# BJA

British Journal of Anaesthesia, 120 (6): 1315-1334 (2018)

doi: 10.1016/j.bja.2018.02.066 Advance Access Publication Date: 12 April 2018 Review Article

# Analgesic mechanisms of gabapentinoids and effects in experimental pain models: a narrative review

### M. Chincholkar

Manchester & Salford Pain Centre and Department of Anaesthesia, Salford Royal NHS Foundation Trust, Salford, UK

E-mail: Mahindra.Chincholkar@srft.nhs.uk

#### Abstract

The focus of perioperative pain management should be to attempt to minimise the nociceptive input and reduce the risk of transition to central sensitisation. Gabapentinoids are being increasingly used as adjuncts for management of perioperative pain. Although gabapentinoids are classed as calcium channel blockers, their mechanisms of action are poorly understood. The analgesic effect in neuropathic pain is well evidenced but the role in postoperative pain is less certain. Medline and EMBASE database searches were conducted to identify studies relating to mechanisms of action and effects in experimental animal models of inflammatory and postoperative pain and human models of experimental pain. The effects of gabapentinoids may be attributed to depression of dorsal horn sensitivity through a multitude of mechanisms. They inhibit calcium mediated neurotransmitter release through effects on  $\alpha 2\delta$ -1 subunits. They inhibit forward trafficking of  $\alpha 2\delta$ -1 from the dorsal root ganglion, their recycling from endosomal compartments, thrombospondin mediated processes and stimulate glutamate uptake by excitatory amino acid transporters. Mechanisms not directly related to neurotransmitter release at dorsal horn include inhibition of descending serotonergic facilitation, stimulation of descending inhibition, anti-inflammatory actions, and influence on the affective component of pain. Gabapentinoids are effective analgesics in most animal models of inflammation and postoperative pain but effects in human models are variable.

Keywords: alpha 2-delta subunit 1 protein; gamma-aminobutyric acid; pregabalin

The gabapentinoids, pregabalin and gabapentin, have been the cornerstone of pharmacological management of neuropathic pain.<sup>1</sup> Despite the widespread use in neuropathic pain, the precise mechanism of action is uncertain. The effect of gabapentinoids in pain are assumed to be because of direct inhibition of voltage gated  $Ca^{2+}$  channels by binding to its  $\alpha 2\delta$ -1 subunit resulting in reduction of presynaptic  $Ca^{2+}$  influx and subsequent release of excitatory neurotransmitters such as glutamate. This assumption is not correct as calcium currents are not consistently reduced by acute application of

gabapentinoids.<sup>2</sup> Despite this, most studies show that gabapentinoids inhibit release of neurotransmitters in neuronal tissues.<sup>2</sup> This review explores the possible mechanisms by which gabapentinoids inhibit neurotransmitter release despite the lack of acute effect on  $Ca^{2+}$  currents. This review has also sought to identify the analgesic mechanisms unrelated to the direct inhibition of neurotransmitter release at the dorsal horn.

Although there is good evidence for the effect on neuropathic pain, the role in postoperative pain is less certain. Gabapentinoids are being increasingly used in the perioperative period as part of multimodal analgesia.<sup>3</sup> However, the

© 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

Editorial decision: March 14, 2018; Accepted: March 14, 2018

For Permissions, please email: permissions@elsevier.com

#### Editor's key points

- The analgesic actions of gabapentinoids can be attributed primarily to blockade of voltage-gated calcium channels, but they have additionall targets as well.
- Gabapentinoids depress neuronal excitability through interactions with the  $\alpha 2\delta$ -1 calcium channel subunit, stimulate descending inhibition, inhibit descending serotonergic facilitation, inhibit inflammatory mediators, and influence the affective component of pain.
- They are effective in animal models of inflammation and postoperative pain, but effects in human models of inflammation are variable.

evidence to support its use in postoperative pain is limited because of the poor quality of evidence from clinical trials.<sup>4</sup> This review sought to determine the effects of gabapentinoids in animal models of postoperative and inflammatory pain and in human pain models. The implications for clinical practice are discussed.

#### **Methods**

Medline and EMBASE database searches were conducted to identify studies relating to mechanisms of action and effects in experimental pain models (Appendix A). The reference lists of selected articles were explored for additional studies. Only manuscripts published in English were included. The level of evidence could not be graded as most studies were exploratory in nature. Various themes relating to mechanisms were identified and selected studies described.

## Nociceptive pathways, voltage-gated calcium channels, and the $\alpha 2\delta$ subunit

Nociceptors are pseudo-unipolar: the cell bodies are located in the dorsal root ganglion (DRG), a single process bifurcates into a central axon that project to second-order neurons and local interneurons in the dorsal horn of the spinal cord, and a peripheral axon travels through the spinal nerve to the periphery.<sup>5</sup> After nerve injury or inflammation, the stimulation threshold of nociceptors is reduced. The sensitised nociceptors are activated by minimal stimuli-a process known as peripheral sensitisation that causes primary hyperalgesia. The action potentials that are transmitted to the nociceptors are relayed to the spinal dorsal horn through the central axon and to the periphery through the peripheral axon. This causes membrane depolarisation, activation of voltage-gated calcium channels (VGCCs) and calcium influx, triggering release of glutamate as a major neurotransmitter along with neuromodulators such as substance P, calcitonin gene-related peptide, and brain-derived neurotrophic factor. These are released both peripherally at the site of inflammation and in the dorsal horn, to produce an excitatory signal at the post synaptic targets.<sup>5</sup> The effects on the dorsal horn neurons of the spinal cord are mediated by the postsynaptic glutamate receptors— $\alpha$ amino-3-hydroxy-5-methyl-4-isoxazolepropionate, N-methyl-D-aspartate and kainite.<sup>6</sup> Many neurons also regulate neurotransmitter release through expressing presynaptic glutamate receptors.<sup>7</sup> The excitatory interneurons in the dorsal horn are also glutamatergic. The enhanced release of glutamate in the dorsal horn of the spinal cord causes increased activation of

postsynaptic nociceptive neurons resulting in central sensitisation and secondary hyperalgesia. The spinal cord is clearly an important site for modulation of central sensitisation, as it receives multiple inputs from peripheral neurons, interneurons, astrocytes, microglia, and descending modulatory controls.<sup>8</sup>

Generally, this process of sensitisation reverts back to normal after pain resolves with normal wound healing. However, persistent transmission of nociceptive signals leads to persistent central sensitisation through neuroplastic changes in the dorsal horn and higher centres, such as degeneration of inhibitory interneurons and remodelling of neuronal synapses by glial cells.<sup>8</sup>

#### Voltage-gated calcium channels

Voltage-gated and ligand-gated channels that are permeable to inorganic ions such as sodium, potassium, chloride, and calcium are essential for electrical activity of excitable cells such as neurons.<sup>9</sup> Calcium differs from the other ions as it also serves as an important signalling entity. Influx of calcium ions through high-voltage activated (HVA) calcium channels trigger a wide range of responses including gene transcription, neurotransmitter release, neurite outgrowth and activation of calcium dependent enzymes.<sup>9</sup>

VGCCs are comprised of multiple subunits:  $\alpha_1$ ,  $\beta$ ,  $\gamma$ , and  $\alpha_2 \delta$ (Fig 1).<sup>10</sup> The  $\alpha$ 1subunit allows entry of calcium ions. It comprises four homologous domains (I–IV), each of which contain six transmembrane helices (S1–S6). The extracellular  $\alpha_2$  subunit is attached to the  $\delta$  subunit via a disulfide linkage. The  $\beta$  subunit is entirely intracellular. VGCCs are classified into HVA (L-, P/Q-, N-, R-) and low-voltage activated (LVA; T-type) VGCCs.<sup>11</sup> Dorsal root ganglion cell bodies and presynaptic terminals that form synapses with dorsal horn neurons express increased density of N-type VGCCs.<sup>10</sup> The L-type channels are extensively found in both excitable and non-excitable tissues. Although less extensively studied, other subtypes may be involved in the pain pathway.<sup>10</sup>

#### $\alpha 2\delta$ subunit and pain

The auxiliary  $\alpha_2\delta$  and  $\beta$  subunits have four isoforms and enhance the plasma membrane expression and function of HVA calcium channels but not LVA channels.<sup>12</sup> The  $\alpha 2\delta$ -1 isoform that mediates the effects of gabapentinoids is present in the brain, skeletal, cardiac, and smooth muscle.  $\alpha 2\delta$ -2 and  $\alpha 2\delta$ -3 subunits are present in non-neuronal tissues in addition, whereas  $\alpha 2\delta$ -4 is expressed in retinal neurons and other non-neuronal tissues.<sup>12</sup>

The  $\alpha 2\delta$ -1 unit has widespread distribution in the mouse brain, especially in the cerebral cortex, hippocampus, and cerebellum.<sup>12</sup> Elevated concentration of  $\alpha 2\delta$ -1 subunit is clearly associated with augmented pain processing. DRG neurons show increased expression after peripheral nerve damage in animal models of neuropathic pain.<sup>13–16</sup> The peak expression of  $\alpha_2\delta$ -1 occurs 7 days after injury and takes several months to decline, with a temporal relationship with the onset and resolution of evoked behaviours.<sup>15</sup> Deletion of  $\alpha 2\delta$ -1 gene in mice models of neuropathic pain is associated with marked behavioural deficit in mechanical and cold sensitivity.<sup>11</sup> Intrathecal antisense oligonucleotides (synthetic polymers that can alter synthesis of specific proteins) complementary to a region in the  $\alpha 2\delta$ -1 gene can reverse mechanical hypersensitivity in nerve ligation models.<sup>14</sup> The concentrations are elevated in the dorsal horn and mimic that of the DRG with decrease in concentrations and reversal of allodynia after



Fig 1. Voltage-gated calcium channels are composed of four subunits. The  $\alpha 1$  subunit consists of four homologous domains, each containing six transmembrane segments. It is the poreforming subunit. The  $\beta$  subunit is intracellular. The  $\gamma$  subunit has four transmembrane segments. The  $\delta$  subunit has one transmembrane segment and is attached to the extracellular  $\alpha 2$  subunit via a disulfide bond. Reprinted, with permission, from Elsevier.  $^{10}$ 

dorsal rhizotomy. This suggests that the elevated concentration of presynaptic  $\alpha 2\delta$ -1 subunit in the dorsal horn is a result of transport by DRG neurons through their central axons.<sup>14</sup>

Increased concentrations of  $\alpha_2\delta$ -1 can cause neuropathic pain even in the absence of nerve damage. Transgenic mice that overexpress  $\alpha_2\delta$ -1 show symptoms of allodynia even when nerve damage is absent, which suggests that increased concentrations of  $\alpha_2\delta$ -1 are sufficient to cause neuropathic pain.<sup>18</sup> The frequency of miniature excitatory postsynaptic currents in the dorsal horn is increased and is reversed by intrathecally delivered antagonists of glutamate receptors.<sup>19</sup> This suggests that  $\alpha_2\delta$  mediates spinal sensitisation by increased presynaptic glutamate release that enhances the sensitivity of postsynaptic neurons in the dorsal horn. However  $\alpha 2\delta$  is not always associated with neuropathic pain as the upregulation of  $\alpha 2\delta$ -1 is injury-specific with variable effects in animal models of neuropathic pain based on aetiology.<sup>20</sup>

#### Mechanism of action of gabapentinoids

#### Site of action

The actions of gabapentinoids are mainly at an intracellular site and require active uptake.<sup>21</sup> They were originally designed as  $\gamma$  aminobutyric acid (GABA) analogues but do not have any effects on GABA receptors. Gabapentin binds to  $\alpha_2\delta$  receptors with greater affinity to the  $\alpha_2\delta$ -1 subtype.<sup>22</sup> Mutations of  $\alpha_2\delta$ -1 or  $\alpha_2\delta$ -2 block the neuronal actions of gabapentin by preventing its binding, but not mutations in  $\alpha_2\delta$ -3, indicating that the effects are mediated by  $\alpha_2\delta$  subunits of VGCCs.<sup>23</sup> Several other sites of action have been described, such as NMDA receptors and sodium channels but the evidence is limited.<sup>24–26</sup> Although both drugs are absorbed by facilitated transport

through system L-neutral amino acid transporters, pregabalin is rapidly and completely absorbed with peak plasma concentrations within 1 h as opposed to 3 h with gabapentin.<sup>27</sup> Unlike gabapentin, absorption of pregabalin is not saturable, with a linear pharmacokinetic profile and less variable bioavailability.<sup>27</sup> Although peak plasma concentrations of gabapentinoids are achieved within 1–3 h, peak cerebrospinal fluid (CSF) concentrations may take significantly longer, with a median time of 8 h.<sup>28</sup> They do not influence spinal neurotransmitter concentrations of glutamate, norepinephrine, substance P, and calcitonin gene-related peptide.<sup>29</sup> They are not metabolised by the liver and are excreted by the kidney with elimination half-lives of 6 h.<sup>27</sup>

#### Effect on DRG neurons

Gabapentinoids are considered to exert their effects by inhibition of calcium currents. There was modest inhibition of calcium currents in medium sized and isolectin B4 (IB4) negative DRG neurons (small sized neurons that express neuropeptides projecting to lamina I and II) after prolonged incubation.<sup>30</sup> The acute application of low concentrations of Mn<sup>2+</sup>, which is a global VGCC blocker, was substantially more effective than gabapentinoids at inhibiting calcium currents in DRG neurons. If the classical mechanism is correct, Mn<sup>2+</sup> should have been even more effective in suppressing synaptic transmission in the dorsal horn. However, the effectiveness was reversed in the dorsal horn. Gabapentinoids suppressed excitatory synaptic transmission in the substantia gelatinosa neurons, whereas Mn<sup>2+</sup> had no effect. Clearly the moderate effect of gabapentinoids on calcium currents in DRG neurons alone could not explain its ability to reduce overall dorsal horn excitability. The reduction in neurotransmitter release because of gabapentin is therefore not entirely related to decreased calcium influx into presynaptic nerve terminals.

