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Abstract: This article describes a unique therapeutic precision intervention, a formulation of
enkephalinase inhibitors, enkephalin, and dopamine-releasing neuronutrients, to induce dopamine
homeostasis for detoxification and treatment of individuals genetically predisposed to developing
reward deficiency syndrome (RDS). The formulations are based on the results of the addiction risk
severity (GARS) test. Based on both neurogenetic and epigenetic evidence, the test evaluates the
presence of reward genes and risk alleles. Existing evidence demonstrates that the novel genetic risk
testing system can successfully stratify the potential for developing opioid use disorder (OUD) related
risks or before initiating opioid analgesic therapy and RDS risk for people in recovery. In the case of
opioid use disorders, long-term maintenance agonist treatments like methadone and buprenorphine
may create RDS, or RDS may have been in existence, but not recognized. The test will also assess
the potential for benefit from medication-assisted treatment with dopamine augmentation. RDS
methodology holds a strong promise for reducing the burden of addictive disorders for individuals,
their families, and society as a whole by guiding the restoration of dopamine homeostasisthrough
anti-reward allostatic neuroadaptations. WC 175.
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1. Introduction

We are facing an incredible challenge in combatting the current opioid and drug pan-
demic worldwide. Although there has been notable progress, in 2017 alone, 72,000 people
died from a narcotic overdose in the USA. The National Institute on Alcohol Abuse and
Alcoholism (NIAAA) and National Institute on Drug Abuse (NIDA) continue to strug-
gle with cultivating innovations to impede or eliminate this unwanted epidemic. The
FDA list of approved medication assistance treatment (MAT) works primarily by blocking
dopamine release and function at the pre-neuron in the nucleus accumbens [1,2]. Although
MAT have reduced overdose deaths, health care events, and costs, a long-term strategy to
return MAT patients to premorbid functioning is needed. Medication-assisted treatments
often fail [3], and when discontinued, relapse and overdose occur at high rates similar
to those of untreated patients. Neurologically, MATs may induce persistent changes that
compromise endorphin, dopamine, and other brain systems. Long-term agonist treatments
may be necessary for lack of other options, but we caution that data on long-term use vs.
short-term harm reduction is lacking [4].

During the current viral pandemic, there is also a profound, pre-existing, and growing
worldwide epidemic of addiction to opioids, psychostimulants, alcohol, and cannabis.
Treatments themselves, like long-term agonist treatments for opioid use disorder (OUD),
may also cause Reward Deficiency Syndrome (RDS) [4], resulting in harm and deadly
consequences that rival and might eclipse the magnitude of the current viral issue.

The devastation and number of deaths due to drug overdose, while highest in the
United States, is a global issue requiring “out of the box” thinking. The short-term con-
sequences of opioid substitution therapy can be a reduction of harm. The long-term
consequences can lock people into unwanted and potentially lethal addictions [5]. At-
tempting to curb the usage of opioids by giving potent opioids seems fundamentally
incongruous. An alternative approach is to use the narcotic antagonist (like naltrexone)
to induce “psychological extinction” (weakening of a conditioned response over time) by
blocking delta and Mu opioid receptors [6]. This latter approach using narcotic antagonism
seems to be more acceptable, but compliance is an issue, moderated by the patient’s genetic
antecedents [7]. There are other approaches with FDA approval for alcoholism, but they
also seem to block dopaminergic signaling [8,9].

The Reward Deficiency Syndrome (RDS) Concept

Understanding the above premise and emerging acceptance of the underlying concept
of reward deficiency syndrome (RDS), which Blum first conceived of in 1995, facilitates
the common mechanism hypothesis for drug and behavioral addictions [10]. The common
neuromodulating aspects of neurotransmission and its disruption from chronic exposure
to drugs and behavioral addictions necessitates an approach involving the attainment of
“dopamine homeostasis” [11].

2. Snapshot of Evidence: Biochemical and Genetic Dysfunctions That Are Evident in
the Context of RDS

This “out of the box” novel approach requires the use of genetic risk polymorphic
testing together with a safe and well-researched neuronutrient KB220z, customized to
match the hypodopaminergic risk alleles identified in the individuals’ genetic test. The
presented evidence-validated precision nutrigenomic technology is known to have pro-
dopamine regulatory pharmacological properties [12].

