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5. SUMMARY

The ECS is a beautiful and fascinating neuromodulatory system that
allows for moment-to-moment synapse-specific regulation of neurotrans-
mission. The basic building blocks of the proteins involved in endo-
cannabinoid synthesis and degradation together with the receptor targets
are utilized throughout the brain, but in very diverse ways depending
upon their relative locations and in relationship to other ongoing signal-
ing events. The ECS modulates the functions of the major excitatory and
inhibitory neurotransmitters, serving as a break on their release (described
above). CB1R can also inhibit the release of biogenic amines (Haring,
Guggenhuber, & Lutz, 2012) and neuropeptides (Hirasawa et al., 2004),
thereby modulating the modulators! The ECS is likely the mechanism by
which steroid hormones such as glucocorticoids (Di, Malcher-Lopes,
Halmos, & Tasker, 2003) and estrogen (Huang & Woolley, 2012) alter syn-
aptic plasticity. Recent evidence that a cycle of 2-AG! AA is tightly reg-
ulated by MAGL activity (discussed above) adds another layer of complexity
to the role of 2-AG homeostasis to brain function. It is not surprising that
increasing evidence indicates that dysregulation of ECS contributes to many
forms of brain dysfunction, including psychopathology, developmental
problems and plays a role in neurodegenerative diseases as well.
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and functionality. Adolescent neurodevelopment consists of maturational
processes that are both time dependent and region specific. This provides
the adolescent brain with remarkable plasticity yet may also confer vulner-
ability to developing mental illness as a result of biological, environmental,
and genetic disruptions that exacerbate transient imbalances occurring
between these region- and time-dependent maturational processes (Lee,
Heimer, et al., 2014). Given the ability of the eCB system to exert regulation
over HPA axis activity and neurodevelopment, it is reasonable to propose
that this system plays an important role in adolescent vulnerability to mental
illness. In this chapter, we presented evidence demonstrating how the eCB
system exerts tight regulation over adult HPA axis stress responsivity, that
corticolimbic eCB signaling changes dynamically during the adolescent
period, that adolescent stress exposure can alter eCB signaling both in the
immediate and long term and similarly, that adolescent cannabinoid expo-
sure generally results in behavioral and neural consequences reminiscent of
stress exposure. However, there is a significant gap in the literature investi-
gating the role of normative eCB signaling in the corticolimbic circuit and
regulation of stress responsivity in the adolescent HPA axis. Uncovering the
relationship between eCB mediation of HPA axis functioning and develop-
ment is of special importance in light of current health concerns that ado-
lescents frequently engage in recreational drug use coupled with the
considerable body of literature, indicating that adolescent cannabis con-
sumption can serve as a risk factor for the onset of psychiatric disease
(Hill, 2014; Rubino, Zamberletti, & Parolaro, 2012).

ACKNOWLEDGMENTS
The authors would like to thank the following sources of funding support: TTYL—Canadian
Institutes of Health Research (CIHR; salary); BBG—Operating grants from the Natural
Sciences and Engineering Research Council of Canada and CIHR.

REFERENCES
Aguilera, G., & Rabadan-Diehl, C. (2000). Vasopressinergic regulation of the hypothalamic–

pituitary–adrenal axis: Implications for stress adaptation.Regulatory Peptides, 96, 23–29.
Ahn, K., McKinney, M. K., & Cravatt, B. F. (2008). Enzymatic pathways that regulate endo-

cannabinoid signaling in the nervous system.Chemical Reviews, 108, 1687–1707.
Bambico, F., Nguyen, N., Katz, N., & Gobbi, G. (2010). Chronic exposure to cannabinoids

during adolescence but not during adulthood impairs emotional behaviour and mono-
aminergic neurotransmission.Neurobiology of Disease, 37, 641–655.

Barna, I., Zelena, D., Arszovszki, A. C., & Ledent, C. (2004). The role of endogenous can-
nabinoids in the hypothalamo-pituitary-adrenal axis regulation: In vivo and in vitro stud-
ies in CB1 receptor knockout mice.Life Sciences, 75, 2959–2970.

75Adolescent Endocannabinoid Signaling and the HPA Axis

http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0005
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0005
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0010
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0010
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0015
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0015
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0015
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0020
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0020
http://refhub.elsevier.com/S0074-7742(15)00098-7/rf0020


































































REFERENCES
Abalo, R., Rivera, A. J., Vera, G., Suardiaz, M., & Martin, M. I. (2005). Evaluation of

the effect of age on cannabinoid receptor functionality and expression in guinea-pig
ileum longitudinal muscle-myenteric plexus preparations.Neuroscience Letters, 383,
176–181.

Adami, M., Frati, P., Bertini, S., Kulkarni-Narla, A., Brown, D. R., de Caro, G.,
et al. (2002). Gastric antisecretory role and immunohistochemical localization of canna-
binoid receptors in the rat stomach.British Journal of Pharmacology, 135, 1598–1606.

Akbar, A., Yiangou, Y., Facer, P., Brydon, W. G., Walters, J. R., Anand, P., et al. (2010).
Expression of the TRPV1 receptor differs in quiescent inflammatory bowel disease with
or without abdominal pain.Gut, 59, 767–774.