Gabapentinoids have anti-allodynic rather than anaesthetic effect as not all DRG neurons are sensitive to gabapentionoids.<sup>30</sup> They preferentially affect medium sized neurons associated with A $\delta$  fibres that are often associated with nociceptive transmission and small IB4– neurons, with a complete lack of effect on the large and IB4+ neurons. Medium sized neurons and IB4– neurons project to excitatory neurons in the substantia gelatinosa, whereas large neurons associated with A $\beta$  fibres and IB4+ neurons project to inhibitory neurons.<sup>30</sup>

Spontaneous firing of injured sensory neurons mediated by voltage-gated persistent sodium currents is implicated in the generation of neuropathic pain. Gabapentin decreased the amplitude of resonance and abolished the subthreshold membrane potential oscillations of A-type DRG neurons, in a chronic compressed dorsal root ganglion model.<sup>25</sup>

#### Effect on forward trafficking

The effects could be related to the forward trafficking of  $\alpha_2 \delta$  to neurotransmitter release sites.  $\alpha 2 \delta$  and  $\beta$  subunits could influence the HVA channel current density by increasing the expression of the pore forming  $\alpha 1$  subunits. Gabapentinoids applied chronically could reduce calcium influx by suppressing the forward trafficking of  $\alpha_2 \delta$  and calcium channels to the plasma membrane.<sup>13</sup> This could explain the significant effects on dorsal horn excitability in spite of the moderate effects on DRG neurons. The prolonged duration required for gabapentinoid action *in vitro* can then be explained as a consequence of the time required to transport recently synthesised poreforming units to the terminals in the dorsal horn.<sup>31</sup> However, it is clear that decreased expression of HVA calcium channels at nerve terminals may not be relevant as their blockade by  $Mn^{2+}$  has very little effect on neurotransmitter release.<sup>30,31</sup>

Protein trafficking in vivo can be studied by obstructing trafficking by nerve section or ligation. The proteins that accumulate at the site of obstruction can then be studied.  $\alpha_2\delta$ -1 was found to accumulate proximal to the spinal nerve ligation (SNL) site but was not exclusively presynaptic. It was found in both the central and peripheral terminals, and this increased over the days after ligation, suggesting that they are transported to these terminals from their site of production in DRG cell bodies. Increased  $\alpha 2\delta$ -1 concentrations in the dorsal horn are important for development of neuropathic pain. Chronic treatment of these spinal nerve ligated animals with pregabalin had a significant antiallodynic effect.<sup>32</sup> It reduced the accumulation of  $\alpha_2\delta$ -1 at the SNL site, in ascending DRG axons of the fasciculus gracilis and reduced the elevated concentrations of  $\alpha_2\delta$ -1 in the presynaptic terminals of DRG neurons in the spinal cord dorsal horn. However, it had no effect on the up-regulation of  $\alpha_2\delta$ -1 in DRG neurons. This indicates that the in vivo antiallodynic effects of chronic gabapentinoids are a result of inhibition of anterograde trafficking of  $\alpha_2\delta$ -1, thereby inhibiting neurotransmitter release.<sup>32</sup>

The reduction in forward trafficking of  $\alpha_2 \delta$  with gabapentin may be a consequence of inhibition of its Rab11-dependent recycling.<sup>33</sup> Rab11 is involved in the regulation of recycling of endocytosed proteins.<sup>34</sup> By inhibiting the recycling of  $\alpha 2\delta$  in neurons, gabapentin might reduce the expression of plasma membrane calcium channels at presynaptic terminals. However, intrathecal administration of pregabalin had analgesic effects but did not inhibit the accumulation of  $\alpha_2 \delta$ -1 at primary afferent terminals after peripheral nerve injury in rats.<sup>35</sup> This lack of  $\alpha_2 \delta$ -1 accumulation may be a result of reduced drug concentrations at effect sites with intrathecal administration as compared with systemic administration.<sup>35</sup> The transport of  $\alpha$ 1: $\alpha$ 2 $\delta$ -1-subunit complexes to the cell surface is  $\beta$ -subunit dependent and can be influenced by gabapentinoid action on the  $\beta$ 4a subtype.<sup>36</sup>

#### Effect on neurotransmitter release sites

α2δ increases the density of HVA calcium channels at release sites and promotes increased exocytosis. This enhanced effect is seen at decreased Ca<sup>2+</sup> influx, indicating that elevated concentrations of α2δ allow synapses to make more efficient use of Ca<sup>2+</sup> entry to drive neurotransmitter release.<sup>37</sup> Pregabalin actions were attenuated in knockout mice lacking the protein syntaxin 1A, a component of the synaptic vesicle release machinery, indicating that syntaxin 1A is required for pregabalin to exert its full presynaptic inhibitory effects.<sup>38</sup> The inhibitory effects can therefore be explained by the interruption of the ability of α2δ to facilitate interaction of HVA calcium channels with neurotransmitter release sites. The α2δ-mediated impaired synaptic transmission is attenuated by gabapentinoids.<sup>39</sup>

#### Effect on thrombospondin

Astrocytes are involved in many neuronal mechanisms, including the formation of new synapses.<sup>40</sup> Astrocyte-derived thrombospondins are involved in presynaptic plasticity through their actions on  $\alpha_2 \delta$ -1, by binding to their von Willebrand factor domain.<sup>40</sup> Gabapentin can inhibit the formation of excitatory synapses by blocking the binding of

thrombospondin to  $\alpha_2 \delta$ -1.<sup>41</sup> It is unlikely, however, that the slow process of synaptogenesis contributes to the rapid effects of gabapentinoids. In contrast, gabapentin reversed neuropathic pain after intrathecal injection of thrombospondin-4 (TSP4) with return of withdrawal threshold to control concentrations within 24 h.<sup>42</sup> The rapid effects may be a result of interference with processes dependent on the interaction of TSP4 and calcium channels that may be key even before long-term changes such as synaptogenesis.<sup>42</sup> Increased TSP4 contributes to hypersensitivity by reduced expression of HVA and enhancing LVA in DRG neurons.<sup>43</sup>

### Effect on descending serotonergic facilitation, descending inhibition and cortical mechanisms

Some of the analgesic effects are mediated through modulation of descending pathways. Increased descending serotonergic facilitation on spinal 5HT3 receptors is associated with the development of pain.44-46 Antinociceptive effects of gabapentinoids were blocked by prior administration of serotonin receptor blockers and by selective ablation of superficial dorsal horn neurons expressing the neurokinin-1 receptor for substance P.<sup>47-49</sup> These neurons project to descending brainstem serotonergic pathways that increase spinal excitability. Activation of spinal 5-HT3 receptors in normal animals allowed gabapentin to inhibit neuronal responses where previously it was ineffective. Gabapentin induces glutamate release from astrocytes in the locus coeruleus that is the principal site of noradrenaline synthesis.<sup>50</sup> The analgesic effect of gabapentin in neuropathic pain in a rat SNL model was reduced because of downregulation of astroglial glutamate-1 transporter in the locus coeruleus that reduced spinal noradrenergic inhibition but was reversed by oral valproate that is an inhibitor of histone deacetylase.<sup>5</sup>

Gabapentinoid effects on the affective component of pain can explain some of the analgesic effects. Positron emission tomography imaging indicated that the analgesic effect is mediated by suppressing medial prefrontal cortex, a brain area involved in the affective response to pain, with extensive connections to the limbic system.<sup>52</sup> The supraspinal mechanisms that modulate the affective-motivational qualities of pain require engagement of cortical endogenous opioid circuits that activate mesolimbic reward system involved in motivational aspects of pain behaviour.<sup>53</sup>

#### Effect on glutamate transport

Glutamate released by excitatory stimulation can accumulate extracellularly and cause excitotoxicity. Its concentrations are regulated by rapid removal by excitatory amino acid transporters (EAATs).<sup>54</sup> The glial cells take up glutamate that is metabolised to glutamine by glutamine synthase and is transported back to the neurons to replenish glutamate at the presynaptic membrane.<sup>54</sup> The EAAT1 and EAAT2 subtypes are more widely distributed in the neuronal tissue and are responsible for most of the glutamate uptake, the reduced expression of which contributes to the development of neuropathic pain.55 All subtypes are expressed in the dorsal horn post synaptic membranes.<sup>56</sup> EAAT3, however, is less abundant as compared with the other subtypes and may act by influencing glutamate metabolism rather than neurotransmission.<sup>56,57</sup> Pregabalin increased activity of EAAT3 in EAAT3expressing oocytes in a dose-dependent manner, indicating that it may work by enhancing its trafficking to the plasma

**Table 1** Analgesic mechanisms of gabapentinoids. HVA, high-voltage activated; DRG, dorsal root ganglion; EPSC, excitatory postsynaptic current; TTX, tetradotoxin; SNL, spinal nerve ligation; BBS, bungarotoxin binding site; eEPSC, evoked EPSC; mEPSC, miniature EPSC; mIPSC, miniature inhibitory postsynaptic currents; PWT, paw withdrawal threshold; LVA, low-voltage activated; MIA, monosodium iodoacetate; SAP, saporin; SP, substance P; LC, locus coereleus; GLT-1, glutamate transporter; SNI, spared nerve injury; CPP, conditioned place preference; NAC DA, nucleus accumbens dopamine; rACC, rostral anterior cingulate cortex; β-FNA, β-funaltrexamine; EAAT3, excitatory amino acid transporters; PKC, protein kinase C; PMA, phorbol-12-myristate-13-acetate; PI3K, phosphatidylinositol-3-kinase

| Source                                                                                                    | Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effect on dorsal root ganglion<br>Biggs and colleagues <sup>30</sup><br>Yang and colleagues <sup>25</sup> | Effect of gabapentin (100 $\mu$ M) or pregabalin 10<br>$\mu$ M for 5–6 days or 20 $\mu$ M Mn <sup>2+</sup> in suppression<br>of HVA calcium currents in DRG neurons and<br>spontaneous EPSCs at synapses in substantia<br>gelatinosa<br>DRG neurons: pregabalin (n=10–22), gabapentin<br>(n=13–14), Mn <sup>2+</sup> (n=5), control (n=6–13)<br>Substantia gelatinosa: pregabalin (n=6–14),<br>control (n=8–10), Mn <sup>2+</sup> (n=5)<br>Chronically compressed DRG rats                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Strong effects were seen in medium-sized and in small DRG neurons, whereas large neurons and small neurons that bound isolectin were not affected</li> <li>Mn<sup>2+</sup> &gt; gabapentin or pregabalin at ↓ HVA calcium currents in DRG neurons but not at suppressing EPSCs in substantia gelatinosa</li> <li>TTX ↓ average number of spikes and abolished</li> </ul>                                                                                                                                                                                                                                                                    |
|                                                                                                           | Effect of gabapentin (5 $\mu$ M; $n$ =46) and TTX 100 nM ( $n$ =29) on firing, oscillations and resonance of DRG neurons; effect on persistent sodium current with bath application of gabapentin (1–20 $\mu$ M; $n$ =105)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the spontaneous membrane potential<br>oscillations<br>Gabapentin ↓ resonant behaviour like TTX but<br>in addition shifted peak resonant frequency<br>indicating involvement of currents other<br>than TTX-sensitive sodium currents.<br>Gabapentin inhibited persistent sodium<br>current with maximal inhibition at<br>concentration of 20 μM                                                                                                                                                                                                                                                                                                       |
| Bauer and colleagues <sup>32</sup>                                                                        | a recycling<br>SNL rat model- distribution of α2δ-1 in DRGs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\uparrow$ α2δ-1 expression on ipsilateral side after SNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | axons and spinal cord in the ligated L5/L6<br>region compared with the non-ligated L4<br>region, effect of chronic pregabalin treatment<br>on $\alpha 2\delta$ -1 distribution<br>Two groups randomly assigned- SNL +<br>pregabalin 30 mg kg <sup>-1</sup> or SNL + saline, three<br>daily injections until Day 9<br>Paw withdrawal frequency to mechanical and<br>cooling stimulation before and after SNL up<br>to Day 9 and 1 h after pregabalin, quantitative<br>PCR and immunoblotting,<br>immunohistochemistry including<br>immunofluorescence, immunoelectron<br>microscopy<br>Dorsal horn fluorescence intensity (L5, n=4; L4,<br>n=11), paw withdrawal frequency: SNL +<br>saline (n=12) or SNL + pregabalin (n=11)<br>$\alpha 2\delta$ -1 mRNA upregulation: SNL (sham, n=5; Day<br>7, n=4; Day 14, n=7); SNL + sallne (n=4); SNL +<br>pregabalin (n=4) | but none on contralateral side based on<br>immunofluorescence<br>↓ α2δ-1 mRNA concentration in dorsal horn<br>tissue than contralateral DRGs indicating that<br>spinal cord neurons are not the source of<br>increased of protein in the dorsal horn<br>↑ α2δ-1 at presynaptic nerve terminals<br>Chronic pregabalin ↓ ipsilateral α2δ-1<br>immunofluorescence increases in dorsal<br>horn and fasciculus gracilis but ↑ mRNA in<br>DRG was not affected. ↓ Paw withdrawal<br>frequency. Proximal accumulation of α2δ-1 at<br>the ligation site demonstrates anterograde<br>trafficking                                                              |
| Tran-Van-Minh and<br>colleagues <sup>33</sup>                                                             | <ul> <li>Effect of gabapentin on the internalisation of, and insertion into the plasma membrane of α2δ-2 using an α-BBS-tagged α2δ-2 subunit, and a fluorescent derivative of α-bungarotoxin</li> <li>Coexpression of Rab11 S25N, a dominant-negative mutant of Rab11 deficient in GTP binding to investigate recycling; effect of gabapentin on the trafficking of α2δ-2 through the fast recycling pathway dependent on Rab4-associated endosomes tested by coexpression of either Rab4 or the dominant-negative GDP-bound Rab4 S22N mutant with BBS tagged calcium channels</li> <li>Three independent experiments, number of cells per point time and condition- plasma membrane expression (20–42), internalisation (16–36), forward trafficking (14–41), Rab-11 recycling (23–65)</li> </ul>                                                                | ↓ Cell surface fluorescence indicating reduced $\alpha 2\delta$ -2 concentrations at plasma membranes<br>Internalisation rate was not affected<br>Forward trafficking after exit from Golgi<br>apparatus was affected<br>No effect of gabapentin on plasma membrane<br>concentrations of $\alpha 2\delta$ -2 BBS with Rab11 S25N<br>and calcium current<br>Chronic gabapentin ↓ cell surface<br>concentration of $\alpha 2\delta$ -2 BBS in the presence of<br>either Rab4 or Rab4 S22N, suggesting that the<br>effects are a result of prevention of $\alpha 2\delta$ -2<br>recycling from Rab11-positive recycling<br>endosomes to plasma membrane |