Several lines of evidence support a common neural mechanism between substance
and non-substance addiction (like alcohol, opioids, food) [13–16]. In the 1970s, Blum’s
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laboratory developed an amino-acid based, enkephalinase-inhibitory, pro-dopamine reg-
ulator (PDR) into the KB220 nutraceutical, which now has improved variants and over
45 published clinical studies [17]. The basis of this complex is that it mimics and rebal-
ances the gene expression in the brain reward cascade (BRC), an established model of
reward processing. The most striking feature of KB200Z therapy is the normalization of
motivational and brain reward function, improving overall functional competence. The
areas involved include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic
nuclei, hippocampus, and prelimbic/infralimbic loci in animals and abstinent heroin ad-
dicts [18,19]. It is noteworthy that the synergistic effect of N-Acetyl cysteine, an ingredient
necessary for glutathione synthesis included in the KB220 variants, may help facilitate
the improvement of functional connectivity [20]. Notably, there is increasing evidence
that redox dysregulation, which can lead to oxidative stress and impairment of oligoden-
drocytes and parvalbumin interneurons, may underlie brain connectivity alterations in
schizophrenia. Increased brain antioxidant glutathione levels in the medial prefrontal
cortex correlated positively with increased functional connectivity within the cingulum
bundle in healthy controls; this was not the case for early psychosis patients. In a recent
randomized controlled trial, Mullier et al. [21] observed that 6-month supplementation
with a glutathione precursor, specifically N-acetyl cysteine, increased brain glutathione lev-
els, improved symptomatic expression and processing speed. Moreover, these researchers
found that N-acetyl-cysteine supplementation increases functional connectivity along the
cingulum and, more precisely, between the caudal anterior part and the isthmus of the
cingulate cortex. It seems sensible that by increasing glutathione and potentiating healthy
oxygen utilization, N- acetylcysteine may help overcome certain RDS behaviors.

3. Reward Deficiency Syndrome (RDS); A Behavioral Octopus

Blum’s group has provided evidence related to many RDS behaviors by utilizing a
glutaminergic–dopaminergic optimization complex over the past 50 years, and advance
goals have forced variants of KB220. Specifically, the development of a glutaminergic–
dopaminergic optimization complex, KB220Z, provides the brain reward systems with
the potential to balance neurotransmission and initiate “dopamine homeostasis.” This is
acquired by restoring optimal gene expression and rebalancing neurotransmitters and
neural interconnectivity. The KB220Z has been the subject of many studies of all types,
including but not limited to triple and double-blinded, placebo-controlled, and peer-
reviewed articles [22]. This complex may provide substantial clinical benefit to the victims
of reward deficiency syndrome (RDS) and help recovery from iatrogenically induced
addiction to unwanted opiates/opioids and other addictive behaviors.

Individuals with a mood disorder, addiction, personality disorder, and impulsiv-
ity may share a dysfunction in how the brain perceives reward, particularly where the
processing of natural endorphins or the response to exogenous dopamine stimulants is
impaired. Reward deficiency syndrome (RDS) is a polygenic trait with implications that
suggest impaired crosstalk between different neurological systems, including the known
reward pathway, neuroendocrine systems, and motivational systems. Remarkably, sub-
stance use disorder (SUD), major depressive disorder (MDD), early life stress, immune
dysregulation, attention deficit hyperactivity disorder (ADHD), post-traumatic stress disor-
der (PTSD), compulsive gambling, and compulsive eating disorders could be subtypes of
overlapping, interrelated, neurochemical dysfunction. These disorders recruit underlying
reward deficiency mechanisms in multiple brain centers. This array of associated and
overlapping behavioral manifestations have hypodopaminergia in common, and the basic
endophenotype recognized as RDS is likened to a behavioral octopus [13,14].
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Drug, food, or behavioral addictions characterized by reduced dopaminergic function
linked earlier to the DRD2 gene A1 allele (1), and now an array of reward gene alleles are
manifest clinically as reward deficiency syndrome (RDS) [23]. Indeed, animal models of
RDS are available [24]; in fact, Willuhn et al. [25] showed that there is a phasic dopamine
deficiency as seen in RDS when animals increase lever pressing for more cocaine. There
is also evidence for the potential utility of a natural, non-addictive, and safe putative
D2 agonist that can treat patients in recovery from reward deficiency syndrome (RDS),
including psychoactive substance use disorder (SUD) [26].

4. The Cascade of Neurotransmission—The Blueprint

The brain reward cascade (BRC) schematic depicts the known interactions of at least
seven neurotransmitter-pathways involved in the neurotransmission of reward. The
complexity of the interactions within the BRC demand frequent revision of this schematic
(see Figure 1).

