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Chronic pain is a complex sensory, cognitive, and emotional experience that imposes

a great personal, psychological, and socioeconomic burden on patients. An estimated

1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat

and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention

has therefore focused on advancing new pain therapies directed at the cannabinoid

system because of its key role in pain modulation. Endocannabinoids and exogenous

cannabinoids exert their actions primarily through Gi/o-protein coupled cannabinoid

CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are

found at key nodes along the pain pathway and their activity gates both the sensory

and affective components of pain. CB2 receptors are typically expressed at low levels

on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is

a marked increase in CB2 expression which modulates the activity of these central

and peripheral immune cells with important consequences for the surrounding pain

circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors

improve pain outcomes in a variety of preclinical pain models. In this mini-review, we

will highlight recent advances in understanding how cannabinoids modulate microglia

function and its implications for cannabinoid-mediated analgesia, focusing on microglia-

neuron interactions within the spinal nociceptive circuitry.
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INTRODUCTION

Acute nociceptive pain functions as an alarm system that protects us from serious injury. Chronic
pain, however, can be likened to a dysfunctional alarm system: it may persist for months and years
after an injury has healed. Silencing this alarm can be difficult, or paradoxically, it may sound
even in the absence of injury. One in five people worldwide are affected by chronic pain, which
is characterized by spontaneous pain, allodynia (a painful experience of a non-painful stimuli), and
hyperalgesia (an increased pain experience to a painful stimuli). Converging evidence indicates
that chronic pain arises because of maladaptive plasticity resulting in sensitization of nociceptive
circuitry within the peripheral and central nervous system (CNS). Overall, these adaptations shift
the balance between excitatory and inhibitory signals in the spinal dorsal horn, a hub for nociceptive
processing, toward excitation (Coull et al., 2005; Knabl et al., 2008; Liu et al., 2008; Bonin and De
Koninck, 2014; Hildebrand et al., 2016). This shift can result in aberrant amplification of sensory
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input and output from the spinal cord, which gives rise to
exaggerated pain responses that underlie chronic pain. The
increase in nociceptive drive is causally linked to a constellation
of cellular andmolecular processes that alter neuronal excitability
and fundamentally change activity of glia, such as microglia and
astrocytes (Tsuda et al., 2005; Zhuang et al., 2005; Hains and
Waxman, 2006; Sorge et al., 2015; Nam et al., 2016; Kohro et al.,
2020; reviewed in Tsuda, 2016; Ji et al., 2019). In this mini-
review, we will focus on microglia, immune cells that reside
within the CNS and account for 5–20% of the total cell population
(Lawson et al., 1990; Perry, 1998). Microglia are exquisitely
sensitive to perturbations of the nervous system, responding to
injury, disease, or infection. A feature of this microglia response
is increased reactivity, which is associated with a plethora of
changes in receptors, intracellular proteins, and transcription
factors that a causally implicated in the development and
maintenance of chronic pain (Chen et al., 2018b; Inoue and
Tsuda, 2018).

Effective management of chronic pain remains one of the
most difficult clinical challenges, as it is often refractory to
conventional therapies like opioids (Dellemijn, 1999; Kalso et al.,
2004; O’connor and Dworkin, 2009). To manage pain, some
people turn to cannabis and cannabinoid products, making pain
the most common medical reason for cannabis use (Mucke
et al., 2018; Voelker, 2018; Boehnke et al., 2019; Solomon and
Solomon, 2019). The efficacy of cannabis in treating chronic pain
is contentious and often stigmatized. Indeed, the International
Association for the Study of Pain (IASP) does not currently
endorse the use of cannabis or cannabinoids for pain relief
purposes (IASP Presidential Task Force on Cannabis, 2021).
However, there is evidence suggesting cannabis may provide
some relief from cancer pain and neuropathic pain (Andreae
et al., 2015; Whiting et al., 2015; Mucke et al., 2018; Wang et al.,
2020). Most medical cannabis products are phytocannabinoids,
which are derived from plants of the cannabis genus. While
over 60 active compounds can be found in cannabis plants,
phytocannabinoids (CBs) like 1-9-tetrahydrocannabinol (THC)
and cannabidiol (CBD) are the most well studied. These
compounds typically act upon the endogenous cannabinoid
receptors type 1 (CB1R) and type 2 (CB2R). CB1Rs are found at
key nodes along the pain pathway, and their activity modulates
both the sensory and affective components of pain, while CB2Rs
are expressed (albeit typically at low levels) on immune cells
(Pertwee, 2001; Guindon and Hohmann, 2009). Both the CB1R
and CB2R are Gi/o-coupled and inhibitory, with activation
resulting in the inhibition of calcium channels through G protein
signaling, activation of potassium channels, and the inhibition
of adenylate cyclase activity (Howlett et al., 2002; Guindon
and Hohmann, 2009). Among the most well characterized
endogenous CB receptor ligands are anandamide (AEA) and
2-arachidonoyl-glycerol (2-AG). AEA is a high-affinity, partial
agonist of the CB1R and CB2R (reviewed in Stella, 2010; Biringer,
2021). 2-AG has moderate affinity for both CB receptors as a full
agonist. The endogenous cannabinoid system also encompasses
their synthesizing enzymes, N-acyl-phosphatidylethanolamine-
phospholipase (NAPE-PLD) and diacylglycerol lipase (DAGL),
and metabolic enzymes, fatty acid amide hydrolase (FAAH)