| Source                                 | Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Chronic incubation with 100 μM or 1 mM<br>gabapentin for 48 h before assessment of the<br>plasma membrane expression level of α2δ-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |
| Effect at neurotransmitter rele        | BBS<br>ase sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |
| Hoppa and colleagues <sup>37</sup>     | Hippocampal neurons<br>Effect of $\alpha 2\delta$ concentrations on the probability<br>that a vesicle in the readily-releasable pool<br>will undergo fusion with a single action<br>potential stimulus and calcium influx ( $n\geq 7$ )                                                                                                                                                                                                                                                                                                                                                                                         | Single APs resulted in robust $Ca^{2+}$ signals but<br>by 40% in synapses overexpressing $\alpha 2\delta$<br>compared with controls. $\uparrow$ In action potentia<br>stimulus in spite of $\downarrow$ calcium influx suggest<br>that overexpression of $\alpha 2\delta$ subunits results in<br>a tighter spatial relationship between sites of<br>$Ca^{2+}$ entry and exocytosis |
| Matsuzawa and colleagues <sup>38</sup> | Effects of pregabalin 100 μM on excitatory<br>synaptic transmission in superficial dorsal<br>horn in syntaxin 1A knockout (n=12) and<br>wild-type mice (n=11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amplitude of electrically evoked eEPSC in<br>wild type mice as compared to knockout mic                                                                                                                                                                                                                                                                                            |
| Zhou and Lou <sup>39</sup>             | <ul> <li>SNL model, α2δ1 overexpressing transgenic mice</li> <li>Effect of gabapentin (10–100 μg) on α2δ1 mediated presynaptic neurotransmission in superficial dorsal horn</li> <li>SNL model: mEPSC (SNL, n=58; sham, n=30); mIPSC (SNL, n=17; sham, n=17)</li> <li>Transgenic model: mEPSC (transgenic, n=20; wild type, n=22), mIPSC (transgenic, n=19; wild type, n=18)</li> </ul>                                                                                                                                                                                                                                         | ↑ mEPSC frequency in superficial dorsal horn<br>neurons after SNL and in transgenic mice<br>normalised by gabapentin. No effect on<br>amplitude. No effect on mIPSC in either<br>model                                                                                                                                                                                             |
| Effect on thrombospondin               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                    |
| Park and colleagues <sup>42</sup>      | <ul> <li>Gabapentin effect on intrathecal TSP4-induced neuropathic pain (n=8) or saline (n=6); effect on TSP4 mediated mEPSC frequency or control (n≥7 each)</li> <li>Intrathecal gabapentin (300 µg) effect on PWT in TSP4 induced neuropathic pain</li> <li>Gabapentin (50 µg) effect on elevated mEPSC frequency</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>Blocking the effect of C<sub>av</sub>α2δ1 with gabapentir reversed TSP4 mediated pain</li> <li>↑ PWT to near the control levels with intrathecal gabapentin, reduced to the pretreatment level after 24 h</li> <li>Elevated mEPSC frequency ↓ to the control level, but its basal level in the control group was not affected similarity.</li> </ul>                      |
| Pan and colleagues <sup>43</sup>       | <ul> <li>Effect of gabapentin (25 μM) pretreatment on<br/>the effects of thrombospondin-4 (TSP4) on<br/>HVA and LVA voltage-gated calcium channels</li> <li>HVA I<sub>Ca</sub> (vehicle, n=9; gabapentin, n=7; TSP4,<br/>n=7; gabapentin + TSP4, n=7) and LVA I<sub>Ca</sub><br/>(vehicle, n=8; gabapentin, n=7; TSP4, n=7;<br/>gabapentin + TSP4, n=7)</li> <li>Calcium transients: HVA (vehicle, n=68;<br/>gabapentin, n=46; TSP4, n=66; gabapentin +<br/>TSP4, n=34), LVA (vehicle, n=40: gabapentin,<br/>n=52; TSP4 n=52; mbapapentin + TSP4 n=29)</li> </ul>                                                               | TSP4-induced reduction of HVA I <sub>Ca</sub> and<br>elevation of LVA I <sub>Ca</sub> were eliminated by<br>gabapentin. It also blocked effects of TSP4 o<br>the intracellular Ca <sup>2+</sup> transient                                                                                                                                                                          |
| Effects on descending serotone         | ergic facilitation, descending inhibition and cortical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mechanisms                                                                                                                                                                                                                                                                                                                                                                         |
| Rahman and colleagues <sup>47</sup>    | Osteoarthritis induced by intra-articular<br>injection of MIA into the knee joint; spinal<br>ondansetron (n=8, sham=8) or pregabalin<br>(n=9, sham=8) on evoked responses of dorsal<br>horn neurones to electrical, mechanical and<br>thermal stimuli; pregabalin alone or with<br>ondansetron (n=7)                                                                                                                                                                                                                                                                                                                            | Ondansetron: ↓ evoked responses to innocuou<br>stimuli in MIA only, ↓ response to noxious<br>stimuli in both groups<br>Pregabalin: ↓ responses to noxious stimuli in<br>the MIA-treated group only; efficacy lost in<br>the presence of ondansetron                                                                                                                                |
| Suzuki and colleagues <sup>48</sup>    | <ul> <li>Spinal ondansetron (10–100 µg/50 µl) or<br/>systemic pregabalin (0.3–10 mg kg<sup>-1</sup>);<br/>pregabalin (10 mg kg<sup>-1</sup>) in pretreated MIA rats</li> <li>SNL model; gabapentin (10, 30, 100 mg kg<sup>-1</sup> s.c.)<br/>after SAP and SP-SAP to target neurokinin-1<br/>expressing neurons that drive serotonergic<br/>facilitation</li> <li>Effect of ablation of neurokinin-1 neurons with<br/>SAP: hind paw withdrawal frequency to<br/>mechanical/cooling stimuli: SNL (SAP, n=17;<br/>SP-SAP, n=23) sham (SAP, n=13; SP-SAP, n=9)</li> <li>Effect of SAP on neuronal plasticity: SNL (SAP,</li> </ul> | <ul> <li>SP-SAP ↓ tactile and cold hypersensitivity and abnormal neuronal coding (including spontaneous activity, expansion of receptive field size) seen after SNL</li> <li>No neuronal response with gabapentin in absence of injury</li> <li>↓ Punctuate, heat and brush evoked neuronal responses with gabapentin in SAP but not SF SAP even in SNL</li> </ul>                 |

Continued

| Table 1 Continued                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                 | Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                        | Effect of spinal 5HT3 block on gabapentin<br>efficacy: intrathecal ondansetron 10 $\mu$ g before<br>gabapentin 100 mg kg <sup>-1</sup><br>Spinal 5HT3 activation: spinal neurons of naïve,<br>neuropathic SP-SAP, intrathecal activator 2-<br>methyl 5HT 0.1 $\mu$ g before gabapentin 100 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gabapentin to inhibit responses in uninjured<br>animals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Suto and colleagues <sup>50</sup>      | <ul> <li>Figet on glutamate concentrations in LC with saline (normal, n=10; SNL, n=8) or gabapentin 50 mg kg<sup>-1</sup> i.v. (normal, n=11; SNL, n=12)</li> <li>Gabapentin effect on increased glutamate after knockdown GLT-1 (n=22)</li> <li>Depletion of noradrenaline with intra-LC injection of saporin 0.25 μg/rat (n=17)</li> <li>Effect on extracellular glutamate concentrations in spinal cord, vehicle or gabapentin 10 mM perfused into the spinal dorsal horn for 90 min (n=9 in each group)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Glutamate concentrations in microdialysates<br/>from the LC compared with saline, with a<br/>peak effect of gabapentin 60 min after<br/>injection. ↑ Glutamate in both normal and<br/>SNL rats with local perfusion</li> <li>Knockdown of GLT-1 abolished gabapentin-<br/>induced increase in extracellular glutamate<br/>in the LC</li> <li>Depletion of noradrenergic neurons did not<br/>alter gabapentin-induced increase in<br/>extracellular glutamate in the LC</li> <li>In contrast to its effect in the LC, glutamate<br/>concentrations from the spinal cord reduced<br/>within 30 min compared with vehicle and<br/>was maintained for at least 90 min</li> </ul>                                                                                                                                                                                                                       |
| Kimura and colleagues <sup>51</sup>    | <ul> <li>Effects of SNL on antihypersensitivity effects of gabapentin or saline (n=9 in each), single injection of intraperitoneal saline or gabapentin (100 mg kg<sup>-1</sup>) at 0, 1, 2, 4, 6, 8, and 10 weeks after SNL surgery</li> <li>Effects of intrathecal α2-adrenoceptor antagonist idazoxan (30 µg) or saline injected 30 min after gabapentin injection (100 mg kg<sup>-1</sup>) in rats at 2, 6, and 10 weeks after SNL (n=7 or 8)</li> <li>Effect of glutamate transporter GLT-1 selective small interfering RNA or control on effect on paw withdrawal with gabapentin 100 mg kg<sup>-1</sup> (n=8)</li> <li>Effects of increasing GLT-1 expression in the LC by histone deacetylase inhibition on gabapentin's efficacy &gt;6 weeks after nerve injury (n=9)</li> <li>Sodium valproate (histone deacetylase inhibitor) by a feeding tube (200 mg kg<sup>-1</sup> daily) for 14 days beginning 6 weeks after SNL surgery</li> </ul> | For a large effect size (>30 g pressure) efficacy<br>lost around 5 weeks; for middle (>20 g) and<br>small (>10 g) effect sizes, efficacy lost at 6–10<br>weeks in half SNL rats<br>↓ Gabapentin efficacy at 2–6 weeks but not 10<br>weeks with intrathecal α2-adrenoceptor<br>antagonist idazoxan -suggests that SNL time-<br>dependently ↓ effect of gabapentin related to<br>descending noradrenergic inhibition<br>↓ Expression of GLT-1 in LC at 6 weeks post SNL,<br>↓ gabapentin efficacy with GLT-1 small<br>interfering RNA; Oral valproate treatment ↑<br>mechanical withdrawal thresholds compared<br>with the control and restored the<br>antihypersensitivity effect of gabapentin,<br>which was abolished by idazoxan                                                                                                                                                                          |
| Lin and colleagues <sup>52</sup>       | <ul> <li>SNI model, brain glucose metabolic rate at the effective dose of gabapentin in SNI rats, (SNI, n=12; sham, n=10)</li> <li>18 F-fluorodeoxyglucose-positron emission tomography before and after SNI and after gabapentin</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ↓ Glucose metabolism in the media prefrontal<br>cortex, anterior cingulate cortex, thalamus,<br>and cerebellar vermis but ↑ in the bilateral<br>upper lip regions of primary somatosensory<br>cortex and ipsilateral AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bannister and colleagues <sup>53</sup> | <ul> <li>Effect of i.v. gabapentin 50 mg kg<sup>-1</sup> on tactile allodynia (sham, n=7; SNL, n=9), CPP (sham, n=10; SNL, n=17), and NAc DA release (sham, n=11; SNL, n=12)</li> <li>Effect of 200 μg intrathecal gabapentin on pain thresholds (saline, n=9; gabapentin, n=10), CPP (sham, n=10; SNL, n=12), NAc DA release (saline, n=7; gabapentin, n=8)</li> <li>Effect of block with irreversible μ-opioid receptor antagonist β-FNA into the rACC in SNL on antiallodynia (saline, n=4; β-FNA, n=6) CPP (saline, n=7; β-FNA, n=12) and NAc DA release (saline, n=7; β-FNA, n=9)</li> <li>Effect of gabapentin in rACC on allodynia (n=5 saline or gabapentin each), CPP (sham, n=10; SNL, n=8) or NAc DA concentrations (saline, n=8; gabapentin, n=5)</li> </ul>                                                                                                                                                                             | <ul> <li>I.V. gabapentin ↓ allodynia with peak effect in 20 min, significant preference seen for the chamber paired with gabapentin- indicates gabapentin is not rewarding in a normal state, and that its rewarding quality in SNL rats is probably a result of relief of ongoing aversiveness associated with pain, ↑ DA only in SNL</li> <li>Intrathecal gabapentin ↓ pain thresholds, ↑ DA and preference for gabapentin chamber in SNL but not sham</li> <li>Pretreatment with saline or β-FNA into the rACC did not influence gabapentin efficacy; robust CPP and ↑ DA with saline but no change in CPP or DA after β-FNA pretreatment—indicates endogenous opioid signalling in the rACC is required for rewarding actions but not antiallodynic effect</li> <li>Gabapentin injected in rACC produced CPP, ↑ NAc DA release selectively in SNL rats but did not reverse tactile allodynia</li> </ul> |

| Table 1 Continued                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                                            | Experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Effect on glutamate transport<br>Ryu and colleagues <sup>58</sup> | <ul> <li>Voltage patch clamp of oocytes, effect of pregabalin on EAAT3 activity (n=20-25 in each group) and Michaelis constant (Km) and maximum velocity (Vmax) values of EAAT3 transport kinetics for glutamate (n=25 in each group)</li> <li>Effect of PKC activator (n=17-25 in each group: control, PMA, pregabalin, pregabalin + PMA)</li> <li>Effects of PKC inhibitors on EAAT3 activity (n=10-19 in each group: control, PKC inhibitor + pregabalin, PKC inhibitor + pregabalin)</li> <li>Role of PI3K on the regulation of EAAT3 activity by pregabalin (n=15-19 in each group)</li> </ul> | Exposing oocytes injected with EAAT3 mRNA to<br>serial concentration of pregabalin increased<br>their responses to glutamate concentration<br>dependently<br>Pregabalin ↑ Vmax without changing the Km<br>Treatment with PMA or pregabalin ↑<br>transporter currents but no additive effect<br>PKC inhibitors ↓ pregabalin-enhanced EAAT3<br>activity, treatment with PI3K ↓ basal EAAT3<br>activity<br>Pregabalin ↑ EAAT3 activity and PKC and PI3K<br>were found to contribute to this effect |

membrane of neurons and glial cells.<sup>58</sup> However, gabapentin had an opposite effect with decreased EAAT3 activity in a similar model.<sup>59</sup> This discrepancy may be related to the duration of exposure to the drug. Oocytes were exposed to pregabalin for 72 h as opposed to 3 min to gabapentin.

#### Time course of action of gabapentinoids

The actions of gabapentinoids in neuropathic pain take several hours to develop in vitro, but develop rapidly in vivo.<sup>31,60</sup> A likely explanation is that the *in vitro* studies are often done in uniniured animals whereas the in vivo studies are done on nerve-injured animals where  $\alpha_2\delta$ -1 has been already upregulated.<sup>31</sup> The effects are probably pronounced with increased expression of  $\alpha_2\delta$ -1 subunit with a higher rate of turnover of channel complexes that may be more vulnerable to gabapentinoids.<sup>31</sup> The rapid effects in vivo may be a result of rapid intracellular neuronal uptake that is absent in vitro. Substantia gelatinosa neurons obtained ex vivo after acute administration of intraperitoneal gabapentin in vivo in chronic constriction injury model were less excitable.<sup>61</sup> The rapid effects may be a result of effects on descending serotonergic and noradrenergic pathways and cortical mechanisms that might be unrelated to increased  $\alpha_2\delta$ -1 expression). Selected studies relating to analgesic mechanisms are described in Table 1 and Fig. 2 illustrates a summary of these mechanisms.

