previously mentioned, another important matter to consider when assessing oxidative stress
is sampling time. Although Michailidis et al. found that most markers of oxidative stress peak a
couple of hours after exercise instead of immediately after, many studies focusing on exercise-induced
oxidative stress only assessed oxidative stress markers immediately after exercise [26]. As a result,
important information about oxidative stress changes in response to exercise might be neglected,
especially when assessing only one or a limited number of markers. Hence, one should always obtain
accurate knowledge about the time-specific response to exercise of the oxidative stress markers that
will be assessed before deciding upon the optimal sampling time(s).

Additionally, altered plasma concentrations of some antioxidants in response to exercise might
reflect a redistribution between tissue and plasma rather than true changes in antioxidant capacity [225].
Thus, markers for oxidative stress and antioxidant capacity should ideally be assessed in plasma as
well as different tissue types (e.g., liver and muscle) simultaneously. As the collection of human tissue
is an invasive, and in some cases even unethical (e.g., liver), procedure, human studies should be
complemented with animal studies to acquire a detailed and complete overview of oxidative stress
alterations in response to exercise.

As noted by Dalleck et al., exercise intensity might be the most determining component when
aiming to reach beneficial effects of exercise [33]. Therefore, strict guidelines with regard to the
definition of different exercise intensities and standardized measures to define them are necessary
to allow independent studies to be comparable. Although the American College of Sports Medicine
(ACSM) provides such guidelines, including those to reach optimal cardiorespiratory fitness [34],
Dalleck et al. found that these guidelines are frequently misused and misinterpreted [33]. For instance,
following ACSM’s guidelines, exercise intensity should be defined via the percentage of the heart rate
reserve (%HRR) or of the oxygen uptake reserve (%VO2R) [34] while %VO2max is most commonly
used in the literature [33]. This lack of standardized measures and definitions for exercise intensity
is even more important knowing that oxidative stress alterations in response to exercise seem to be
dose-dependent [15].

This dose-dependent response of oxidative stress to exercise is also likely to influence
exercise-induced and oxidative stress-mediated hypo-/hyperalgesia. Indeed, a rather outdated
review indicated that exercise-induced hypoalgesia is dependent on exercise intensity, most likely
in combination with exercise duration and modality [226]. Hence, a range of exercise intensities,
modalities, and durations should be taken into account when unravelling these phenomena.

Moreover, the occurrence of exercise-induced hypo-/hyperalgesia is dependent on which
population is investigated. While exercise seems to induce hypoalgesia in pain-free individuals,
results are conflicting when looking at chronic pain populations (for a review, see [150]). Taking into
account that oxidative stress levels have been found to be altered in patients with chronic pain [5–8],
the effect of exercise on pain and the mediating role of oxidative stress should be assessed in diverse,
but well-defined, pain-free and pain populations.

When the above recommendations are followed, the true interplay between oxidative stress,
exercise, and pain will likely become evident. Obviously, these recommendations are time- and
money-consuming, but they are also pivotal because there are currently too many variables preventing
independent studies to be compared properly. Hence, they will contribute to a better understanding of
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the complex interactions between exercise, oxidative stress and pain as well as other oxidative stress-
or exercise-related questions.

Next to acquiring a clear and detailed overview of the interplay between oxidative stress, exercise,
and pain, unravelling the underlying mechanisms of action should also be emphasized as they
could provide new therapeutic possibilities for chronic pain. For instance, epigenetic modifications
might be able to explain exercise-induced and oxidative stress-mediated hypoalgesia in healthy
controls [214,220,221]. Then, eventually, epigenetic editing could possibly be used to induce the same
epigenetic modifications in patients with chronic pain, thereby decreasing pain.

8. Conclusions

Oxidative stress has been extensively investigated in relation to exercise and pain. However,
results of studies from different research groups are challenging to compare, as a range of exercise
modalities and intensities have been implemented and many markers have been used to assess
oxidative stress and pain. Although the underlying mechanisms are poorly understood, there seems to
be a relation between oxidative stress, exercise, and pain. ANS functioning and epigenetic mechanisms
appear to mediate these relations, as they have been implicated in oxidative stress, exercise, and pain
separately as well as in the interaction between them. Studies focusing on the role of epigenetics in the
relation between oxidative stress, exercise, and pain are necessary to confirm their real contribution.
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Appendix A

Table A1. Overview of search terms that were used to conduct the literature search.

Chapter Search Terms 1

The Effect of Exercise on Oxidative Stress in
Healthy People

“oxidative stress”, “ROS”, “antioxidant capacity”,
“exercise”, “physical activity”, “physical training”,

“single bout”, “acute”, “intense”, “moderate”

Oxidative Stress Contributes to Pain
“oxidative stress”, “ROS”, “antioxidant capacity”,

“chronic pain”, “nociception”, “fibromyalgia”,
“chronic fatigue syndrome”, “pain disorders”

Interactions between Oxidative Stress, Exercise
and Pain

“oxidative stress”, “ROS”, “antioxidant capacity”,
“exercise”, “physical activity”, “chronic pain”, “pain

disorders”, “chronic widespread pain”,
“exercise-induced hyperalgesia”, exercise-induced

hypoalgesia”

The Potential Role of the Autonomic Nervous
System in the Interplay between Oxidative Stress,

Exercise, and Pain

“oxidative stress”, “ROS”, “autonomic nervous
system”, “exercise”, “chronic pain”

Genetic and Epigenetic Regulatory Mechanisms
“oxidative stress”, “ROS”, “epigenetics”, “DNA
methylation”, “histone acetylation”, “exercise”,

“chronic pain”
1 These search terms were used in various combinations. Additional synonyms or related search terms might have
been used.
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