and monoacylglycerol lipase (MAGL) (Lu and Mackie, 2021).
Endocannabinoids regulate diverse brain functions like memory,
feeding, reward, neuroprotection, neural development, sleep,
and pain (Lu and Mackie, 2021). Notably, activation of CB1R
and CB2R in the spinal dorsal horn modulates nociceptive
transmission (Finn et al., 2021; Soliman et al., 2021). CB1R
expression has been detected on spinal primary and secondary
afferents, and on astrocytes (Hohmann et al., 1998, 1999). By
contrast, CB2Rs are mostly expressed on cells of the immune
system and upregulated in inflammatory or disease states,
including chronic pain (Zhang et al., 2003; Walczak et al.,
2006; Romero-Sandoval and Eisenach, 2007; Racz et al., 2008b;
Brownjohn and Ashton, 2012; Naguib et al., 2012; Shiue et al.,
2017). Both CB1R and CB2R agonists have been shown to
attenuate pain behaviors in a variety of animal pain models (for a
comprehensive review of preclinical studies, see Finn et al., 2021;
Soliman et al., 2021). In addition, CB2Rs are immunomodulatory
and their activation decreases neuroinflammatory responses in a
microglia-dependent manner (Lu and Mackie, 2021), making it a
potential target for refractory pain.

SPINAL MICROGLIA: CONTRIBUTORS TO
CHRONIC PAIN

Microglia are resident immune cells of the CNS with diverse
functions, including the maintenance and pruning of synapses,
providing trophic support of neurons, glutamate uptake, and
phagocytosis of extracellular debris (Latremoliere and Woolf,
2009; Burke et al., 2016; Harte et al., 2018). Under homeostatic
conditions, microglia possess a highly ramified morphology
characterized by a small soma and long branching processes
that survey the microenvironment (Nimmerjahn et al., 2005).
In response to injury or disease of the CNS, microglia shift
toward a reactive phenotype that releases proinflammatory
cytokines, chemokines, and other immune mediators (Inoue and
Tsuda, 2018). This microglia-mediated neuroimmune response
critically contributes to chronic pain (Coull et al., 2005; Hains
and Waxman, 2006; Beggs et al., 2012; Echeverry et al., 2017;
Chen et al., 2018a). Several mechanisms are known to drive
microglia reactivity observed in neuropathic and inflammatory
pain conditions, including the activation of CSF1, P2X4, and
P2X7 receptors (Tsuda et al., 2003; Chessell et al., 2005;
Guan et al., 2016). For example, nerve injury resulting in
mechanical allodynia gives rise to reactive spinal microglia
characterized by the de novo synthesis of P2X4 receptors (Tsuda
et al., 2003; Trang et al., 2009; Mapplebeck et al., 2018). ATP
activation of P2X4R+ reactive microglia evokes the release
of brain derived neurotropic factor (BDNF), which in turn
downregulates the potassium-chloride cotransporter 2 (KCC2) in
spinal laminae I/II neurons (Beggs et al., 2012). The disruption
of chloride homeostasis results in enhanced excitation and
diminished inhibition of spinal nociceptive output, implicated in
the aberrant mechanical pain sensitivity following nerve injury
(Coull et al., 2005; Mapplebeck et al., 2019; Ferrini et al., 2020).
In addition, reactive microglia act through P2X7 receptors,
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the production of nitric oxide (NO), and the release of pro-
inflammatory cytokines like tumor necrosis factor α (TNFα),
interleukin-1β (IL-1β), and cathepsin S (CTSS) (Clark et al., 2007;
Guan et al., 2016; Kobayashi et al., 2016; Kanda et al., 2017;
Dalgarno et al., 2018; Mousseau et al., 2018). Thus, a myriad
of microglia mechanisms involving diverse signaling pathways
and pro-inflammatory cytokines (Figure 1) contribute to central
sensitization underlying the aberrant nociceptive processing
associated with chronic pain (Coull et al., 2005; Kawasaki et al.,
2008).