#### Effect on inflammation and postoperative pain models

Elevated proinflammatory cytokines are intimately associated with the development of neuropathic pain as part of the neuroinflammatory response and are inhibited by gabapentinoids.<sup>62–66</sup> Neuropathic and inflammatory pain differ in their aetiology but have common underlying mechanisms such as elevated tumour necrosis factor, Nav1.7, Nav1.8, glutamate, increased glial activation, and glutamate receptor function.<sup>67</sup> Animal studies of inflammatory pain induce inflammation after injection of a wide range of irritants and evaluate reflexive behavioural responses to thermal, mechanical, or electrical stimuli. Gabapentinoids are effective antinociceptives in most animal models of inflammatory pain (Table 2).<sup>68–83</sup> However, some studies show limited effects.<sup>84–87</sup> Gabapentinoids reduce inflammatory mediators<sup>69,73,78</sup> and suppress dorsal horn activity<sup>79,83</sup> but contrasting effects have been shown.<sup>84</sup> There is some evidence to

support pre-emptive treatment.<sup>72,73,85</sup> Gabapentin was effective in suppressing single motor unit response but not windup, indicating a peripheral mechanism of action.<sup>86</sup> Mechanical and thermal responses were attenuated but reduction in activity was not improved acutely as compared with nonsteroidal anti-inflammatory drugs (NSAIDs).<sup>87</sup> Only chronic gabapentin had an effect on ambulatory-evoked pain.<sup>76</sup>

The neurophysiology of incisional pain, however, is different from inflammatory and neuropathic pain with unique sensitisation processes.<sup>88,89</sup> In the plantar incision model, a 1 cm longitudinal incision is performed through the glabrous skin, fascia, and plantar muscle of the rat hind paw. Short-lasting non-evoked guarding and longer lasting evoked pain-related behaviour are seen and used as surrogates for pain at rest and evoked pain (lasting several days to weeks) after surgery, respectively. Mechanical and heat but not cold hyperalgesia and anxiety behaviours develop after injury. The skin and muscle retraction injury model was developed to investigate prolonged pain after surgical incision. Gabapentinoids are effective in most animal models of postoperative pain (Table 2). They demonstrate analgesic effects with synergistic effects in combination with opioids and NSAIDs.<sup>90–97</sup> They did not influence activity in a knee arthroplasty model but improved weight bearing when combined with opioids in an incision model.<sup>92,</sup>

#### Effects in human experimental pain models

Various models that explore the effect of gabapentinoids in human experimental pain have been described (Table 3). The Ultraviolet B (UVB) model is widely used for assessing efficacy of anti-inflammatory drugs.<sup>115</sup> Hyperalgesia is evoked by exposing an area of skin to an individualised dose of UVB. Gabapentinoids did not have any effect on heat pain perception and secondary hyperalgesia in this model of inflammation.<sup>99,100</sup> The burn model is considered a model of inflammatory pain but both central and peripheral mechanisms are involved.<sup>116</sup> Gabapentin did not have any effect on heat pain detection threshold, pain during burn and secondary hyperalgesia.<sup>101</sup> However, it reduced area of secondary hyperalgesia after brief thermal stimulation of thigh.<sup>102</sup> The capsaicin model is used as a surrogate model of changes in neuropathic pain resulting in sensitisation.<sup>117</sup> Gabapentin had limited effects on measures of hyperalgesia in this model.<sup>103–105</sup> Capsaicin mediates hyperalgesia through effects on



Fig 2. Gabapentinoids inhibit calcium mediated neurotransmitter release through effects on  $\alpha 2\delta$ -1 subunits. They inhibit forward trafficking of  $\alpha 2\delta$ -1 from the dorsal root ganglion, their recycling from endosomal compartments, thrombospondin mediated processes and stimulate glutamate uptake by excitatory amino acid transporters (EAAT). Mechanisms not directly related to neurotransmitter release at dorsal horn include inhibition of descending serotonergic facilitation, stimulation of descending inhibition, anti-inflammatory actions and influence on the affective component of pain.

Table 2 Effects of gabapentinoids in animal pain models. CFA, complete Freund's adjuvant; FGF, fibroblast growth factor; PWT, paw withdrawal threshold; TNF, tumour necrosis factor; IL, interleukin; PKC, protein kinase C; ERK, extracellular signal regulated kinase; PWL, paw withdrawal latency; EPSC, excitatory postsynaptic currents; NS, nociceptive specific

| Source                                 | Experimental model                                                                                                                                                                                                                                                            | Result                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Animal models of inflar                | mmation                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sun and<br>colleagues <sup>68</sup>    | CFA induced arthritis (n=30 divided into control, treated and<br>untreated group)<br>Intraperitoneal gabapentin 50 mg kg <sup>-1</sup> daily for 8 days<br>starting 7 days after induction, FGF antagonist FD173074 2<br>mg kg <sup>-1</sup> i.v. every 2 days                | <ul> <li>↓ Expression of FGF2 and FGF receptor 1<br/>in dorsal root ganglia with gabapentin<br/>but ↑ in control</li> <li>↑ PWT with gabapentin but ↓ in control</li> </ul>                                                                                                                                                                                                                           |
| Anfuso and<br>colleagues <sup>69</sup> | Lipopolysaccharide stimulated rabbit corneal cells,<br>endotoxin-induced uveitis in rabbits<br>Gabapentin (10 µg ml <sup>-1</sup> ) or control, inflammation induced<br>with lipopolysaccharide (1 µg ml <sup>-1</sup> ) for 24 h                                             | ↓ Expression of inflammatory mediators<br>(TNF- $\alpha$ , IL-1 $\beta$ , phosphorylated protein<br>expression, PGE2 and COX-2 in<br>stimulated rabbit corneal cells), ↓<br>clinical signs and biomarkers of<br>inflammation with topical treatment,<br>at 7 and 24 h                                                                                                                                 |
| Park and colleagues <sup>70</sup>      | Glucose-6-phosphate isomerase (n=43) and collagen type II<br>antibody (n=16) induced arthritis models with controls<br>(n=4)<br>Intraperitoneal gabapentin (100 mg kg <sup>-1</sup> ) or ketorolac (15 mg<br>kg <sup>-1</sup> ) using a conditioned place preference paradigm | Collagen type II antibody model-<br>gabapentin produced a preference in<br>the early phase and a trend in the late<br>phase, ketorolac ineffective<br>Glucose-6-phosphate isomerase model-<br>both gabapentin and ketorolac<br>produced a preference for the drug-<br>paired compartment in the early<br>phase. Gabapentin, but not ketorolac,<br>resulted in a place preference during<br>late phase |

| Table 2 Continued                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                    | Experimental model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Zhang and<br>colleagues <sup>71</sup>     | <ul> <li>Visceral inflammatory pain model (formalin induced colitis), gabapentin 100 mg kg–1 30 min before intracolonic injection</li> <li>Behavioural effects (n=9 in six groups), electrophysiological recordings (n=6 in seven groups), PKC translocation and ERK1/2 phosphorylation (n=6 in six groups for each)</li> </ul>                                                                                                                                                                                                                | <ul> <li>↓ Pain behaviour with gabapentin at 30 min, no difference at 60 min; ↓ pain behaviour with PKC and ERK inhibitors at 30 min</li> <li>↓ Firing in wide dynamic range neurons with gabapentin in 90 min after injection, ↓ at 30 min with inhibitors</li> <li>↓ Translocation of PKC and ERK 1/2 phosphorylation with gabapentin, no difference at 120 min</li> </ul>                                                                                                                                                      |
| Hummig and<br>colleagues <sup>72</sup>    | Orofacial capsaicin and formalin tests for pretreatment. ( $n=8$ -10), Inflammatory irritant carrageenan into the upper lip ( $n=8-10$ ), constriction of the infraorbital nerve ( $n=7-8$ ), facial cancer model<br>Pregabalin 10 and 30 mg kg <sup>-1</sup> 1 h before, control group (saline + pregabalin vehicle) and vehicle of the group; morphine 2.5 mg kg <sup>-1</sup> as positive control in formalin group                                                                                                                         | Facial grooming induced by capsaicin<br>abolished by pretreatment. No<br>response to first phase (first 3 min) of<br>the formalin response, but ↓ second<br>phase (12–30 min after injection) at<br>both doses. ↓ Heat hyperalgesia<br>induced by carrageenan in lip, nerve<br>injury and facial cancer                                                                                                                                                                                                                           |
| Dias and colleagues <sup>73</sup>         | <ul> <li>Carrageenan induced paw oedema: six groups (n=5 each); control, intraperitoneal saline, indomethacin 10 mg kg<sup>-1</sup>, 0.1, 0.5, 1 mg kg<sup>-1</sup> gabapentin 1 h before carrageenan</li> <li>Paw oedema induced by dextran, serotonin, histamine, bradykinin, PGE2, 48/80 (n=5 each for control, intraperitoneal saline, indomethacin, gabapentin 1 mg kg<sup>-1</sup>)</li> <li>Carrageenan induced peritonitis- pretreatment with gabapentin 1 mg kg<sup>-1</sup>, indomethacin or saline 1 h before (n=5 each)</li> </ul> | Infairly the factor concentration of the paw oedema with gabapentin and indomethacin pretreatment in carrageenan and dextran induced oedema over 4 h, ↓ leucocyte counts in peritonitis model, levels of myeloperoxidase activity in the plantar tissue, IL-1β and TNF-α concentrations in the peritoneal exudates, ↑ concentrations of glutathione and ↓ malondialdehyde into the peritoneal fluid.                                                                                                                              |
| Yang and<br>colleagues <sup>74</sup>      | CFA induced monoarthritis in rats; sham, control, gabapentin groups ( $n=6$ each)<br>Intraperitoneal gabapentin 100 mg kg <sup>-1</sup> once daily for 4 days with the first injection 60 min before intra-articular CFA<br>Thermal hyperalgesia and spinal microglia sham, arthritis, gabapentin ( $n=6$ each); $\alpha 20$ -1 concentrations (naive $n=5$ , arthritis $n=4$ , gabapentin $n=3$ ); CXCL3 concentrations (naive $n=5$ , arthritis $n=4$ , gabapentin $n=3$ )                                                                   | ↓ Activation of spinal microglia, spinal<br>voltage-gated calcium channel α2δ-1<br>subunits by Day 4, CX3CL1<br>concentrations and thermal<br>hyperalgesia from Day 2–6                                                                                                                                                                                                                                                                                                                                                           |
| Abdel-Salam and<br>Sleem <sup>75</sup>    | Carrageenan induced paw oedema, intraplantar capsaicin,<br>intraperitoneal acetic acid, gastric lesions caused by<br>indomethacin or ethanol in rats (n=6 in each group, 2–4<br>groups and control)<br>Gabapentin (12.5, 25, 50,100, 200 mg kg <sup>-1</sup> )                                                                                                                                                                                                                                                                                 | 12.5 mg kg <sup>-1</sup> produced analgesia. 100 mg kg <sup>-1</sup> produced maximal increase in hot plate latency of 68% 1 h after administration. ↑ Current threshold in tail electrical stimulation with 25, 50 or 100 mg kg <sup>-1</sup> . ↓ duration of paw licking after intraplantar capsaicin. No antinociceptive action in a mouse acetic-acid induced writhing assay. ↓ Paw oedema. ↓ Indomethacin induced gastric mucosal lesions with 12.5–50 mg kg <sup>-1</sup> but higher doses increased gastric acid secretion |
| Vonsy and<br>colleagues <sup>76</sup>     | Unilateral knee OA using monosodium iodoacetate in rats<br>Twice daily morphine (3 mg kg <sup>-1</sup> s.c.) or gabapentin (30 mg<br>kg <sup>-1</sup> s.c.) or vehicle administered for 5 days; von Frey 1, 6, 8<br>g acetone drop (four groups each), latency to fall,<br>ambulatory-evoked pain score (two groups each); <i>n</i> =7 for<br>each group                                                                                                                                                                                       | Mechanical and thermal sensitivity<br>and ambulatory-evoked pain after<br>both acute and chronic morphine<br>whilst only chronic gabapentin had an<br>effect                                                                                                                                                                                                                                                                                                                                                                      |
| Zhang and<br>colleagues <sup>77</sup>     | CFA induced monoarthritis in rats<br>Intraperitoneal injection of dexmedetomidine (2.5, 5, 10, and<br>20 $\mu$ g kg <sup>-1</sup> ) or gabapentin (25, 50, 100, and 200 mg kg <sup>-1</sup> )<br>Monoarthritis rats divided into 15 groups in blind randomised<br>fashion: drugs alone or in combination or normal saline,<br>behaviour testing 15–150 min after injection ( <i>n</i> =6–10 each<br>group)                                                                                                                                     | Dose dependent ↑ in PWL with both<br>agents.↓ Thermal hyperalgesia for 60<br>min with dexmedetomidine +<br>gabapentin                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fehrenbacher and colleagues <sup>78</sup> | <ul> <li>CFA induced inflammation in rats. Inflammation induced neuropeptide release with pregabalin, gabapentin (n=7 each) and untreated (n=14); effect on protein kinase C (PKC) activator induced neuropeptide release (n=3 each for pregabalin, gabapentin, untreated, PKC activator)</li> <li>10 μM gabapentin or pregabalin on inflammation induced</li> </ul>                                                                                                                                                                           | Release of immunoreactive peptides<br>from non-inflamed animals was not<br>altered by either drug. ↓enhanced<br>release of peptides after inflammation<br>with both drugs. ↓ Release of<br>immunoreactive neuropeptides in                                                                                                                                                                                                                                                                                                        |