Figure 1. This figure illustrates the interaction of at least seven major neurotransmitter pathways implicated in the brain
reward cascade (BRC). Within the hypothalamus, environmental stimulation causes serotonin release, which may activate
5HT-2a receptors (the green, equal sign). The opioid peptides have two distinct effects, possibly via two different opioid
receptors. One is to inhibit (the red hash sign) through the mu-opioid receptor (potentially via enkephalin) and project
to the Substantia nigra to Gamma-Aminobutyric acid A (GABAA) neurons. The second is to simultaneously project
(the green, equal sign) to Cannabinoid neurons (e.g., Anandamide and 2-archydonoglcerol) through Beta–Endorphin
link to delta receptors, which in turn inhibit GABAA neurons at the Substantia nigra. When cannabinoids (principally
2-archydonoglcerol) are activated, they can also indirectly disinhibit (the green hash sign) GABAA neurons in the Substantia
nigra through activation of G1/0 coupled to CB1 receptors. Similarly, Glutamate neurons located in the Dorsal Raphe Nuclei
(DRN) can indirectly disinhibit GABAA neurons in the Substantia Nigra by activating Glutamine (GLU). M3 receptors (the
green hash sign). GABAA neurons, when stimulated, will powerfully (the red hash signs) inhibit Ventral Tegmental Area
(VTA) glutaminergic drive via Gamma-Aminobutyric acid B GABAB 3 neurons. Finally, Glutamate neurons in the VTA will
project to dopamine neurons through N-methyl-D-Aspartate (NMDA) receptors (the green, equal sign) to preferentially
release dopamine at the Nucleus Accumbens (NAc) (shown as a bullseye), indicating good feeling (modified Blum et al. [2]
with permission). Key: Activate—the green, equal sign; Inhibit—the red hash sign; Disinhibit—the green hash sign
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5. Measuring the Neurogenetics of Addiction Risk and Developing the GARS Test

In previous work, Blum’s group developed the genetic addiction risk severity (GARS)
test following seminal research conducted by Blum’s group in 1990, which identified the
first genetic association with severe alcoholism published in JAMA [27]. Although no one
has provided sufficient RDS-free controls, and many of these so-called controls (e.g., blood
donors) are disputed [28]. This lack of disease-free case controls remains in the field, and
spurious results continue confusion regarding the role of genetics in addiction. Despite
this conversely, many studies have used case controls that have primarily eliminated
SUD. An estimation based on previous case-controlled studies available from the literature
reveals significant associations between alcohol and substance risk alleles. Indeed, a total
of 110,241 cases and 122,525 controls provides evidence that indicates an association of
these risk alleles (measured in GARS), mostly indicating hypodopaminergia in the subjects.
The instrumentation, data collection procedures, and the analytical approaches used to
develop the GARS test have been published elsewhere (see [29]).

The GARS-test screening will offer a novel opportunity to identify causal pathways,
and mechanisms of psychological characteristics, genetic factors involved in addictions.
Additional scientific evidence, including a future meta-analysis of all available data, is a
work in progress.

6. Genetic Polymorphisms of RDS: Case-Control Studies, for Alcoholism

Next-generation large-scale genomics studies have had limited success in identifying
alleles associated with addiction and RDS. Although Genome Wide Association Studies
(GWAS) and next generation sequencing are now available as important genetic tools, there
are some fundamental issues. Certainly, GWAS, for example, is useful to identify new
clusters of genes that may relate to an etiological factor as a genetic antecedent to specific
RDS behaviors like chemical dependency. The next important step following GWAS results
is subsequent convergence to specific candidate genes. Thus, if there is indeed a blueprint
or clue as to a specific known gene and associated polymorphic risk allele to link to a
specific phenotype such as SUD or even cannabis use disorder, although the contribution
of each gene may be small, it is still significant.

Being cognizant of these difficulties and awaiting further research, the BRC was
utilized as a blueprint, we reviewed the literature to determine each allele and associ-
ated polymorphism proposed in the GARS panel in case-control studies, specifically for
alcoholism (see Table 1).



J. Pers. Med. 2021, 11, 212 6 of 18

Table 1. Summary of Studies used for Cases vs. Controls for Alcohol Use Disorder (AUD) Studies.