MICROGLIAL CB2R IN NOCICEPTIVE
SIGNALING

Converging evidence indicates that CB2Rs play an important role
in regulating chronic pain states, although their exact expression
pattern has been a topic of intense debate (Rogers, 2015). Resting
microglia typically express low levels of CB2R (Duffy et al.,
2021), but this expression is markedly increased in inflammatory
and neuropathic pain states (Zhang et al., 2003; Walczak et al.,
2006; Romero-Sandoval and Eisenach, 2007; Racz et al., 2008b;
Brownjohn and Ashton, 2012; Naguib et al., 2012; Shiue et al.,
2017; Grenier et al., 2021). The extent of this CB2R increase
appears to be dependent on the pain model used (Zhang et al.,
2003) and may promote microglia to switch toward a more
anti-inflammatory phenotype (Bie et al., 2018; Komorowska-
Muller and Schmole, 2020). Studies employing CB2R agonists
(e.g., JWH-015, JWH-133, HU-308, or AM1241) report marked
antinociception in a variety of preclinical pain models, including
spinal transection (Romero-Sandoval et al., 2008), postsurgical
pain (Romero-Sandoval and Eisenach, 2007; Grenald et al., 2017),
sciatic nerve injury (Beltramo et al., 2006; Cabanero et al., 2020),
bone cancer pain (Lu et al., 2015; Wang et al., 2020), chronic
constriction injury (Niu et al., 2017), and formalin (Hanus
et al., 1999; Grenald et al., 2017). However, pharmacologically
discerning the specific contribution of CB2Rs has been difficult
because many CB2R agonists also have activity on CB1Rs, which
are more abundantly expressed. Specifically, JWH-015, JWH-
133, and AM1241 are between 26 and 200 times more selective
for CB2R compared to CB1R, but these agonists can still activate
CB1Rs. Thus, conclusions about CB2R involvement in these
chronic pain models have been strengthened by using CB2R
antagonists such as SR144528 or AM630 (Hanus et al., 1999;
Beltramo et al., 2006; Naguib et al., 2008; Romero-Sandoval et al.,
2008; Lu et al., 2015). Furthermore, studies using global CB2R
knockout or myeloid specific CB2R knockout found increased
hyperalgesia and allodynia in sciatic nerve injury models (Racz
et al., 2008a,b; La Porta et al., 2013; Nent et al., 2019), while
overexpression in hematopoietic cells, including microglia, leads
to an overall decrease in pain behaviors (Racz et al., 2008b).
These experiments also demonstrate that CB2R activation restrict
microglia activity to the ipsilateral dorsal horn, as knockout of
the CB2R leads to a spread of hypersensitivity and microgliosis
to the contralateral dorsal horn after sciatic nerve injury or
in arthritis induced by monoiodoacetate (Racz et al., 2008a;
La Porta et al., 2013; Nent et al., 2019). Double knockout of

CB2R and interferon gamma (IFN-γ) blunted the spread of
hypersensitivity, suggesting the effect is mediated by the pro-
inflammatory cytokine (Racz et al., 2008a).