| Table 2 | Continued |
|---------|-----------|
|---------|-----------|

| Source                                                                   | Experimental model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | neuropeptide release; pretreatment with 10 or 100 µM<br>pregabalin for assessing effect of PKC activator induced<br>neuropeptide release                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | spinal tissues pre-treated with PKC activator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Liu and colleagues <sup>79</sup>                                         | <ul> <li>Whole-cell voltage-clamp recordings from substantia gelatinosa neurons from adult rat spinal cord slices in carrageenan induced inflammation</li> <li>Gabapentin (5–20 μM for 5 min) or control, effect on monosynaptic and polysynaptic EPSC in normal (n=6 and 3) and inflammation (n=10 and 5); effect on N-methyl-D-aspartate induced currents</li> </ul>                                                                                                                                                                                                                                    | Dorsal root Aô fibre evoked<br>polysynaptic, but not monosynaptic<br>EPSC by 25%. No reduction in evoked<br>polysynaptic or monosynaptic EPSCs<br>in normal rats. Gabapentin failed to<br>block N-methyl-d-aspartate induced<br>slow excitatory currents.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hurley and<br>colleagues <sup>80</sup>                                   | Carrageenan induced inflammation in rats (n=up to 17)<br>Vehicle, gabapentin (3.0–300.0 mg kg <sup>-1</sup> ), naproxen (0.1–30.0 mg kg <sup>-1</sup> ), pregabalin (3.0–30.0 mg kg <sup>-1</sup> ) or a mixture of gabapentin and naproxen (0.0001–300.0 mg kg <sup>-1</sup> total dose) or pregabalin and naproxen (0.1–30.0 mg kg <sup>-1</sup> total dose); 17 groups for drugs alone (8–17 each group); 12 groups gabapentin + naproxen (8–16 each group); nine groups pregabalin + naproxen (7–17 each group)                                                                                       | Gabapentin + naproxen and pregabalin<br>+ naproxen can interact<br>synergistically or additively to reverse<br>thermal hyperalgesia associated with<br>peripheral inflammation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Patel and<br>colleagues <sup>81</sup><br>Lu and colleagues <sup>82</sup> | CFA induced inflammation in rats, gabapentin s.c. 30, 100,<br>250 mg kg <sup>-1</sup> or vehicle ( <i>n</i> =6 in each group)<br>Carrageenan and kaolin induced arthritis in rats<br>Intrathecal gabapentin or control ( <i>n</i> =6 each) 1.5 h before<br>induction in pretreatment; three groups for post-<br>treatment: control, gabapentin in cord, gabapentin s.c. ( <i>n</i> =6<br>in each group)                                                                                                                                                                                                   | <ul> <li>↑ PWT, 40% reversal of hyperalgesia with 250 mg kg<sup>-1</sup></li> <li>Pretreatment: at 4 h PWL response to radiant heat and the posture not changed, ↓ secondary hyperalgesia to radiant heat, no effect on knee circumference</li> <li>Post-treatment: at 1.5 h PWL back to baseline with spinal gabapentin, improved secondary hyperalgesia and pain behaviour, no effect on knee circumference; s.c. gabapentin did not affect PWL and pain behaviour</li> </ul>                                                                                                                                                                                                                                      |
| Stanfa and colleagues <sup>83</sup>                                      | Carrageenan induced inflammation in rats<br>Single unit extracellular recordings, effect of gabapentin (10,<br>30 and 100 mg kg <sup>-1</sup> s.c.) in normal (n=5–6) and after<br>carrageenan (n=5)                                                                                                                                                                                                                                                                                                                                                                                                      | Gabapentin $\uparrow$ C-fibre evoked response of<br>the dorsal horn neurones, $\uparrow$ post-<br>discharge, $\uparrow$ A $\delta$ fibre response with 100<br>mg kg <sup>-1</sup> , none to A $\beta$ ; opposite effects<br>after carrageenan                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Camara and<br>colleagues <sup>84</sup>                                   | Sciatic nerve constriction, carrageenan induced paw oedema<br>in rats<br>Spontaneous behaviour ( <i>n</i> =at least 10), effect on TNF- $\alpha$ , and<br>IL-1 $\beta$ and IL-10 ( <i>n</i> =at least 5 in each group)<br>Oral gabapentin 30, 60, and 120 mg kg <sup>-1</sup> , 60 min before<br>chronic constriction of the sciatic nerve (CCSN) and for 5<br>days postinjury, saline as control                                                                                                                                                                                                         | <ul> <li>↓ Heat-induced hyperalgesia on the 5th day with 60 and 120 mg kg<sup>-1</sup>. ↑ Nerve MPO, TNF-α, and IL-1β concentrations with 60 mg kg<sup>-1</sup>, ↓ anti-inflammatory cytokine IL-10 nerve concentrations with 120 mg kg<sup>-1</sup></li> <li>↑ Carrageenan-induced paw oedema and peritoneal macrophage migration with 60 and 120 mg kg<sup>-1</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                     |
| You and<br>colleagues <sup>85</sup>                                      | <ul> <li>Intact and spinalised rats: repetitive electrical stimulation of single DRG</li> <li>97 NS neurons in the deep dorsal horn area of the spinal cord from 79 intact and 18 spinalised rats</li> <li>Pregabalin 20, 40, 80 mg kg<sup>-1</sup> i.v., untreated control, saline-early and late response, after-discharges and windup; 80 mg/kg comparing intact and spinalised animals</li> <li>s.c. bee venom induced inflammation- mechanical/heat stimulation after pregabalin 80 mg/kg: (untreated <i>n</i>=8, saline <i>n</i>=8, pre-treatment <i>n</i>=9, post-treatment <i>n</i>=9)</li> </ul> | <ul> <li>↓ C-fibre mediated spinal NS neurons'<br/>late responses but effects on<br/>nociception not observed until 30 min<br/>after administration. No inhibitory<br/>effect on A-δ fibre mediated early<br/>responses. Inhibitory effects absent in<br/>spinalised animals, suggesting mainly<br/>central effects involving supraspinal<br/>centres via descending inhibitory<br/>controls. Markedly ↓ s.c. bee venom<br/>elicited spontaneous neuronal<br/>responses with pre-treatment but not<br/>post-treatment with pregabalin (80 mg<br/>kg<sup>-1</sup>), and noxious mechanical/heat<br/>stimuli evoked hyperactivities of<br/>spinal NS neurons, suggesting role for<br/>pre-emptive analgesia</li> </ul> |
| Curros-Criado and<br>Herrero <sup>86</sup>                               | Carrageenan induced monoarthritis (n=6), sciatic nerve<br>ligation mononeuorpathy (n=9), normal (n=6)<br>Gabapentin 7–224 mg kg <sup>-1</sup> , effect on single motor unit<br>response to noxious mechanical stimulation                                                                                                                                                                                                                                                                                                                                                                                 | Gabapentin effective in arthritic and<br>neuropathic rats but not normal rats;<br>windup was dose dependently<br>reduced in neuropathic but not normal<br>and arthritic rats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Table 2 Continued                           |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source                                      | Experimental model                                                                                                                                                                                                                                                                                                | Result                                                                                                                                                                                                                                                                                          |
| Matson and<br>colleagues <sup>87</sup>      | Bilateral inflammation of the knee joints by CFA in rats<br>Multiple doses of ibuprofen, rofecoxib, celecoxib, piroxicam,<br>and dexamethasone and gabapentin 300 mg kg <sup>-1</sup> ,<br>amitriptyline 30 mg kg <sup>-1</sup> ; gabapentin and amitriptyline<br>(five groups including control $n=8$ per group) | Reduction in activity was dose-<br>dependently reversed by ibuprofen,<br>rofecoxib, celecoxib, piroxicam, and<br>dexamethasone, whereas gabapentin<br>(3 h pretreatment) and amitriptyline<br>were ineffective                                                                                  |
| Animal models of pos                        | stoperative pain                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |
| Papathanasiou and colleagues <sup>90</sup>  | Rat plantar incision<br>Morphine (1, 3 and 7 mg kg <sup>-1</sup> ), gabapentin (10, 30 and 100 mg<br>kg <sup>-1</sup> ) or their combination (nine combinations in total)                                                                                                                                         | Dose dependent synergistic effects with<br>morphine + gabapentin                                                                                                                                                                                                                                |
| Narai and<br>colleagues <sup>91</sup>       | Rat plantar incision<br>Intrathecal gabapentin (4, 40, 400 $\mu$ g), two combinations with<br>diclofenac or saline (n=6 in each group); 30 min before<br>incision                                                                                                                                                 | Only 400 µg gabapentin ↑ PWT from 2 h<br>up to 7 days. Gabapentin + diclofenac<br>more effective than individual drugs                                                                                                                                                                          |
| McKeon and<br>colleagues <sup>92</sup>      | Rat plantar incision<br>Intraperitoneal tramadol 10 mg kg <sup>-1</sup> + s.c. gabapentin 80 mg kg <sup>-1</sup> , and saline, 30 min before incision ( $n$ =6 per group);<br>tramadol repeated every 12 h for 60 h and gabapentin every<br>24 h for 48 h; tests after 1 day                                      | Saline or tramadol group: hyperalgesia<br>on Days 1–4 and 1–3 after surgery,<br>respectively. Tramadol + gabapentin-<br>reduced thermal hyperalgesia on Days<br>2 and 4. Only the combination did not<br>show reduction in weight bearing                                                       |
| Flatters <sup>93</sup>                      | Skin/muscle incision and retraction in rats<br>Intraperitoneal gabapentin 100 mg kg <sup>-1</sup> or saline (n=9 each),<br>testing after 9–13 days                                                                                                                                                                | 100 mg kg <sup>-1</sup> almost completely reversed<br>mechanical hypersensitivity after 1 h                                                                                                                                                                                                     |
| Hayashida and<br>colleagues <sup>94</sup>   | Rat plantar incision<br>Oral (vehicle, 30, 100, 300 mg kg <sup>-1</sup> ) or intracerebroventricular<br>gabapentin (vehicle, 10, 30, 100 $\mu$ g; $n=6$ or 7 in each group),<br>tests after 24 h; cerebrospinal fluid norepinephrine after<br>preoperative gabapentin 1200 mg                                     | ↑ PWT for 1–4 h with oral and 15–60 min<br>with intraventricular, effects reversed<br>with α2-adrenergic receptor<br>antagonist idazoxan and G protein-<br>coupled inwardly rectifying potassium<br>channel antagonist tertiapin-Q, ↑<br>norepinephrine concentration in<br>cerebrospinal fluid |
| Whiteside and colleagues <sup>95</sup>      | Rat plantar incision<br>Intraperitoneal gabapentin (10, 30, 300 mg kg <sup>-1</sup> ) compared<br>with different doses of morphine, celecoxib, indomethacin,<br>etoricoxib, naproxen (n=8–10 each group)                                                                                                          | ↑ Pressure PWT, maximum reversal of<br>mechanical hyperalgesia 64% with100<br>mg kg <sup>-1</sup> , no effect at 5 h; maximum<br>reversal of tactile allodynia by 19% as<br>measured by von Frey withdrawal<br>threshold, no effect at 1 and 5 h                                                |
| Cheng and colleagues <sup>96</sup>          | Rat plantar incision<br>Intrathecal gabapentin 10, 30, and 100 $\mu$ g, control (n=6–12 in<br>each group). 2 h after incision                                                                                                                                                                                     | $\uparrow$ PWT in dose dependent fashion                                                                                                                                                                                                                                                        |
| Field and<br>colleagues <sup>97</sup>       | Rat plantar incision<br>Gabapentin 3–30 mg kg <sup>-1</sup> s.c., 1 h before incision, control<br>(n=8–12 in each group)                                                                                                                                                                                          | 330 mg kg <sup>-1</sup> $\uparrow$ thermal PWL with 30 mg kg <sup>-1</sup> effective for 24 h; $\uparrow$ PWT with 10 and 30 mg kg <sup>-1</sup> lasting for 25 and 49 h                                                                                                                        |
| Buvanendran and<br>colleagues <sup>98</sup> | Knee surgery model in rats<br>Knee surgery/drug, knee surgery/vehicle, sham skin incision/<br>vehicle (n=8 in each group), evaluated after 24 h                                                                                                                                                                   | Pregabalin 15 µg did not improve<br>spontaneous activity postsurgery                                                                                                                                                                                                                            |

transient receptor potential channel subfamily V member 1 (TRPV1). The heat-capsaicin model combines heat exposure with capsaicin to potentiate the effects, as TRPV1 receptors are also activated by heat. Gabapentin reduced secondary hyperalgesia and had modulatory effect on functional magnetic resonance imaging brain responses to nociceptive inputs in this model.<sup>102,106</sup> The electrical hyperalgesia model is considered representative of central sensitisation as repetitive electrical stimulation of skin and muscles can induce temporal summation. Contrasting effects were seen on the threshold of pain summation to this repetitive stimulation.99,107 Area of allodynia was reduced.<sup>108,109</sup> Contrasting effects were also seen after sural nerve stimulation.<sup>108,110</sup> The continuous electrical stimulation model induces both central sensitisation and continuous C-fibre mediated pain. Gabapentin increased the current strength required to induce pain and reduced area of secondary hyperalgesia but did not influence pain detection threshold in area of hyperalgesia.<sup>111</sup> Gabapentinoids had

modest effects on the pain tolerance threshold to single electrical stimulus.<sup>99,111</sup> Chemical stimulation of muscle by i.m. injection of hypertonic saline mimics musculoskeletal pain resulting in deep and diffuse pain as a result of activation of Cfibres.<sup>117</sup> Contrasting effects were seen with gabapentin.<sup>107,111</sup> Gabapentin reduced pain intensity in the cold pressor test model but only in combination with morphine unlike pregabalin that was effective alone.<sup>99,112</sup> Conditioned pain modulation, which is a measure of endogenous pain inhibitory pathways, was not influenced.<sup>99,113</sup> Pregabalin enhanced both opioid analgesia and respiratory depression.<sup>114</sup>