GENE Risk Allele Phenotype # of Studies
Pat **

Case (N)
Control (N)

Meta-Analysis *** (N) Sig (p) Comment

DRD1

Rs4532
& specific haplotype

rs686*T-rs4532*G within
the DRD1 gene

Alcohol Use Disorder (AUD) and Aggression & Impulsivity Three Case (569)
Cont (218) NONE <0.1–0.01

POSITIVE for Alcohol Dependence and
related phenotypes like aggression &

Impulsivity

DRD2 Rs1800497

Severe alcoholism, long-term drinking, alcohol dependence,
parental rule-setting, comparison severe vs. less severe

alcoholics, relapse and ASI after 12 years in 12 step programs,
Family linkage, heavy drinking, early-onset, stress, harm
avoidance and antisocial behavior related to AUD, severe

medical consequences, mortality hospitalization, Children of
Alcoholics (C.O.A.s), parental history of alcoholism, & drinking

in the general population,

Sixty–Two Case (17,382)
Cont (17,036) Four (4) <0.04–0.09 POSITIVE for Alcohol Dependence and

related phenotypes

DRD3 DRD3 Ser9Gly
polymorphism (rs6280)

Alcohol Dependence (AD), Anhedonia and Major –depressive
disorder and Obsessive-Compulsive Drinking Three Case (545) Cont (156) NONE <0.001–0.008

POSITIVE for Alcohol Dependence (AD),
Anhedonia and Major –depressive

disorder and Obsessive-Compulsive
Drinking

DRD4 Rs180095 48bP repeat
VNTR

Risk Factor for Alcoholism, Alcohol Dependence Smoking
Behavior, Polysubstance abuse, higher rates of novelty seeking,

higher lifetime alcoholism, generalized addiction, increased
influence of peer pressure to drink, problematic alcohol use,

increase the risk for severity of alcoholism, blunted response to
alcohol cues, increase in alcohol craving, increased risk for social

bonding with fellow alcoholics.

Forty–Eight Case (11,740)
Cont (9365) Two (2) <0.06–0.05 POSITIVE for many alcohol-related

phenotypes

DAT1 9R allele compared to 10R.

Alcoholism, alcohol consumption, alcohol withdrawal
symptoms (AWS) and delirium tremens (DT), number of

drinking days, vulnerability to alcoholism, and families with
alcoholism compared to families without alcoholism

Twenty–Four Case (4644)
Cont (3761) Two (2) <0.05–0.09

POSITIVE for Alcoholism, alcohol
consumption, alcohol withdrawal

symptoms (AWS) and delirium tremens
(DT), number of drinking days,

vulnerability to alcoholism, and families
with alcoholism compared to families

without alcoholism

GENE Risk Allele Phenotype # of Studies
Pat **

Case (N)
Control (N)

Meta-Analysis *** (N) Sig (p) Comment

COMT

Rs4680
Catechol-O-methyl-
transferase (COMT)

Val158Met

Alcohol Dependence (AD), alcohol intake past year, generalized
SUD, Alcohol & Tobacco consumption, drug abuse, in alcoholics

reduced dopamine receptor sensitivity
Seventy–Five Case (10,018)

Cont (8861) One (1) <0.01–0.01

POSITIVE for Alcohol Dependence (AD),
alcohol intake past year, generalized

SUD, Alcohol & Tobacco consumption,
drug abuse, in alcoholics reduced

dopamine receptor sensitivity
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Table 1. Cont.

OPRM1 OPRMI (rs1799971)

Alcohol Dependence (AD), Severity of AWS, sensitivity to
dopamine receptors, alcohol consumption, depression, response

to alcohol cues and relapse risk, alcohol sensitivity in
adolescents, drinking frequency, vulnerability for alcohol to
hijack the reward system, alcohol craving, alcohol-related

hospital readmission, more readmissions, and fewer days until
the first readmission

Fifteen Case (6428)
Cont (5196) One (1) <0.047–0.06

POSITIVE for Alcohol Dependence (AD),
Severity of AWS, sensitivity to dopamine

receptors, alcohol consumption,
depression, response to alcohol cues and

relapse risk, alcohol sensitivity in
adolescents, drinking frequency,

vulnerability for alcohol to hijack the
reward system, alcohol craving,

alcohol-related hospital readmission,
more readmissions, and fewer days until

the first readmission

GABRB3 Receptor beta3 subunit
(GABRB3) 181 variant

The risk for Alcoholism, the onset of drug abuse in Children of
Alcoholics (COAS), Parental transmission and alcoholism,

hypodopaminergia, Mood-related alcohol expectancy (AE),
drinking refusal self-efficacy (DRSE), depression, and prevalence

in COAS

Four Case (196)
Cont () NONE <0.05–0.07

POSITIVE for risk for Alcoholism, the
onset of drug abuse in COAS, Parental

transmission and alcoholism,
hypodopaminergia, Mood-related

alcohol expectancy (AE), drinking refusal
self-efficacy (DRSE), depression, and

prevalence in COAS

MAOA 30 BP. VNTR-3.5R, 4R DN
repeat polymorphisms

Alcohol Dependence, impulsivity, antisocial personality,
susceptibility to alcoholism, smoking behavior, poor

psychosocial environment, and lower age of onset of alcoholism.
Five Case (731)