Overall, there is compelling evidence that activation of CB2R
critically modulates microglial immune function by switching
to a more anti-inflammatory state, characterized by limited
migration (Walter et al., 2003; Eljaschewitsch et al., 2006),
phagocytosis (Tolon et al., 2009), increased production of anti-
inflammatory mediators, and decreased production of pro-
inflammatory mediators (Figure 2) (Ehrhart et al., 2005; Ashton
and Glass, 2007; Racz et al., 2008a; Malek et al., 2015; Ma
et al., 2021). Specifically, the activation of CB2R on microglia,
either through the action of endogenous cannabinoid AEA,
or exogenous cannabinoids like THC and CB2R agonists, has
been shown to inhibit the production and release of pro-
inflammatory molecules causally involved in central sensitization
(Eljaschewitsch et al., 2006; Correa et al., 2009). For example,
activation of the CB2R (i) upregulates the AMP kinase pathway
to decrease synthesis of nitric oxide (Giri et al., 2004), (ii)
downregulates the p38 MAP kinase pathway to reduce synthesis
of IL-1β, TNF-α and BDNF (Ji and Suter, 2007; Niu et al.,
2017), and (iii) suppresses ERK-mediated microglia proliferation
(Zhuang et al., 2005; Calvo et al., 2011; Naguib et al., 2012).
Indeed, CB2R activation in a paclitaxel model of chemotherapy-
induced neuropathy leads to decreased IL-6, BDNF, P2X4, and
TNFα receptor expression, and increased release of the anti-
inflammatory cytokine IL-10 (Burgos et al., 2012; Wu et al.,
2019). This cannabinoid-induced release of IL-10 by microglia
is a phenomenon shared with other areas of the CNS (Correa
et al., 2010; Hernangómez et al., 2012). Additionally, activation
of CB2R by exercise-induced AEA release reduces levels of
TNFα and IL-1β in the spinal cord of mice with carrageenan-
induced pain hypersensitivity (dos Santos et al., 2019). In these
studies, the reduced release of pro-inflammatory cytokines and
increased release of anti-inflammatory cytokines by microglia
was associated with reduced pain behavior.

Another contributor to microglial-dependent central
sensitization is the activation of microglial purinergic receptors.
Specifically, P2X4 and P2X7 receptor activation is linked to
development of several chronic pain conditions (Tsuda et al.,
2003; Trang et al., 2006; Ulmann et al., 2008; Beggs et al., 2012;
Sorge et al., 2012; Masuda et al., 2016), albeit in a sexually
dimorphic manner (Sorge et al., 2015; Mapplebeck et al., 2018).
Treatment with a CB2R agonist reduces P2X4 upregulation
in paclitaxel-induced neuropathy (Wu et al., 2019), providing
another mechanism through which CB2R activation can reduce
microglial contributions to pain.

MICROGLIAL PRODUCTION OF AEA AND
2-AG

Microglia not only express CB2Rs and respond to cannabinoid
agonists, but they also possess the cellular machinery to produce
endocannabinoids (Carrier et al., 2004; Walter and Stella, 2004;
Witting et al., 2004). Remarkably, microglia may be the main
endogenous source of endocannabinoids, as they can produce
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FIGURE 1 | Reactive microglia increase production of endocannabinoids and pro-inflammatory mediators. In response to injury, infection, or pathology of the nervous

system, microglia transition toward a more reactive phenotype. This transition is characterized by a morphological change from a small soma with long, ramified

processes (top left, blue) to a more amoeboid shape (top left and center, red). Upon activation, microglia release pro-inflammatory mediators, such as brain-derived

neurotrophic factor (BDNF); adenosine triphosphate (ATP); nitric oxide (NO), interleukin 1β (IL-1β), IL-6, IL-18, cathepsin S, interferon γ (IFNγ), and tumor necrosis

factor α (TNF-α). Reactive microglia also increase production of the endocannabinoids anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) mediated by

N-acyl-phosphatidylethanolamine-phospholipase (NAPE-PLD) and diacylglycerol lipase (DAGL), respectively. Endocannabinoids and exogenous cannabinoids act on

microglia CB2Rs, which are upregulated in chronic pain states, or they may act on CB1Rs or GPR55. This in turn upregulates the release of anti-inflammatory

cytokines like interleukin 4 (IL-4); IL-10; and nerve growth factor (NGF).

up to 20-times more endocannabinoids than other glial cells
or neurons in vitro (Walter et al., 2003). The synthesis of
AEA and 2-AG is dependent on an increase in intracellular
calcium levels (Di Marzo, 2008). In microglia, this increase in
calcium may be achieved by activation of purinergic receptors
such as P2X4 and P2X7 (Witting et al., 2004; Di Marzo, 2008).
Endocannabinoids are highly lipophilic molecules and as a result
they are released soon after production (Alger and Kim, 2011).
AEA binds preferentially to CB1R in vitro, but also displays a low
binding affinity for transient receptor potential cation channel
subfamily Vmember 1 (TRPV1), which is highly expressed in the
nociceptive system (Zygmunt et al., 1999; Storozhuk and Zholos,
2018). 2-AG activates both CB1R and CB2R. Spinal sensory
neurons mainly express CB1R, although there is evidence for