Aviello, G., Matias, I., Capasso, R., Petrosino, S., Borrelli, F., Orlando, P., et al. (2008).
Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying
in control and overweight mice.Journal of Molecular Medicine (Berlin, Germany), 86,
413–422.

Baldassano, S., Zizzo, M. G., Serio, R., & Mule, F. (2009). Interaction between cannabinoid
CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in
mouse ileum.British Journal of Pharmacology, 158, 243–251.

Bashashati, M., Nasser, Y., Keenan, C. M., Ho, W., Piscitelli, F., Nalli, M., et al. (2015).
Inhibiting endocannabinoid biosynthesis: A novel approach to the treatment of consti-
pation.British Journal of Pharmacology, 172, 3099–3111.

Bashashati, M., Storr, M. A., Nikas, S. P., Wood, J. T., Godlewski, G., Liu, J., et al. (2012).
Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastroin-
testinal motility in mice.British Journal of Pharmacology, 165, 1556–1571.

Basu, S., & Dittel, B. N. (2011). Unraveling the complexities of cannabinoid receptor 2
(CB2) immune regulation in health and disease.Immunologic Research, 51, 26–38.

Bauer, M., Chicca, A., Tamborrini, M., Eisen, D., Lerner, R., Lutz, B., et al. (2012). Iden-
tification and quantification of a new family of peptide endocannabinoids (Pepcans)
showing negative allosteric modulation at CB1 receptors.Journal of Biological Chemistry,
287, 36944–36967.

Benito, C., Tolon, R. M., Pazos, M. R., Nunez, E., Castillo, A. I., & Romero, J. (2008).
Cannabinoid CB2 receptors in human brain inflammation.British Journal of Pharmacology,
153, 277–285.

Bisogno, T., Howell, F., Williams, G., Minassi, A., Cascio, M. G., Ligresti, A., et al. (2003).
Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of
endocannabinoid signaling in the brain.Journal of Cell Biology, 163, 463–468.

Bluett, R. J., Gamble-George, J. C., Hermanson, D. J., Hartley, N. D., Marnett, L. J., &
Patel, S. (2014). Central anandamide deficiency predicts stress-induced anxiety:
Behavioral reversal through endocannabinoid augmentation.Translational Psychiatry,
4, e408.

Boesmans, W., Ameloot, K., van den Abbeel, V., Tack, J., & Vanden Berghe, P. (2009).
Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in net-
works of enteric neurones.Neurogastroenterology and Motility, 21. 958-e977.

Bohorquez, D. V., & Liddle, R. A. (2015). The gut connectome: Making sense of what you
eat.Journal of Clinical Investigation, 125, 888–890.

Boneva, N. B., Kaplamadzhiev, D. B., Sahara, S., Kikuchi, H., Pyko, I. V., Kikuchi, M.,
et al. (2011). Expression of fatty acid-binding proteins in adult hippocampal neurogenic
niche of postischemic monkeys.Hippocampus, 21, 162–171.

Boneva, N. B., Mori, Y., Kaplamadzhiev, D. B., Kikuchi, H., Zhu, H., Kikuchi, M.,
et al. (2010). Differential expression of FABP 3, 5, 7 in infantile and adult monkey cer-
ebellum.Neuroscience Research, 68, 94–102.

Brenowitz, S. D., & Regehr, W. G. (2003). Calcium dependence of retrograde inhibition by
endocannabinoids at synapses onto Purkinje cells.Journal of Neuroscience, 23, 6373–6384.

117Endocannabinoids Regulate the Neural Circuitry of the Gut

http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0005
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0005
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0005
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0005
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0010
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0010
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0010
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0015
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0015
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0015
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0020
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0020
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0020
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0020
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0025
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0025
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0025
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0030
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0030
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0030
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0035
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0035
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0035
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0040
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0040
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0045
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0045
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0045
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0045
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0050
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0050
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0050
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0055
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0055
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0055
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0060
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0060
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0060
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0060
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0065
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0065
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0065
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0070
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0070
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0075
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0075
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0075
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0080
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0080
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0080
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0085
http://refhub.elsevier.com/S0074-7742(15)00133-6/rf0085
























1. ENDOCANNABINOIDS IN ACUTE NAUSEA
1.1 Cannabinoids and Chemotherapy-Induced Nausea

in Humans
Early studies in humans investigating the potential for cannabinoid com-
pounds to reduce nausea were focused on assessing the effects of marihuana
to alleviate CINV (Cotter, 2009). The most well-studied phytocannabinoid