Cont (1111) NONE <0.043–0

POSITIVE for Alcohol Dependence,
impulsivity, antisocial personality,

susceptibility to alcoholism, smoking
behavior, poor psychosocial

environment, and lower age of onset of
alcoholism

SLC6A4
(5HTTLPR)

promoter region
(5-HTTLPR) (rs25531)

Alcohol Dependence, anxiety, age of onset, cue craving, lower
socialization, depression, & polydrug abuse Twenty–Seven Case (13,328)

Cont (2982) Two (2) <0.03–0.001
Alcohol Dependence, anxiety, age of

onset, cue craving, lower socialization,
depression, & polydrug abuse

TOTAL NA NA 268 Case 65,581
Cont 48,686 Ten (10) <0.06–0.009
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7. Genetic Vulnerability: Clinical Implications

Genetic vulnerability to unwanted addictive behavior can be identified early in life [30].
Based on a relatively moderate amount of published literature, reward gene polymorphisms
predispose individuals to an increased risk of all subtypes of RDS behaviors, including
anhedonia [10]. The genetic addiction risk score (GARS) test has been developed to iden-
tify one’s risk potential for these addictive-like behaviors. Specifically, published studies
illustrate the GARS test’s use to identify specific neurotransmitter pathways where the risk
for a signal breakdown in the BRC occurs and uses semi-customized precision KB220Z
variants, matched the individuals’ GARS test result to treat the dysfunction. This synergis-
tic ‘systems biology’ approach provides an increased efficacy in treating RDS [28,31–33].
Dopamine is a major neurotransmitter involved in substance and behavioral addictions;
however, there is controversy about managing dopamine clinically to prevent and treat
many addictive disorders.

8. Induction of Dopamine Homeostasis

There is generally a consensus that balancing the brain reward circuit or achievement
of “dopamine homeostasis” is a worthwhile goal, rather than blocking natural dopamine
or administering a powerful opioid to manage opioid addiction [34]. We are inviting both
the neuroscience, brain mapping, and clinical science communities to adopt this disruptive
technology. With the future in mind, addressing this problem is by increasing worldwide
research to explore these concepts to identify what constitutes “standard of care.” While
harm reduction saves lives, the goal is to provide a path to a widely accepted new ‘standard
of care’ for the induction of “dopamine Homeostasis.” This research goal is imperative
in the face of our current psychostimulant, opioid, alcohol, and food addiction epidemic
showing clinical relevance.

Due to the environment’s effect, all individuals are very unlikely to express all pu-
tative risk alleles. Based on our Quantitative Electroencephalogram (qEEG) studies and
previous research [35], we cautiously state that long-term activation of dopaminergic
receptors (i.e., DRD2 receptors) will give rise to a greater proliferation of the receptors
and result in enhanced “dopamine sensitivity.” Dopamine receptor proliferation can lead
to an increased sense of happiness, particularly in carriers of the DRD2 A1 allele [34].
Based on genetic and previous research [36], both treatment and prevention of multi-
ple addictions, such as dependence on glucose, nicotine, and alcohol, could involve a
biphasic approach. Thus, acute treatment could consist of medication-based preferential
blocking of postsynaptic nucleus accumbens (NAc) opioid (delta, mu etc.) and dopamine
receptors (D1–D5). However, both short term and long-term activation of the mesolimbic
dopaminergic system using the KB220Z nutrigenomic technology can induce activation
and release of dopamine (DA) at the NAc site to achieve DA homeostasis. An inability to
effectively utilize either or both of these strategies and achieve DA homeostasis will result
in continued abnormal behavior, mood, and potential suicidal ideation. Examples are
those who possess a paucity of dopaminergic and serotonergic receptors or an increased
rate of synaptic DA catabolism due to expression of the high catabolic genotype from the
Catechol-O-methyltransferase(COMT) gene are predisposed to self-medicating via any
substance or behavior such as alcohol, nicotine, psychostimulants, opiates, sex, excessive
eating, gambling, and gaming, that will activate DA release. The high catabolic genotype
from the COMT gene is the Val allele functions to catabolize dopamine in synapse.