neuronal CB2R expression in chronic pain states (Wotherspoon
et al., 2005). In these neurons, CB1R activation reduces
presynaptic vesicular release into the spinal dorsal horn through
reduction of calcium entry via Cav2.2 and potassium efflux
through KCC2 (Howlett et al., 2004; Zamponi, 2016). In addition,
binding of (endogenous) cannabinoids at the spinal level inhibits
the activity of adenylyl cyclase, preventing the conversion of
ATP to cAMP, thereby reducing nociceptive signaling to higher
order neurons. Moreover, endocannabinoids reduce nociceptive
signaling by directly inhibiting serotonergic receptor 5-HT3
(Fan, 1995; Barann et al., 2002) and reducing sodium influx
(Nicholson et al., 2003), and endogenous cannabinoids such
as AEA may directly block the voltage-gated calcium channel
Cav3.2, located at the presynaptic terminal between primary
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FIGURE 2 | Mechanism of cannabinoid-mediated reduction in dorsal horn hyperexcitability in chronic pain. Left panel: Under homeostatic conditions, microglia are

present in their surveillant phenotype. Cannabinoid receptor 1 (CB1R) is expressed on primary afferent terminals. Mid panel: In chronic pain states, microglia become

active and contribute to dorsal horn neuron hyperexcitability through release of pro-inflammatory mediators that act on nociceptive circuitry to increase output sent to

the brain. This occurs in tandem with other neuronal mechanisms including an increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)

trafficking and phosphorylation, and phosphorylation of N-methyl-D-aspartate receptors (NMDAR), which all contribute to central sensitization. Right panel:

Exogenous and endogenous cannabinoids can bind to CBRs on both neurons and microglia within the dorsal horn. CB1Rs are present predominantly on neurons at

the presynaptic terminal, where their activation decreases vesicular release to reduce glutamate release onto nociceptive projection neurons. CB2Rs are present

predominantly on microglia, where their activation shifts microglia to produce more anti-inflammatory mediators and fewer pro-inflammatory mediators. Together,

activation of both neuronal and microglial CBRs leads to a reduction in nociceptive output.

afferents and the superficial dorsal horn (Chemin et al., 2001;
Barbara et al., 2009; Zamponi, 2016).

Under neuropathic pain conditions, activated spinal microglia
increase their production of AEA and 2-AG significantly by
upregulating NAPE-PLD and DAGL, while degrading enzyme
FAAH is downregulated (see Figure 1) (Eljaschewitsch et al.,
2006; Garcia-Ovejero et al., 2009; Mecha et al., 2015). The
increased release of endogenous cannabinoids in turn drives
CB1R and CB2R activity to dampen nociceptive signaling. In
addition, 2-AG and AEA upregulates the expression of microglial
CB2R, and possibly CB1R, promoting a neuroprotective
phenotype. Although reactive microglia are considered
proinflammatory and exacerbate pain phenotypes, the increase
in endocannabinoid release and upregulation of CB2Rs appear
to be compensatory mechanisms that keep microglia reactivity
in-check and reduce neuronal hyperexcitation.

ROLE OF MICROGLIAL CB1R AND OTHER
CANNABINOID RECEPTORS IN
NOCICEPTIVE SIGNALING

The localization of CB1R vs. CB2R has been a major debate
fueled by limitations in available tools to discern anatomical
and cell specific expression profiles. Early studies relied on
antibody approaches to map CBR expression, but it was
later determined that these antibodies may lack specificity