Figure 1 Brain neurocircuitry involved in nausea. The circuits and projections involved
in nausea are shown, including the proposed mechanism by which the endo-
cannabinoid system modulates nausea sensation in the insular cortex. Illness-inducing
(emetic) stimuli activate key components of the gut–brain axis to elicit the sensation of
nausea and vomiting (in emetic-capable species). Toxins or pharmacological treatments
are detected in the gastrointestinal tract and relayed to the brain through vagal affer-
ents terminating in the nucleus of the solitary tract (NTS); alternatively, emetogens
(toxins) also gain access to the CNS through the area postrema (AP). Ultimately, nausea
processing occurs in the visceral insular cortex, which receives visceral information from
the brainstem dorsal vagal complex (DVC; and parabrachial nucleus) and is relayed
through the ventroposterolateral parvicellular (VPLpc) thalamic nucleus before reaching
the posterior granular layer of the IC. Within the VIC, activation of postsynaptic 5-HT3
receptors produces nausea, resulting in biosynthesis of the endocannabinoid,
2-arachidonoylglycerol (2-AG), which reduces its sensation. We hypothesize that the
‘on-demand’ synthesis of 2-AG in the VIC functions to reduce subsequent 5-HT release
via inhibitory presynaptic CB1 signaling, thereby reducing nausea. Coronal sections were
adapted from Paxinos and Watson (2007).
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addition, MJN110 (20 mg/kg, ip) also suppressed contextually elicited con-
ditioned gaping in shrews to a LiCl-paired context.

2.5.3 Dual FAAH and MAGL Inhibition
Dual inhibition of FAAH and MAGL also effectively reduced contextually
elicited gaping in rats. The dual FAAH–MAGL inhibitor JZL195
(10 mg/kg, ip) suppressed contextually elicited gaping and elevated AEA,
PEA, and OEA (Limebeer et al., 2014). This effect was blocked by
SR141716 (but not by AM630) indicating a CB1 receptor-mediated effect.
The suppressive effect of JZL195 on gaping, along with the corresponding
elevation of AEA and 2-AG, was augmented by pretreatment with either
AEA or 2-AG. Furthermore, AEA alone (but not 2-AG) also suppressed
gaping; an effect that was blocked by CB1 receptor antagonism. These results
indicate that JZL195 reduced AN primarily by inhibiting FAAH, but inhi-
bition of MAGL is also indicated. Further work should clarify the interaction
between AEA and 2-AG, through the use of dual FAAH and MAGL inhi-
bition, in the suppression of contextually elicited gaping in rats.

3. CONCLUSIONS

Since the discovery of the endocannabinoid system, our understand-
ing of the mechanism(s) by which cannabinoids reduce nausea and vomiting
has been greatly improved. Indeed, animal models demonstrate that direct
CB1 agonists reduce both acute nausea and AN. As well, since novel FAAH
and MAGL inhibitors have been developed, these pro-endocannabinoid
manipulations have also been shown to possess great potential in the treat-
ment of both acute nausea and AN. Since nausea is much more resistant to
conventional treatments such as 5-HT3 antagonists, manipulations of the
endocannabinoid system have great promise for reducing this distressing side
effect of cancer treatment. Determining the generality of the potential for
endocannabinoid manipulations to reduce all forms of nausea (in response
to various nauseating stimuli) is important in understanding the mechanisms
underlying its sensation and experience.
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in response to cloacal stimulation was blocked by a CB1 receptor antagonist.
These results together suggest that the rapid suppression of sexual behavior
in Taricha by stress and glucocorticoid is mediated by eCB release.
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receptor agonism and targeting of CB2 receptors or other non-CB1 receptor
targets of relevance within the eCB system—all of which have been
reviewed in this manuscript. Given the high incidence of pain disorders
and their comorbidity with stress-related disorders, there is an urgent need
to fully understand the neurobiological mechanisms underpinning sup-
raspinal modulation of pain, SIA, and SIH and develop new, more effective
treatments with more favorable adverse side effect profiles.
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transmitted, and/or can be modified upon exposure to social/environmental
variables is substantial, since not only might they determine changes in func-
tion of CB1 receptor and/or metabolic enzymes but also result in abnormal
eCB-mediated plasticity. Hence, whether this ancient neuromodulator has
represented a means, among the others, by which natural selection has used
information to adaptively regulate physiology and behavior is unknown.

To date, fundamental questions remain unanswered. For example, it is
unclear whether 2-AG is solely responsible for tuning plasticity within
the VTA. Are other eCBs and/or NAEs involved in setting the threshold
for subsequent plasticity? Is there a segregation within VTA cell subpopu-
lations and/or a regional specificity with regard to eCB-mediated plasticity
phenomena? Does tonic eCB signaling only occur at inhibitory synapses,
and if so, what role does sex/gender play? Which regulatory mechanisms
can finely tune the extent of such a tonic signaling, and do these depend
on synaptic states? Is there a bias for a specific eCB to be mobilized upon
prior neuronal activity?

Further investigation assessing whether inter- and intra- individual dif-
ferences of eCB system in distinct molecular components of the
mesocorticolimbic circuit do exist is crucial. In particular, it is fundamental
to unravel the input-specific complexity of eCB metabolic apparatus and of
the wide repertoire of intra- and inter- cellular processes mediated by these
lipids. This knowledge not only might help to open new possibilities to treat
diverse neuropsychiatric disorders but also be alternatively used, in addition
to standard pharmaceutical therapy, to tailor pharmacological treatments and
reduce side effects.
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