Acute usage of these substances and other stimulatory behaviors induce feelings of
well-being via neuronal DA release at the NAc. Prolonged abuse results in a toxic “pseudo”
feeling of well-being, leading to discomfort, tolerance, and disease. Thus, a decreased
number of DA receptors, due to carrying a genotype that causes hypodopaminergia,
leads to excessive cravings for psychoactive drugs and non-substance addictive behaviors,
whereas a sufficient DA receptors density results in low craving behavior and greater
reward satisfaction. One goal to help prevent substance abuse would be to increase
DA D2 receptors in genetically prone individuals. While in vivo experiments using a
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standard D2 receptor agonist induces downregulation of the receptor, experiments in vitro
have demonstrated that constant stimulation of the DA receptor system via a known D2
agonist leads to a significant proliferation of D2 receptor coupled to G proteins despite any
genetic antecedents. Thus, D2 receptor stimulation signals negative feedback mechanisms
in the mesolimbic system to induce mRNA expression, causing the proliferation of D2
receptors [34].

The nutrigenomic activation of dopamine by the KB220-IV in a clinical trial using
intravenous administration of the KB220 in more than 600 alcoholic patients resulted in
significant reductions in RDS behaviors. The research hypothesis that manipulating the
reward neural circuitry using amino–acid–enkephalinase therapy, oral and intravenous,
would improve the behavioral and the emotional symptomology of 600 recovering al-
coholics was an open trial clinical study. The results suggest that the combination of
oral and intravenous administration of the KB220 variant, i.e., SG8839, significantly im-
proved the behavioral and emotional recovery of the alcoholic subjects. The comparison
of the pre, and post-administration scores included a reduction of depression (p < 0.001),
anxiety (p < 0.001), fatigue (p < 0.001), anger (p < 0.001), lack of energy (p < 0.001), crisis
(p < 0.001), and craving (p < 0.001). The mean reductions for depression (61.0 ± 6.3%),
anxiety (53.8 ± 10.2%), craving (76.3 ± 3.1%), fatigue (76.9 ± 3.1%), and crisis (53.8 ± 5.5%)
were all significantly greater than 50% (p < 0.001). This study that first combined oral and
intravenous KB220 resulted in clinical improvement [37].

An expanded study of the oral KB220Z complex confirmed these results (7). Future
studies must await both positron emission tomography (PET) scanning and functional
magnetic resonance imaging (fMRI) to determine the effects of oral KB220Z on D2 receptor
density and the status of reward and motivational brain regions (e.g., ventral striatum,
amygdala, and orbitofrontal cortex). Confirmation of these results in large, population-
based, and case-controlled experiments is necessary [34]. These studies would contribute
important information that could eventually lead to significant improvement in recovery for
those with dopamine deficiency-RDS due to the breakdown of multiple neurotransmitter
signal transductions in the brain reward cascade [2], a factor in various types of addictions.

9. Quantitative Electroencephalogramo (qEEG) Studies

There are currently at least 45 studies showing a wide range of benefits with some RDS
endophenotypes, see [17]. Based on clinical trials and animal research as presented herein,
the pro-dopamine regulator, known in its original prototype form as KB220, shows promise
in the areas of addiction and pain. Other genetic and neurobiological studies are required
to elucidate the mechanism of action of this neuro-nutrient. The evidence to date points to
the induction of “dopamine homeostasis” and an epigenetically induced normalization of
neurotransmitter signaling and the associated asymptomatic restoration of brain reward
cascade (BRC) function. As published over the last 50 years, these results encourage
the continued development of appropriate nutrigenomic solutions for the millions of
victims of all addictions, called reward surfeit syndrome (RSS) in adolescents and reward
deficiency syndrome (RDS) in adulthood [38]. Quantitative electroencephalogram (qEEG)
demonstrated activation of the mesolimbic system by a variant of KB220Z [39]. Positive
findings using qEEG imaging in a randomized, triple-blind, placebo-controlled, crossover
study of the oral KB220Z complex in abstinent subjects with psychostimulant use disorder
showed increased alpha waves and decreased beta waves in the parietal brain region.
Using t-statistics, significant differences observed between the placebo and the KB220Z
complex consistently occurred in the frontal regions after week one and week two of the
analyses (p = 0.03). This first report showed the prefrontal cortex’s involvement in the
qEEG response to a natural putative D2 agonist (KB220Z), especially in subjects with the
dopamine D2 A1 allele. More support for this finding comes from an additional study
of 14 severe multi-drug abusers, who carried the DRD2 A1 allele, undergoing protracted
abstinence. There were significant qEEG differences between those who received one
dose of placebo and those administered the KB220Z. The KB220Z generated positive
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regulation of the dysregulated electrical activity of the brain in these addicts. The results
indicate a phase change from low amplitude or power in the brain to a more functional
state by increasing an average of 6.169 mV(2) across the prefrontal cortical region. The
first experiment demonstrated that while 50% of the subjects carried the DRD2 A1 allele,
100% carried ≥ one risk allele. The proposed genetic addiction risk severity test for
these 14 subjects revealed that 72% had moderate-to-severe addiction risk. Repeating the
experiment in three additional currently abstinent polydrug abusers carrying the DRD2 A1
allele found similar results [40].