(Atwood and Mackie, 2010; Baek et al., 2013; Zhang et al., 2019).
To overcome this problem, groups have developed highly
selective agonists and antagonists directed against the CB1R
and CB2R, as well as engineered a variety of transgenic mice
targeting key nodes within the endocannabinoid system (Glass
and Northup, 1999; Griffin et al., 1999). Sequencing studies
from single cells and tissues have also provided important
insights into the localization of CBRs (Carlisle et al., 2002;
Pietr et al., 2009). These technological advances suggest that in
addition to CB2R, microglia may express other CB receptors. For
example, CB1Rs are found throughout the CNS and primarily
on neurons and astrocytes, but low levels of CB1R mRNA
have also been reported in cultured microglia from rodent
brain cortex (Waksman et al., 1999; Stella, 2010). Activation of
these receptors by CP55940 blocks NO release after microglial
activation using endotoxin E. coli lipopolysaccharide (LPS). This
effect was blocked by CB1R antagonist SR141716, suggesting
CB1R expression on microglia (Waksman et al., 1999). However,
the presence of CB1R expression has not been found in human
microglia to date (Stella, 2010; Mecha et al., 2016). Microglia
also appear to express CB receptors that are neither CB1R nor
CB2R. For example, CB receptor agonist levonantradol reduces
LPS-induced expression of proinflammatory cytokines like IL-1α
and TNF-α, an effect that was not reversed by blocking CB1R
and CB2R with selective antagonists SR141716A and SR144528
(Puffenbarger et al., 2000). Similarly, treatment with cannabinoid
agonist WIN55212-2 inhibited TNF-α release in a CB1R and
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CB2R independent manner (Facchinetti et al., 2003). These
results suggest the presence of non-classical CBRs in microglia
that may also be involved in the cannabinoid modulation of
pro-inflammatory protein expression. Indeed, a G-protein
coupled receptor GPR55 expressed on microglia has been shown
to be activated by cannabinoid agonists, HU-210, G405833, and
L-α-lysophosphatidylinositol (LPI) (Oka et al., 2007; Ryberg
et al., 2007; Henstridge et al., 2010; Anavi-Goffer et al., 2012).
Interestingly, treatment with CB1R inverse agonist SR141716 has
produced opposing effects on GPR55 activity, with some studies
reporting an activation (Henstridge et al., 2010) while others
demonstrating an inhibition of the receptor (Lauckner et al.,
2008). Adding further to this puzzle, CBD appears to suppress
GPR55 activity (Whyte et al., 2009). Recently, the fatty acid
ethanolamide palmitoylethanolamide (PEA) has gained interest
because of its anti-inflammatory and antinociceptive properties
(Re et al., 2007; Guida et al., 2017). While it does not bind to
CB1R or CB2R, PEA may directly or indirectly stimulate CB2
and CB1 receptors (Re et al., 2007; Lin et al., 2015; Guida et al.,
2017), and its anti-inflammatory actions are blocked by selective
CB2 antagonist SR144528 (Iannotti et al., 2016). Interestingly,
PEA increases CB2R expression by activating PPAR-alpha
and thereby induces microglial phagocytosis and migration,
providing another feedback loop by which cannabimimetic
compounds engage the endocannabinoid system to modulate
neuropathic pain (Franklin et al., 2003; Guida et al., 2017).
These findings collectively point to the complexity of CBR
pharmacology and open the possibility that microglia activity
may be modulated by a complement of classical and non-classical
CBRs with diverse signaling pathways.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Many studies, using a variety of rodent pain models, point
to the analgesic efficacy of cannabinoids and their impact
on microglia function. There has been particular focus on
CB2Rs, which are markedly increased in spinal microglia in
chronic pain states, and selective activation of these receptors
dampens microglia reactivity and alleviates pain hypersensitivity.

Attention has therefore shifted to developing CB2R directed
therapies to mitigate the psychoactive side-effects associated with
CB1R strategies. However, the effects of CB2R may not be
entirely dictated by its actions on the central nervous system
or solely by its inhibition of microglia reactivity. For instance,
peripheral nerve injury can also induce CB2R expression in rat
sensory neurons and a variety of immune cells (Wotherspoon
et al., 2005). Indeed, there are important hurdles to overcome
to translate CB2R discoveries into realized pain therapies.
Notably, there is the question of whether microglial activation
patterns (and upregulation of CB2R expression) are differentially
impacted in the various chronic pain states. In addition, it will be
important to determine whether the side effects of cannabinoid
use in a clinical setting can be decreased, while maintaining
the analgesic effect. Finally, unraveling the interactions between
CB1R and CB2R expression and function, as well as the interplay
between neurons, microglia, and astrocytes, will be critical
for harnessing the full potential of cannabinoids as a possible
treatment for chronic pain and for discerning whether different
pain modalities will be more responsive than others. Recent
technological advances in vape delivery of phytocannabinoids,
and the availability of human microglia cultures from induced
pluripotent stem cells, provide new tools to study the full
potential of cannabinoids in treating chronic pain and its impact
on microglia.
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