#### Discussion

Gabapentinoids certainly act on  $\alpha 2\delta$  receptors and attenuate the enhanced dorsal horn excitability. It is, however, evident that various effects not directly related to neurotransmitter release at pre-synaptic terminals also contribute to analgesia. Table 3 Effect of gabapentinoids in human pain models. UVB, ultraviolet B; CPM, conditioned pain modulation; PTT, pain tolerance threshold; PDT, pain detection threshold; MRI, magnetic resonance imaging; VAS, visual analogue scale

| Source                                             | Experimental model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Okkerse and<br>colleagues <sup>99</sup>            | Battery of tests eliciting cutaneous electrical mechanical and<br>thermal pain and included a UVB model, the thermal grill<br>illusion, and a paradigm of CPM (n=16)<br>Pregabalin 300 mg, pain measurements at baseline and up to 10<br>h post                                                                                                                                                                                                                                                                             | ↑ (PTT) for single electrical stimulus (10.8%),<br>mechanical pain (14.1%), cold pressor (46.4%) and<br>normal skin heat pain detection threshold (4.1%).<br>No effect on single electrical PDT, no effect on<br>repeat electrical PTT or PDT. No changes to<br>thermal grill and CPM. No effect of pregabalin on<br>PDT after UVB<br>Dizziness (56%), somnolence (31%) and nausea |
| Gustorff and colleagues <sup>100</sup>             | Double-blind, active placebo-controlled, four-way cross-over design $(n=16)$<br>Burn injury (UVB) model; gabapentin 600 mg, burn injury 20 h prior, comparison with remifentanil; PDT and PTT to heat in area of primary hyperalgesia and control, area of secondary hyperalgesia to ninprick                                                                                                                                                                                                                               | (31%) with pregabalin.<br>Gabapentin had no noticeable effect on heat PDT<br>and PTT and the area of secondary hyperalgesia                                                                                                                                                                                                                                                        |
| Werner and colleagues <sup>101</sup>               | Double-blind, randomised, placebo-controlled cross-over study<br>(n=22)<br>Burn injury model; gabapentin 1200 mg or placebo given on two<br>separate days, burn injury after 3 h                                                                                                                                                                                                                                                                                                                                            | Mechanical allodynia in burn area but no<br>significant reduction in heat pain threshold, pain<br>during the burn, mechanical pain in area of<br>secondary hyperaleesia no effect in normal skin                                                                                                                                                                                   |
| Dirks and<br>colleagues <sup>102</sup>             | Double-blind, randomised, placebo-controlled cross-over study<br>(n=25)<br>Heat capsaicin sensitisation model, brief thermal sensitisation<br>on thigh, long thermal stimulation; gabapentin 1200 mg; in<br>primary hyperalgesia area PDT to heat; area of secondary                                                                                                                                                                                                                                                        | ↓ Secondary hyperalgesia in established heat<br>capsaicin and brief thermal sensitisation. ↑ Heat<br>PDT after long thermal stimulation but not in<br>normal skin<br>Light headedness more common with gabapentin                                                                                                                                                                  |
| Gottrup and colleagues <sup>103</sup>              | hyperalgesia to pinprick and allodynia to brushing<br>Double-blind, randomised, placebo-controlled, parallel-group<br>study (n=41)<br>Capsaicin sensitisation model; gabapentin 300 mg increased to<br>800 mg three times per day (Days 10–15), measurements                                                                                                                                                                                                                                                                | but other side effects not different from placebo<br>No effect on spontaneous and evoked pain<br>intensity<br>↓ Brush allodynia but no effect on area of pinprick<br>hyperalgesia                                                                                                                                                                                                  |
|                                                    | within 90 min after capsaicin on Day 1 and 15; intensity of<br>spontaneous and evoked pain with pinprick and brush, area<br>of hyperalgesia to pinprick and allodynia to brush, temporal<br>summation of pain evoked by repetitive stimulation                                                                                                                                                                                                                                                                              | Fatigue, dizziness and headache more common with gabapentin                                                                                                                                                                                                                                                                                                                        |
| Wallace and<br>Schulteis <sup>104</sup>            | <ul> <li>Double-blind, randomised cross-over study (n=13, three dropped out because of side effects)</li> <li>Gabapentin increased from 300 mg twice daily to 600 mg three times per day from Day 7–10, thermal and mechanical stimuli at 0.4.7 and 10 days capsairin on Day 10.</li> </ul>                                                                                                                                                                                                                                 | No effect on acute sensory thresholds, pain,<br>secondary hyperalgesia, or flare response<br>induced by intradermal capsaicin. ↑ Side effects<br>with gabapentin with sedation and dizziness<br>most common                                                                                                                                                                        |
| Wang and colleagues <sup>105</sup>                 | Double-blind, randomised placebo-controlled, four-period,<br>cross-over study (n=20)<br>Capsaicin model; pregabalin 300 mg, morphine 10 mg i.v., active<br>placebo, placebo                                                                                                                                                                                                                                                                                                                                                 | Compared with active placebo pregabalin and<br>morphine significantly ↓ area of secondary<br>hyperalgesia over 15–240 min but not when<br>compared with true placebo                                                                                                                                                                                                               |
| Iannetti and<br>colleagues <sup>106</sup>          | Double-blind, placebo controlled, four-way cross-over with two paired randomised periods ( <i>n</i> =12)<br>Heat-capsaicin sensitisation model; gabapentin 1800 mg; MRI                                                                                                                                                                                                                                                                                                                                                     | ↓ Activations in the bilateral operculoinsular<br>cortex, independently of the presence of central<br>sensitisation                                                                                                                                                                                                                                                                |
|                                                    | end of MRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | induced deactivations only during central<br>sensitisation. The effect on deactivation was<br>greater than on brain activation                                                                                                                                                                                                                                                     |
| Arendt-Nielsen<br>and<br>colleagues <sup>107</sup> | Double-blind, placebo-controlled (n=20)<br>Single and repeated cutaneous and i.m. electrical stimulation;<br>gabapentin 1200 mg; pain thresholds, stimulus-response<br>function relating pain intensity scores to increasing current<br>intensities for electrical skin and muscle stimuli, pain<br>intensity (VAS) and pain areas after i.m. injection of<br>hypertonic saline. Pain assessments were performed before,<br>and at 4, 6, and 8 h after medication                                                           | <ul> <li>↑ Temporal summation pain threshold in skin but<br/>not muscle, ↓ area under the pain intensity curve<br/>to hypertonic saline injections in the muscle and<br/>↓ area of pain evoked by hypertonic saline</li> </ul>                                                                                                                                                     |
| Boyle and<br>colleagues <sup>108</sup>             | Double-blind, placebo-controlled, three-period cross-over,<br>four-treatment option, incomplete block study (n=30)<br>Electrical hyperalgesia model; gabapentin 900 mg alone or with<br>donepezil 5 mg for two of three periods, 50% randomised to<br>placebo (negative control) or gabapentin 1800 mg (positive<br>control) for the remaining period, each treatment period of 14<br>days; area of hyperalgesia to pin prick and touch evoked<br>allodynia, single and repetitive electrical stimulation of sural<br>nerve | ↓ Area of allodynia with 1800 mg compared with<br>placebo, ↓ area of hyperalgesia with combined<br>gabapentin and donezepil compared with<br>gabapentin alone. No difference in flare response.<br>No difference in response to single or repetitive<br>electrical stimulation of sural nerve<br>Fatigue common with 1800 mg (43%)                                                 |

#### Table 3 Continued

| Source                                   | Experimental model                                                                                                                                                                                                                                                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                     |
| Chizh and<br>colleagues <sup>109</sup>   | <ul> <li>Double-blind, two-period, placebo-controlled study using incomplete block design (n=32)</li> <li>Electrical hyperalgesia; pregabalin (titrated to 300 mg) or aprepitant (titrated to 320 mg), or placebo over 6 days, sensitisation was assessed over 3 h; at 2 h, either parecoxib (40 mg) or saline i.v.</li> </ul>               | <ul> <li>↓ Areas of punctate mechanical hyperalgesia and<br/>dynamic touch allodynia with pregabalin, no<br/>response to aprepitant</li> <li>↓ Area of allodynia with pregabalin + aprepitant but<br/>no effect on area of hyperalgesia</li> </ul>                                                                                                                  |
| Enggard and<br>colleagues <sup>110</sup> | Double-blind, randomised, placebo-controlled cross-over study<br>(n=18)<br>Pain summation model; gabapentin 600 mg three times per day<br>over 24 h against placebo, sural nerve stimulation, tests<br>before and 24 h after administration                                                                                                  | ↑ Threshold of pain summation to repetitive<br>stimulation and PTT to single electrical sural<br>nerve stimulation; no effect on PDT to single<br>electrical sural nerve stimulation and cold<br>pressor test                                                                                                                                                       |
| Segerdahl <sup>111</sup>                 | <ul> <li>Double-blind, placebo controlled, three-session cross-over study (n=16)</li> <li>Hypertonic saline induced muscle pain, electrical stimulation; gabapentin 0, 1200, 1800 and 2600 mg (pre-treatment, titrated over four doses) or placebo; VAS, area of local and referred pain, PDT to pinprick in area of hyperalgesia</li> </ul> | ↓ Sensitivity to electrical induction of skin pain by<br>14% by pre-treatment with 1800 mg, ↓ area of<br>secondary hyperalgesia but mechanical pain<br>thresholds were unaffected. No effect on ongoing<br>pain. Pain induced by i.m. infusion of hypertonic<br>saline was not affected by gabapentin<br>Dizziness and fatigue more common with<br>increasing doses |
| Eckhardt and colleagues <sup>112</sup>   | Double-blind, randomised, placebo-controlled four-way cross-<br>over design (n=12)<br>Cold pressor test; oral morphine 60 mg slow release or<br>gabapentin 600 mg                                                                                                                                                                            | Area under curve of pain tolerance from 0–6 h for<br>gabapentin similar to placebo. However,<br>gabapentin enhanced the analgesic effects of<br>morphine                                                                                                                                                                                                            |
| Olesen and<br>colleagues <sup>113</sup>  | Placebo-controlled study (n=64)<br>Painful chronic pancreatitis; pain thresholds to pressure and<br>electric tetanic stimulation and CPM after pregabalin 150–300<br>mg twice daily for 3 weeks                                                                                                                                              | Electrical pain detection ratio but not CPM was predictive for pregabalin effect                                                                                                                                                                                                                                                                                    |
| Myhre and<br>colleagues <sup>114</sup>   | <ul> <li>Double-blind, randomised, placebo- controlled, cross-over study (n=12)</li> <li>Cold pressor test; Pregabalin 150 mg/placebo twice orally, Remifentanil/placebo at effect-site target-controlled infusion: 0.6, 1.2, and 2.4 ng/ml; VAS score, spirometry, colour –word interference and rapid information processing</li> </ul>    | Pregabalin + remifentanil had additive analgesic<br>effects but adversely affected cognition,<br>pregabalin potentiated remifentanil induced<br>respiratory depression                                                                                                                                                                                              |

The absence of effects in spinalised animals supports the role of supraspinal mechanisms.<sup>85</sup> Elevated concentration of CSF norepinephrine after preoperative gabapentin indicates that some effects are mediated by descending noradrenergic inhibition.94 However, there was no effect on conditioned pain modulation that is a measure of inhibitory influences.<sup>99,113</sup> The interaction of gabapentinoids with serotonin pathways is complex with permissive conditions for their effects dependent on the up-regulation of serotonergic facilitatory systems.<sup>47,48</sup> The role of serotonin in pain has not been fully elucidated with both facilitatory and inhibitory influences on nociception depending on the presence of injury.<sup>118</sup> This may explain the state dependent actions of gabapentinoids that have effects only in the presence of injury.<sup>86,101</sup> The influence on affective component of pain is independent of analgesic effects.53 Pregabalin has well known anxiolytic effects that may have positive effects on postoperative rehabilitation.<sup>119,120</sup> The discrepancy between the acute effects in vivo as opposed to the prolonged duration of exposure required in vitro can be explained conceptually on the greater sensitivity of elevated levels of  $\alpha 2\delta 1$  in nerve injury models to gabapentinoid action, rapid uptake by in vivo models, antiinflammatory actions and by modulation of descending influences and the affective component of pain.

There are no studies looking at the role of  $\alpha 2\delta$  in inflammation and incisional pain models. Elevated levels of  $\alpha 2\delta$ -1 may be specific to neuropathic pain. Gabapentinoids seem to be effective antinociceptives in most animal models of inflammatory pain but prolonged administration may be required to achieve improved ambulation.<sup>76</sup> This explains the lack of improvement in activity in a model of complete Freund's adjuvant-induced arthritis.<sup>87</sup> Gabapentin was effective in all animal models of postoperative pain with synergistic effects with opioids. However, the difference in neurobiology of nociceptive systems between species limits the extrapolation of findings from animal studies to humans.<sup>121,122</sup> The few studies that have explored the effects in human models of inflammatory pain do not show convincing evidence of benefit. $^{99-101}$  It is difficult to explain the contrasting effects on pain induced by chemical stimulation of muscles and repetitive electrical stimulation. The lack of effect on secondary hyperalgesia induced by continuous electrical stimulation may be a result of the higher strength of current required in the premedicated group.<sup>111</sup> The lack of effect of gabapentin as compared with pregabalin in the cold pressor model may be a result of differences in pain assessment methods.<sup>114</sup>

There are no studies looking at effects in human models of postoperative pain. However, the effects on animal models suggest that gabapentinoids could contribute to multimodal analgesia. Several meta-analyses have shown a modest reduction in the use of opioids after surgery.<sup>123–127</sup> However, the quality of the trials is moderate to very low.<sup>4</sup> There is conflicting evidence with regards to the timing (preoperative or postoperative) and the optimal dose.<sup>3</sup> Although peak CSF concentrations are achieved at a median time of 8 h, the relevance is uncertain, as pregabalin in clinical doses does not influence spinal neurotransmitter concentrations.<sup>29</sup> The optimal dose has not been defined as the few studies that have attempted to address this question, are limited by their sample size. Higher preoperative doses and continued use in the postoperative period may provide better analgesia.<sup>3,128</sup> This makes intuitive sense as  $\alpha_2 \delta$ -1 concentrations are raised for several days after injury.<sup>20</sup> Only chronic use was associated with improved ambulation in a knee inflammation model.<sup>76</sup> This suggests that continued use is necessary for any potential benefit.

This approach might, however, increase the risk of adverse effects such as dizziness and increased sedation.<sup>4</sup> Gabapentinoids have synergistic analgesic effects with opioids but also enhance opioid-induced respiratory depression.<sup>114</sup> Significant number of healthy subjects in experimental studies experienced particularly effects, adverse with increasing dosage.<sup>99,103,104,108,109</sup> Gabapentinoids are often utilised in enhanced recovery pathways, particularly for hip and knee replacement surgery. These procedures are often performed in the elderly, who may be more vulnerable to the potential side effects of gabapentinoids.<sup>129</sup> It therefore makes intuitive sense to tailor the use of gabapentinoids to the clinical situation. Perioperative use is appropriate in patients having 'pro-nociceptive surgery', such as spine surgery that may be associated with nerve damage.<sup>130</sup> Patients on high dose opioids who are tolerant to their effects could benefit from even the modest effects of gabapentinoids. They might be helpful in situations where even marginal additional improvements in analgesia could potentially influence outcome (e.g. multiple rib fractures resulting in impaired ventilation as a result of poor pain control).<sup>131</sup>

The evidence for the role of gabapentinoids in prevention of chronic pain is limited. They have modest analgesic effects in chronic neuropathic pain with numbers needed to treat of 7.7 (6.5-9.4) for pregabalin and 7.2 (5.9-9.2) for gabapentin.<sup>132</sup> Cochrane review suggested that gabapentinoids do not have a preventative role.<sup>83</sup> Recent systematic reviews have differing conclusions with regards to effectiveness in preventing persistent pain,<sup>126,133</sup> The lack of evidence may be because of inadequate sample size and poor trial designs.<sup>134</sup> It is not surprising, however, that a clear benefit in terms of prevention of chronic pain has not been found as, although  $\alpha 2\delta$ -1 is required for rapid development of hypersensitivity, its absence does not prevent sensitisation.<sup>17</sup> This suggests that there are other mechanisms involved that contribute to the development of hypersensitivity. It is possible that these subunits are no longer upregulated in chronic pain, resulting in lack of efficacy.<sup>135</sup> The poor efficacy in chronic pain might be a result of differential upregulation of splice variants with reduced affinity to gabapentin.<sup>136</sup> Downregulation of glutamate transporter-1 can reduce long-term efficacy, but addition of valproate can restore efficacy.<sup>5</sup>

Translational studies studying the effects of analgesics in human models of postoperative pain are required to bridge the gap between human clinical studies and animal models. A human surrogate model of postoperative pain has been described.<sup>137</sup> There is no information regarding persistence of  $\alpha 2\delta$  upregulation in both animal and human studies. Future studies could focus on persistence of  $\alpha 2\delta$  and any possible correlation between the efficacy of gabapentinoids and concentrations of  $\alpha 2\delta$  and the presence of variants. This could allow targeted treatments with gabapentinoids for neuropathic pain and reduce the risk of exposing patients who might otherwise not benefit, to adverse effects. The potential of valproate to restore the efficacy of gabapentinoids needs to be explored. Well designed, large-scale trials are required to evaluate the effects on development of persistent pain.