The authors have previously demonstrated for the first time that intravenous adminis-
tration of the original KB220 (primarily amino acids and trivalent chromium without any
of the saccharide-rich botanicals) reduces or “normalizes” aberrant electrophysiological pa-
rameters of the reward circuitry site. The published pilot study reported that administering
one intravenous dose of KB220 significantly normalized the abnormal qEEGs of a heroin
abuser and an alcoholic during protracted abstinence (widespread alpha and widespread
theta activity, respectively). Both patients were genotyped for various neurotransmitter
reward genes to determine their risk of developing heroin or alcohol dependence [39]. The
genes tested included the dopamine D4 receptor exon 3 Variable Number Tandem Repeats
(VNTR)S (DRD4), DRD2 TaqIA (rs1800497), the dopamine transporter (DAT1, locus symbol
SLC6A3), monoamine oxidase A upstream VNTR (MAOA-uVNTR), serotonin transporter-
linked polymorphic region (5HTTLPR, locus symbol SLC6A4), and COMT val158 met
Single Nucleotide Polymorphisms (SNP) (rs4680) [39].

10. Functional Magnetic Resonant Imaging (fMRI) Study Evidence for Dopamine Homeostasis

The powerful effects of coupling GARS and KB220Z, as evidenced by healthy dopamine
homeostasis seen in recent fMRI studies [18,19], have clearly shown the importance of
pro-dopamine neuro-regulation. Firstly Febo et al. [19] showed that the pro-dopaminergic
nutraceutical (KB220Z) augments significantly above placebo, functional connectivity be-
tween the cognitive and reward regions in rat brains. These areas include the nucleus
accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and
infralimbic loci. The nutraceutical KB220 significantly increased functional compartmental
brain interconnectivity, ‘crosstalk,’ and volume recruitment, potentially neuroplasticity.
Functional connectivity increases and dopaminergic functionality found across the reward
circuitry were specific to the reward regions rather than being broadly distributed in
the brain.

The robust yet selective response in drug naïve rodents has clinical relevance for recov-
ering individuals at risk for relapse, who often show decreases in functional connectivity
after protracted withdrawal. Additional studies will evaluate KB220Z in animal models of
addiction. Blum et al. also found that the KB220Z significantly normalized reward circuitry
neurotransmission within one hour of administration in 10 heroin addicts following absti-
nence sustained of an average of 16.9 months. Five subjects participated in a triple-blinded
placebo-controlled randomized crossover study of KB220Z experiment. Triple-blinded
experiments have the person administering the treatment, the person evaluating the re-
sponse, and the subject blinded to placebo or treatment. Blum et al. found that KB220Z
induced increased blood-oxygen-level dependence (BOLD) signaling and activation in
caudate-accumbens-dopaminergic pathways compared to placebo after one-hour acute
administration of the treatment.

Additionally, KB220Z reduced resting-state activity in the cerebellum of abstinent
heroin addicts. For the second phase of this pilot study, three brain regions were signifi-
cantly activated from a resting state by KB220Z compared to placebo treatment (p < 0.05)
for all ten abstinent heroin-dependent subjects. A new network of observed enhanced func-
tional connectivity included the medial frontal gyrus, dorsal anterior cingulate, nucleus
accumbens, posterior cingulate, occipital cortical areas, and cerebellum. These fMRI study
results suggest a putative anti-craving, anti-addiction relapse role of KB220Z by indirect or
direct dopaminergic interaction. Since there was a small sample size, we caution against a
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definitive interpretation of these preliminary results. Confirmation with additional research
and ongoing human and rodent studies of KB220Z is necessary.

11. Biphasic Approach to Addiction Treatment

One purpose of this article is to promote the development of novel IV compounds
to induce “dopamine homeostasis” and provide new tools to assist clinicians and health
professionals on the frontline [41–59]. While we understand the conventional perspective
of reducing harm by utilizing, for example, opioid replacement therapy (ORT), we now
suggest an evidence-based complementary approach. One option is to utilize ORT to
address the problem in the short term. However, over longer periods, one could provide
an evidence-based intervention to epigenetically repair either the trait (genetic) or state
(epigenetically induced over at least two generations) neurochemistry of the brain reward
circuit [39,60], particularly during the known opioid crisis, as eloquently discussed in
Oesterle et al. [1].

While more research would be beneficial, let us at least initiate acceptable guidelines
that include the understanding of RDS as an umbrella term for all addictive-type behaviors.
Understanding the neurogenetics, as pointed out in the scientific community, and utiliz-
ing a more customized ‘systems biology’ approach (Precision Addiction Management)
as outlined herein, seems most prudent and represents a step forward in the recovery
process of the many millions of those afflicted with RDS globally [61]. A biphasic approach
may be a good alternative: a short-term blockage followed by long-term dopaminergic
upregulation. The treatment goal would be to augment brain reward functional connec-
tivity volume and target the stress-like anti-reward symptomatology of addiction and
reward deficiency. The GARS test indicates these phenotypes and dopamine homeostasis
achieved via “Precision Addiction (or “Behavioral”) Management” (PAM or PBM): the
customization of neuronutrient supplementation based on the GARS test result along with
behavioral interventions.

12. Limitations and the Future

Dopaminergic epigenetic regenerative treatments are necessary to reverse genetic
RDS and acquired syndromes that reduced quality of life and increase the likelihood of
overdose, addiction, and suicide. Swenson et al. [62] suggested vigorous physical exercise
as one dopaminergic regenerative treatment and transcranial magnetic stimulation (TMS)
studied by Raij et al. [63] to treat post-addiction anhedonic states. These approaches are
complementary and can be added as part of an addiction treatment recovery program.

Understanding that while there is evidence for this consequential approach of coupling
GARS with a DNA guided precision nutrigenomic therapeutic to help induce “dopamine
homeostasis, more clinical research is not only prudent but increasingly valuable. The
purpose of this article is to encourage neurological and brain mapping animal and human
addiction research to facilitate the potential movement from bench to bedside. There are
many unanswered questions based on this pioneering work, which require additional
neuroimaging studies. An example would be determining the possibility that KB220Z
induces increases in mRNA expression of aberrant DNA polymorphisms for reward genes
measured by GARS or other similar genetic testing panels. The potential of coupling DNA
testing with mRNA profiling in primary, secondary, and tertiary treatment of RDS is a
laudable goal for the future.



J. Pers. Med. 2021, 11, 212 12 of 18

13. Summary

The contemporary literature confirms that an array of polymorphic genes related
to neurotransmitters and secondary messengers control dopamine’s net release in the
nucleus accumbens (NAc), which resides in the mesolimbic region of the brain [64–72].
They are linked primarily to motivation, anti-stress, incentive salience (wanting), metabolic
and immune-incompetency, and well-being. The Nobel Prize was granted to Carlsson,
Greengard, and Kandel in 2000 for their work on the cellular and molecular function of
dopaminergic activity at neurons, including the memory and fear response. At this time,
Americans are facing their second and worst opioid epidemic. Deaths due to overdose,
emergency room visits, health consequences, and substance use disorders have increased,
as have suicide deaths [73]. Abuse of psychoactive substances causes anhedonia and
despair, which have only increased during this pandemic. Prescribed opioids for non-
malignant pain, heroin access, and the emergence of cheap, potent synthetic opioids drive
this epidemic of overdoses and OUDs [74]. Currently, the clinical consensus is to treat OUD
as if it were an opioid deficiency syndrome with long-term to life-long opioid substitution
therapy [75]. Using opioids to treat OUD forever seems counterintuitive at best. Due to the
current opioid epidemic and the dismal rate of sustainable and prolonged recovery, the
revolving door MAT treatment strategy of using opioid agonist, and antagonist therapy,
and dopamine antagonists needs reconsideration [3].

However, for some patients, opioid agonist administration may be seen as necessary to
replace missing opioids, treat OUD, prevent overdoses, and require lifetime use similar to
insulin as a chronic therapeutic, especially if there are genetic antecedents [76]. Treatment
of OUD and addiction is similar to the endocrinopathy conceptualization in that it views
opioid agonist MAT as an essential core to therapy [77]. Knowing who has a deficiency
syndrome may inform treatment as well as prevention efforts in the future.

We encourage clinicians to research and understand the importance of a molecu-
lar framework to explain the current underpinnings of endorphinergic/dopaminergic
mechanisms related to opioid deficiency syndrome and a generalized reward processing
deficiency [19,78–97]. Along these same lines, many RDS subtypes have also been linked
to hypodopaminergia using sophisticated imaging techniques [98–112]. Can we better
combat SUD through early genetic risk screening enable early intervention by the induction
of dopamine homeostasis? Safe and effective dopamine agonist technologies that restore
optimal gene expression and rebalance neurotransmitter interconnectivity in the brain
reward cascade are currently viable options. The ideas reviewed here are summarized in
Figure 2.
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Figure 2. This figure is a graphic illustration of how the research and concepts explored here may be
applied from bench to bedside.
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