#### Conclusion

The actions of gabapentinoids cannot be attributed solely to blockade of calcium channels. A more accurate description of their mechanism is depression of presynaptic excitatory input onto dorsal horn neurons through interactions with  $\alpha 2\delta$ -1 subunits that are upregulated after injury. They inhibit forward trafficking of  $\alpha 2\delta$ -1 from the dorsal root ganglion, their recycling from endosomal compartments, thrombospondin mediated processes and stimulate glutamate uptake by EAATs. Mechanisms not directly related to neurotransmitter release at dorsal horn include inhibition of descending serotonergic facilitation, stimulation of descending inhibition, anti-inflammatory actions and influence on the affective component of pain. Gabapentinoids are effective analgesics in most animal models of inflammation and postoperative pain but effects in human models are variable. The risk of adverse effects is increased with increasing dosage. In situations where the risk-benefit balance is in favour of starting gabapentinoids, they should be started pre-emptively and continued throughout the perioperative period.

#### Authors' contributions

Conceptualisation, drafting, analysis and revisions of the manuscript: MC.

#### **Declaration of interest**

None declared.

#### References

- Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain 2010; 150: 573–81
- Uchitel OD, Di Guilmi MN, Urbano FJ, Gonzalez-Inchauspe C. Acute modulation of calcium currents and synaptic transmission by gabapentinoids. *Channels* 2010; 4: 490–6
- Schmidt PC, Ruchelli G, Mackey SC, Carroll IR. Perioperative gabapentinoids choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology 2013; 119: 1215–21
- Fabritius ML, Strøm C, Koyuncu S, et al. Benefit and harm of pregabalin in acute pain treatment: a systematic review with meta-analyses and trial sequential analyses. Br J Anaesth 2017; 119: 775–91
- 5. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest 2010; **120**: 3760–72
- Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol 2006; 17: 592–604
- Zhuo M. Glutamate kainate receptor in pain transmission and modulation. In: Zhuo M, editor. Molecular pain. New York: Springer; 2007. p. 97–106
- 8. Voscopoulos C, Lema M. When does acute pain become chronic? Br J Anaesth 2010; 105: i69–85
- Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. *Neuron* 2014; 82: 24–45
- Doan L. Voltage-gated calcium channels and pain. Tech Reg Anesth Pain Manag 2010; 14: 42–7
- **11.** Dolphin AC. A short history of voltage-gated calcium channels. Br J Pharmacol 2006; **147**: S56–62

- Dolphin AC. The α2δ subunits of voltage-gated calcium channels. Biochim Biophys Acta Biomembr 2013; 1828: 1541–9
- 13. Bauer CS, Nieto-Rostro M, Rahman W, et al. The increased trafficking of the calcium channel subunit  $\alpha 2\delta$ -1 to presynaptic terminals in neuropathic pain is inhibited by the  $\alpha 2\delta$  ligand pregabalin. J Neurosci 2009; **29**: 4076–88
- 14. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel α2δ-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 2004; 24: 8494–9
- 15. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME. Upregulation of dorsal root ganglion α2δ calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 2001; 21: 1868–75
- 16. Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN. Dorsal root ganglion neurons show increased expression of the calcium channel α2δ-1 subunit following partial sciatic nerve injury. Mol Brain Res 2001; 95: 1–8
- 17. Patel R, Bauer CS, Nieto-Rostro M, et al. α2δ-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J Neurosci 2013; 33: 16412–26
- Li CY, Zhang XL, Matthews EA, et al. Calcium channel α2δ1 subunit mediates spinal hyperexcitability in pain modulation. Pain 2006; 125: 20–34
- **19.** Nguyen D, Deng P, Matthews EA, et al. Enhanced presynaptic glutamate release in deep dorsal horn contributes to calcium channel  $\alpha 2\delta$ -1 protein mediated spinal sensitization and behavioral hypersensitivity. *Mol Pain* 2009; **5**: 6
- 20. Luo ZD, Calcutt NA, Higuera ES, et al. Injury type specific calcium channel α2δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002; 303: 1199–205
- 21. Su TZ, Lunney E, Campbell G, Oxender DL. Transport of gabapentin, a  $\gamma$ -amino acid drug, by system l  $\alpha$ -amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO Cells. J Neurochem 1995; 64: 2125–31
- 22. Marais E, Klugbauer N, Hofmann F. Calcium channel alpha(2)delta subunits-structure and gabapentin binding. Mol Pharmacol 2001; 59: 1243–8
- 23. Hendrich J, Van Minh AT, Heblich F, et al. Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin. Proc Natl Acad Sci U S A 2008; 105: 3628–33
- 24. Hara K, Sata T. Inhibitory effect of gabapentin on Nmethyl-d-aspartate receptors expressed in xenopus oocytes. Acta Anaesthesiol Scand 2007; 51: 122–8
- 25. Yang RH, Wang WT, Chen JY, Xie RG, Hu SJ. Gabapentin selectively reduces persistent sodium current in injured type-A dorsal root ganglion neurons. Pain 2009; 143: 48–55
- 26. Cheng JK, Chen CC, Yang JR, Chiou LC. The antiallodynic action target of intrathecal gabapentin: Ca<sup>2+</sup> channels, KATP channels or N-methyl-d-aspartic acid receptors? Anesth Analg 2006; 102: 182–7
- 27. Bockbrader HN, Wesche D, Miller R, Chapel S, Janiczek N, Burger P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet 2010; 49: 661–9
- 28. Buvanendran A, Kroin JS, Kari M, Tuman KJ. Can a single dose of 300 mg of pregabalin reach acute

antihyperalgesic levels in the central nervous system? Reg Anesth Pain Med 2010; **35**: 535-8

- 29. Buvanendran A, Kroin JS, Della Valle CJ, Moric M, Tuman KJ. Cerebrospinal fluid neurotransmitter changes during the perioperative period in patients undergoing total knee replacement: a randomized trial. Anesth Analg 2012; 114: 434–41
- 30. Biggs JE, Boakye PA, Ganesan N, et al. Analysis of the long-term actions of gabapentin and pregabalin in dorsal root ganglia and substantia gelatinosa. J Neurophysiol 2014; 112: 2398–412
- Alles SR, Smith PA. The anti-allodynic gabapentinoids: myths, paradoxes, and acute effects. Neuroscience 2016; 23: 40-55
- 32. Bauer CS, Rahman W, Tran-Van-Minh A, Lujan R, Dickenson AH, Dolphin AC. The anti-allodynic α2δ ligand pregabalin inhibits the trafficking of the calcium channel α2δ-1 subunit to presynaptic terminals in vivo. Biochem Soc Trans 2010; 38: 525–8
- Tran-Van-Minh A, Dolphin AC. The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2. J Neurosci 2010; 30: 12856–67
- 34. Takahashi S, Kubo K, Waguri S, et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Sci 2012; 125: 4049–57
- 35. Yang F, Whang J, Derry WT, Vardeh D, Scholz J. Analgesic treatment with pregabalin does not prevent persistent pain after peripheral nerve injury in the rat. Pain 2014; 155: 356–66
- **36.** Mich PM, Horne WA. Alternative splicing of the Ca<sup>2+</sup> channel beta4 subunit confers specificity for gabapentin inhibition of Cav2.1 trafficking. Mol Pharmacol 2008; **74**: 904–12
- 37. Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 2012; 486: 122–5
- 38. Matsuzawa R, Fujiwara T, Nemoto K, et al. Presynaptic inhibitory actions of pregabalin on excitatory transmission in superficial dorsal horn of mouse spinal cord: further characterization of presynaptic mechanisms. *Neurosci Lett* 2014; 558: 186–91
- **39.** Zhou C, Luo ZD. Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein. *Eur J Pain* 2014; **18**: 649–58
- 40. Crawford DC, Jiang X, Taylor A, Mennerick S. Astrocytederived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci 2012; 32: 13100–10
- Eroglu Ç, Allen NJ, Susman MW, et al. The gabapentin receptor α2δ-1 is the neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. *Cell* 2009; **139**: 380–92
- 42. Park J, Yu YP, Zhou C-Y, et al. Central mechanisms mediating thrombospondin-4-induced pain states. J Biol Chem 2016; 291: 13335–48
- Pan B, Guo Y, Wu H-E, et al. Thrombospondin-4 divergently regulates voltage-gated Ca<sup>2+</sup> channel subtypes in sensory neurons after nerve injury. *Pain* 2016; 157: 2068–80
- 44. Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res 2004; 1019: 68–76

- Donovan-Rodriguez T, Urch CE, Dickenson AH. Evidence of a role for descending serotonergic facilitation in a rat model of cancer-induced bone pain. Neurosci Lett 2006; 393: 237–42
- **46.** Asante CO, Dickenson AH. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat. *Neurosci Lett* 2010; **484**: 108–12
- **47.** Rahman W, Bauer CS, Bannister K, Vonsy JL, Dolphin AC, Dickenson AH. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain. *Mol Pain* 2009; **5**: 1–17
- **48.** Suzuki R, Rahman W, Rygh LJ, Webber M, Hunt SP, Dickenson AH. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. *Pain* 2005; **117**: 292–303
- 49. Takeuchi Y, Takasu K, Ono H, Tanabe M. Pregabalin, S-(+)-3-isobutylgaba, activates the descending noradrenergic system to alleviate neuropathic pain in the mouse partial sciatic nerve ligation model. *Neuropharmacology* 2007; 53: 842–53
- 50. Suto T, Severino AL, Eisenach JC, Hayashida K. Gabapentin increases extracellular glutamatergic level in the locus coeruleus via astroglial glutamate transporter-dependent mechanisms. Neuropharmacology 2014; 81: 95–100
- 51. Kimura M, Eisenach JC, Hayashida K. Gabapentin loses efficacy over time after nerve injury in rats: role of glutamate transporter-1 in the locus coeruleus. *Pain* 2016; 157: 2024–32
- 52. Lin HC, Huang YH, Chao THH, Lin WY, Sun WZ, Yen CT. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain 2014; 10: 63
- Bannister K, Qu C, Navratilova E, et al. Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain. Pain 2017; 158: 2386–95
- Centelles JJ. Glutamate transporters: the regulatory proteins for excitatory/excitotoxic glutamate in brain. J Transl Sci 2016; 2
- **55.** Napier IA, Mohammadi SA, Christie MJ. Glutamate transporter dysfunction associated with nerve injury-induced pain in mice. *J Neurophysiol* 2012; **107**: 649–57
- 56. Queen SA, Kesslak JP, Bridges RJ. Regional distribution of sodium-dependent excitatory amino acid transporters in rat spinal cord. J Spinal Cord Med 2007; 30: 263–71
- 57. Holmseth S, Dehnes Y, Huang YH, et al. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 2012; 32: 6000–13
- 58. Ryu JH, Lee PB, Kim JH, Do SH, Kim CS. Effects of pregabalin on the activity of glutamate transporter type 3. Br J Anaesth 2012; 109: 234–9
- 59. Gil YS, Kim JH, Kim CH, Han JI, Zuo Z, Baik HJ. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes. Eur J Pharmacol 2015; 762: 112–7
- **60.** Baba H, Petrenko AB, Fujiwara N. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: an intracellular calcium-imaging study in spinal cord slices from adult rats. *Brain Res* 2016; **1648**: 445–58
- **61.** Alles SRA, Bandet MV, Eppler K, et al. Acute anti-allodynic action of gabapentin in dorsal horn and primary

somatosensory cortex: correlation of behavioural and physiological data. *Neuropharmacology* 2017; **113**: 576–90

- 62. Leung L, Cahill CM. TNF- $\alpha$  and neuropathic pain—a review. J Neuroinflammation 2010; 7: 27
- **63.** Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. *Mediators Inflamm* 2014; **2014**. 861231
- 64. Kremer M, Yalcin I, Nexon L, et al. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain 2016; 12. 1744806916633477
- **65.** Bao YH, Zhou QH, Chen R, et al. Gabapentin enhances the morphine anti-nociceptive effect in neuropathic pain via the interleukin-10-heme oxygenase-1 signalling pathway in rats. J Mol Neurosci 2014; **54**: 137–46
- 66. Lee BS, Jun IG, Kim SH, Park JY. Intrathecal gabapentin increases interleukin-10 expression and inhibits proinflammatory cytokine in a rat model of neuropathic pain. J Korean Med Sci 2013; 28: 308–14
- **67.** Xu Q, Yaksh TL. A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. *Curr* Opin Anesthesiol 2011; **24**: 400–7
- 68. Sun D, Yang J, Wang D, et al. Gabapentin regulates expression of FGF2 and FGFR1 in dorsal root ganglia via microRNA-15a in the arthritis rat model. J Orthop Sci 2017; 22: 1112–9
- **69.** Anfuso CD, Olivieri M, Fidilio A, et al. Gabapentin attenuates ocular inflammation: in vitro and in vivo studies. Front Pharmacol 2017; **8**: 173
- 70. Park HJ, Sandor K, McQueen J, et al. The effect of gabapentin and ketorolac on allodynia and conditioned place preference in antibody-induced inflammation. *Eur J Pain* 2016; 20: 917–25
- 71. Zhang Y, Guo Z, Li M, et al. Gabapentin effects on PKC-ERK1/2 signaling in the spinal Cord of rats with formalin-induced visceral inflammatory pain. PLoS One 2015; 10. e0141142
- **72.** Hummig W, Kopruszinski C, Chichorro J. Pregabalin reduces acute inflammatory and persistent pain associated with nerve injury and cancer in rat models of orofacial pain. J Oral Facial Pain Headache 2014; **24**: 320–9
- 73. Dias JM, de Brito TV, de Aguiar Magalhães D, et al. Gabapentin, a synthetic analogue of gamma aminobutyric acid, reverses systemic acute inflammation and oxidative stress in mice. Inflammation 2014; 37: 1826–36
- 74. Yang J-L, Xu B, Li S-S, et al. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats. Mol Brain 2012; 5: 18
- Abdel-Salam OM, Sleem AA. Study of the analgesic, antiinflammatory, and gastric effects of gabapentin. Drug Discov Ther 2009; 3: 18–26
- 76. Vonsy JL, Ghandehari J, Dickenson AH. Differential analgesic effects of morphine and gabapentin on behavioural measures of pain and disability in a model of osteoarthritis pain in rats. Eur J Pain 2009; 13: 786–93
- 77. Zhang WS, Xu H, Xu B, Sun S, Deng XM, Zhang YQ. Antihyperalgesic effect of systemic dexmedetomidine and gabapentin in a rat model of monoarthritis. Brain Res 2009; 1264: 57–76
- 78. Fehrenbacher JC, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain 2003; 105: 133–41

- **79.** Liu Z, Xu R, Yang K. Inflammation unmasks gabapentin's effect on A delta-fiber evoked excitatory postsynaptic currents in substantia gelatinosa neurons of rat spinal cord. *Chin Med J (Engl)* 2003; **116**: 883–7
- **80.** Hurley RW, Chatterjea D, Rose Feng M, Taylor CP, Hammond DL. Gabapentin and pregabalin can interact synergistically with naproxen to produce antihyperalgesia. *Anesthesiology* 2002; **97**: 1263–73
- **81.** Patel S, Naeem S, Kesingland A, et al. The effects of GABAB agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. *Pain* 2001; **90**: 217–26
- 82. Lu Y, Westlund KN. Gabapentin attenuates nociceptive behaviors in an acute arthritis model in rats. J Pharmacol Exp Ther 1999; 290: 214–9
- Stanfa LC, Singh L, Williams RG, Dickenson AH. Gabapentin, ineffective in normal rats, markedly reduces Cfibre evoked responses after inflammation. *Neuroreport* 1997; 8: 587–90
- 84. Câmara CC, Ramos HF, da Silva AP, et al. Oral gabapentin treatment accentuates nerve and peripheral inflammatory responses following experimental nerve constriction in Wistar rats. Neurosci Lett 2013; 556: 93–8
- 85. You HJ, Lei J, Arendt-Nielsen L. Selective inhibitory effects of pregabalin on peripheral C but not A-delta fibers mediated nociception in intact and spinalized rats. Neuroscience 2009; 164: 1845–53
- **86.** Curros-Criado MM, Herrero JF. The antinociceptive effect of systemic gabapentin is related to the type of sensitization-induced hyperalgesia. *J Neuroinflammation* 2007; **4**: 1–8
- 87. Matson DJ, Broom DC, Carson SR, Baldassari J, Kehne J, Cortright DN. Inflammation-induced reduction of spontaneous activity by adjuvant: a novel model to study the effect of analgesics in rats. J Pharmacol Exp Ther 2007; 320: 194–201
- Brennan TJ. Pathophysiology of postoperative pain. Pain 2011; 152: S33–40
- 89. Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain—from mechanisms to treatment. Pain Rep 2017; 2. e588
- 90. Papathanasiou T, Juul RV, Heegaard A-M, Kreilgaard M, Lund TM. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain. Eur J Pharm Sci 2016; 82: 97–105
- **91.** Narai Y, Imamachi N, Saito Y. Gabapentin augments the antihyperalgesic effects of diclofenac sodium through spinal action in a rat postoperative pain model. *Anesth Analg* 2012; **115**: 189–93
- 92. McKeon GP, Pacharinsak C, Long CT, et al. Analgesic effects of tramadol, tramadol-gabapentin, and buprenorphine in an incisional model of pain in rats (Rattus norvegicus). J Am Assoc Lab Anim Sci 2011; 50: 192-7
- **93.** Flatters SJL. Effect of analgesic standards on persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Neurosci Lett 2010; **477**: 43–7
- **94.** Hayashida K-I, DeGoes S, Curry R, Eisenach JC. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. *Anesthesiology* 2007; **106**: 557–62
- **95.** Whiteside GT, Harrison J, Boulet J, et al. Pharmacological characterisation of a rat model of incisional pain. Br J Pharmacol 2004; **141**: 85–91

- 96. Cheng JK, Pan HL, Eisenach JC. Antiallodynic effect of intrathecal gabapentin and its interaction with clonidine in a rat model of postoperative pain. Anesthesiology 2000; 92: 1126–31
- 97. Field MJ, Holloman EF, McCleary S, Hughes J, Singh L. Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997; 282: 1242–6
- 98. Buvanendran A, Kroin JS, Kari MR, Tuman KJ. A new knee surgery model in rats to evaluate functional measures of postoperative pain. Anesth Analg 2008; 107: 300-8
- **99.** Okkerse P, van Amerongen G, de Kam ML, et al. The use of a battery of pain models to detect analgesic properties of compounds: a two-part four-way crossover study. Br J Clin Pharmacol 2017; **83**: 976–90
- 100. Gustorff B, Hoechtl K, Sycha T, Felouzis E, Lehr S, Kress HG. The effects of remifentanil and gabapentin on hyperalgesia in a new extended inflammatory skin pain model in healthy volunteers. Anesth Analg 2004; 98: 401–7
- 101. Werner MU, Perkins FM, Holte K, Pedersen JL, Kehlet H. Effects of gabapentin in acute inflammatory pain in humans. Reg Anesth Pain Med 2001; 26: 322–8
- 102. Dirks J, Petersen KL, Rowbotham MC, Dahl JB. Gabapentin suppresses cutaneous hyperalgesia following heat-capsaicin sensitization. Anesthesiology 2002; 97: 102-7
- 103. Gottrup H, Juhl G, Kristensen AD, et al. Chronic oral gabapentin reduces elements of central sensitization in human experimental hyperalgesia. Anesthesiology 2004; 101: 1400–8
- 104. Wallace MS, Schulteis G. Effect of chronic oral gabapentin on capsaicin-induced pain and hyperalgesia. Clin J Pain 2008; 24: 544–9
- **105.** Wang H, Bolognese J, Calder N, et al. Effect of morphine and pregabalin compared with diphenhydramine hydrochloride and placebo on hyperalgesia and allodynia induced by intradermal capsaicin in healthy male subjects. J Pain 2008; **9**: 1088–95
- 106. Iannetti GD, Zambreanu L, Wise RG, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 2005; 102: 18195–200
- 107. Arendt-Nielsen L, Frokjar J, Staahl C, et al. Effects of gabapentin on experimental somatic pain and temporal summation. Reg Anesth Pain Med 2007; 32: 382–8
- 108. Boyle Y, Fernando D, Kurz H, Miller SR, Zucchetto M, Storey J. The effect of a combination of gabapentin and donepezil in an experimental pain model in healthy volunteers: results of a randomized controlled trial. Pain 2014; 155: 2510–6
- 109. Chizh BA, Göhring M, Tröster A, Quartey GK, Schmelz M, Koppert W. Effects of oral pregabalin and aprepitant on pain and central sensitization in the electrical hyperalgesia model in human volunteers. Br J Anaesth 2007; 98: 246–54
- 110. Enggaard TP, Mikkelsen SS, Zwisler ST, Klitgaard NA, Sindrup SH. The effects of gabapentin in human experimental pain models. Scand J Pain 2010; 1: 143–8
- 111. Segerdahl M. Multiple dose gabapentin attenuates cutaneous pain and central sensitisation but not muscle pain in healthy volunteers. Pain 2006; 125: 158–64

- 112. Eckhardt K, Ammon S, Hofmann U, Riebe A, Gugeler N, Mikus G. Gabapentin enhances the analgesic effect of morphine in healthy volunteers. Anesth Analg 2000; 91: 185–91
- 113. Olesen SS, Graversen C, Bouwense SAW, van Goor H, Wilder-Smith OHG, Drewes AM. Quantitative sensory testing predicts pregabalin efficacy in painful chronic pancreatitis. PLoS One 2013; 8. e57963
- 114. Myhre M, Diep LM, Stubhaug A. Pregabalin has analgesic, ventilatory, and cognitive effects in combination with remifentanil. Anesthesiology 2016; 124: 141–9
- 115. Gustorff B, Sycha T, Lieba-Samal D, Rolke R, Treede R-D, Magerl W. The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization. *Pain* 2013; 154: 586–97
- **116.** Pedersen JL. Inflammatory pain in experimental burns in man. Dan Med Bull 2000; **47**: 168–95
- 117. Reddy KSK, Naidu MUR, Rani PU, Rao TRK. Human experimental pain models: a review of standardized methods in drug development. J Res Med Sci 2012; 17: 587–95
- 118. Viguier F, Michot B, Hamon M, Bourgoin S. Multiple roles of serotonin in pain control mechanisms—implications of 5-HT7 and other 5-HT receptor types. Eur J Pharmacol 2013; 716: 8–16
- 119. Rotbøll Nielsen P, Rudin Å, Werner MU. Prediction of postoperative pain. Curr Anaesth Crit Care 2007; 18: 157–65
- **120.** Wensel TM, Powe KW, Cates ME. Pregabalin for the treatment of generalized anxiety disorder. Ann Pharmacother 2012; **46**: 424–9
- 121. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci 2009; 10: 283–94
- **122.** Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013; **110**: 3507–12
- 123. Zhang J, Ho KY, Wang Y. Efficacy of pregabalin in acute postoperative pain: a meta-analysis. Br J Anaesth 2011; 106: 454–62
- **124.** Hurley RW, Cohen SP, Williams KA, Rowlingson AJ, Wu CL. The analgesic effects of perioperative gabapentin on postoperative pain: a meta-analysis. *Reg Anesth Pain Med* 2006; **31**: 237–47
- 125. Peng PW, Wijeysundera DN, Li CC. Use of gabapentin for perioperative pain control—a meta-analysis. Pain Res Manag 2007; 12: 85–92
- 126. Mishriky BM, Waldron NH, Habib AS. Impact of pregabalin on acute and persistent postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2014; 114: 10–31
- 127. Doleman B, Heinink TP, Read DJ, Faleiro RJ, Lund JN, Williams JP. A systematic review and meta-regression analysis of prophylactic gabapentin for postoperative pain. Anaesthesia 2015; **70**: 1186–204
- **128.** Wang RR, Lou GD, Yu J, et al. Oral administration of pregabalin in rats before or after nerve injury partially prevents spontaneous neuropathic pain and long outlasts the treatment period. *Pharmacology* 2016; **97**: 251–8
- 129. Perucca E, Berlowitz D, Birnbaum A, et al. Pharmacological and clinical aspects of antiepileptic drug use in the elderly. Epilepsy Res 68: 49–63.

- **130.** Eipe N, Penning J, Yazdi F, et al. Perioperative use of pregabalin for acute pain—a systematic review and meta-analysis. Pain 2015; **156**: 1284–300
- **131.** Witt CE, Bulger EM. Comprehensive approach to the management of the patient with multiple rib fractures: a review and introduction of a bundled rib fracture management protocol. *Trauma Surg Acute Care Open* 2017; **2**. e0000064
- 132. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14: 162–73
- **133.** Martinez V, Pichard X, Fletcher D. Perioperative pregabalin administration does not prevent chronic postoperative pain. *Pain* 2017; **158**: 775–83
- **134.** Reddi D. Preventing chronic postoperative pain. *Anaesthesia* 2016; **71**: 64–71
- 135. Patel R, Dickenson AH. Mechanisms of the gabapentinoids and  $\alpha 2\delta$ -1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect 2016; **4**. e00205
- **136.** Lana B, Schlick B, Martin S, et al. Differential upregulation in DRG neurons of an  $\alpha 2\delta$ -1 splice variant with a lower affinity for gabapentin after peripheral sensory nerve injury. Pain 2014; **155**: 522–33
- 137. Fimer I, Klein T, Magerl W, Treede R-D, Zahn PK, Pogatzki-Zahn EM. Modality-specific somatosensory changes in a human surrogate model of postoperative pain. Anesthesiology 2011; 115: 387–97

#### **Appendix A**

#### Search strategy

NICE Healthcare Databases search

Mechanisms of action

MEDLINE: 2214 records

((gabapentin).ti,ab OR exp PREGABALIN/ OR (Gabapentinoids).ti,ab) AND (exp 'GANGLIA, SPINAL'/ OR exp 'CALCIUM CHANNELS'/ OR exp 'SPINAL CORD DORSAL HORN'/ OR exp SEROTONIN/ OR exp 'GLUTAMIC ACID'/ OR (alpha 2-delta).ti,ab OR exp \*BRAIN/ OR (thrombospondin).ti,ab)

EMBASE: 585 records

(exp GABAPENTIN/ OR exp PREGABALIN/ OR (gabapentinoids).ti,ab) AND (exp 'CALCIUM CHANNEL'/ OR exp 'SPINAL GANGLION'/ OR exp 'SPINAL CORD DORSAL HORN'/ OR exp SEROTONIN/ OR exp 'GLUTAMIC ACID'/ OR (alpha 2delta).ti,ab OR exp \*BRAIN/ OR (thrombospondin).ti,ab))

Additional records identified from other sources: 7

Records screened after duplicates removed: 2751; records excluded: 2654

Full text articles assessed: 97

Articles included: 41

Articles excluded: 56 (limited exploration of themes, repetition of theme)

Articles described: 16 (based on subjective evaluation of extent to which theme has been explored)

#### Inflammatory pain

MEDLINE: 373 results

(exp PREGABALIN/ OR (gabapentinoids).ti,ab OR (gabapentin).ti,ab) AND (inflamm\*).ti,ab

EMBASE: 1136 results

(exp GABAPENTIN/ OR exp PREGABALIN/ OR (gabapentinoids).ti,ab) AND exp \*INFLAMMATION/

Additional records identified from other sources: 4

Records screened after duplicates removed: 1482; records excluded: 1458

Full text articles assessed and included: 20

#### Postoperative pain models

MEDLINE: 428 results

'((gabapentin).ti,ab OR exp PREGABALIN/ OR (Gabapentinoids).ti,ab) AND exp 'PAIN, POSTOPERATIVE'/'

EMBASE: 1603 results

(exp GABAPENTIN/ OR exp PREGABALIN/ OR (gabapentinoids).ti,ab) AND exp 'POSTOPERATIVE PAIN'/

Additional records identified from other sources: 1

Records screened after duplicates removed: 1980; records excluded: 1971

Full text articles assessed and included: 9

#### Human pain models

MEDLINE: 2058 results

((gabapentin).ti,ab OR exp PREGABALIN/ OR (Gabapentinoids).ti,ab) AND (exp PAIN/ OR (experimental OR exp 'DOU-BLE-BLIND METHOD'/)) AND exp HUMANS/

EMBASE: 606 results

(exp GABAPENTIN/ OR exp PREGABALIN/ OR (gabapentinoids).ti,ab) AND (exp PAIN/ AND \*HUMAN/)

Additional records identified from other sources: 5

Records screened after duplicates removed: 2541; records excluded: 2525

Full text articles assessed and included: 16

Handling editor: J.G. Hardman