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Abstract: Inflammation and oxidative stress play main roles in neurodegeneration. Interestingly,
different natural compounds may be able to exert neuroprotective actions against inflammation and
oxidative stress, protecting from neuronal cell loss. Among these natural sources, Cannabis sativa
represents a reservoir of compounds exerting beneficial properties, including cannabigerol (CBG),
whose antioxidant properties have already been demonstrated in macrophages. Here, we aimed
to evaluate the ability of CBG to protect NSC-34 motor neurons against the toxicity induced
from the medium of LPS-stimulated RAW 264.7 macrophages. Using MTT assay, we observed
that CBG pre-treatment was able to reduce the loss of cell viability induced by the medium of
LPS-stimulated macrophages in NSC-34 cells. Indeed, CBG pre-treatment inhibited apoptosis,
as shown by the reduction of caspase 3 activation and Bax expression, while Bcl-2 levels increased.
Furthermore, CBG pre-treatment counteracted not only inflammation, as demonstrated by the
reduction of IL-1β, TNF-α, IFN-γ and PPARγ protein levels assessed by immunocytochemistry,
but also oxidative stress in NSC-34 cells treated with the medium of LPS-stimulated RAW 264.7.
Indeed, immunocytochemistry showed that CBG pre-treatment reduced nitrotyrosine, SOD1 and
iNOS protein levels and restored Nrf-2 levels. All together, these results indicated the neuroprotective
effects of CBG, that may be a potential treatment against neuroinflammation and oxidative stress.

Keywords: cannabigerol; Cannabis sativa; neuroinflammation; oxidative stress; phytocannabinoid

1. Introduction

Since ancient times, Cannabis sativa has been known for its medicinal and psychotropic effects.
This plant was discovered to be a reservoir of compounds exerting beneficial properties. Until now
about 120 cannabinoids have been isolated from Cannabis sativa, including ∆9-tetrahydrocannabinol
(∆9-THC), responsible for the psychotropic effect associated with Cannabis consumption, cannabidiol
(CBD) and cannabigerol (CBG) [1]. Other than their psychotropic effects, cannabinoids showed
anti-oxidant and anti-inflammatory properties leading to neuroprotection [2–4].

Among cannabinoids, CBD is one of the most studied, and its protective effects on different
aspects of human health, including in neurodegenerative disorders, are well known [5,6]. On the
contrary, our knowledge about CBG, another non-psychoactive phytocannabinoid, is limited, even if
the few studies published on CBG showed promising results and encourage the deepening of
its effects on human health. We have already demonstrated the CBG antioxidant properties in
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RAW 264.7 macrophages stimulated with hydrogen peroxide (H2O2) [7]. Also anti-inflammatory
and neuroprotective effects were reported for CBG and its derivatives in vitro and in vivo in
neurodegenerative disease models [8–12].

The anti-oxidant and anti-inflammatory actions of CBG are particularly interesting taking into
account that both inflammation and oxidative stress play pivotal roles in neurodegeneration [13–15].
Indeed, both these processes lead to neuronal cell death, then triggering and amplifying
degeneration [16,17]. It is important to consider that the two pathophysiological processes are tightly
correlated and influence each other. It is more relevant for the brain that is particularly sensitive to
oxidative stress [18]. Indeed, inflammatory cells can produce reactive species at the site of inflammation
causing oxidative stress, while reactive oxygen/nitrogen species may initiate an intracellular signaling
cascade that induces the expression of pro-inflammatory genes [15,19]. Given the interdependence
of these processes, a compound able to act against both inflammation and oxidative stress may be a
promising strategy in the treatment of neurodegenerative disorders.

Different cell types participate in the inflammatory process, including macrophages. They act in
order to maintain homeostasis and are directly involved in neuroinflammation, when also circulating
monocytes are recruited from the periphery and enter into the central nervous system, contributing to
the inflammatory process. For these reasons these cells play a pivotal role in central nervous system
diseases, such as autoimmune and neurodegenerative diseases [20].

We have already shown the anti-oxidant capacity of CBG in macrophages and in this work,
we aimed to deepen our knowledge on CBG properties analyzing its beneficial effects in an in vitro
model of neuroinflammation. Specifically, we evaluated whether CBG was able to counteract the
toxicity induced in NSC-34 motor neurons by the cell culture medium of (lipopolysaccharide)
LPS-stimulated RAW 264.7 macrophages, focusing our attention on the evaluation of CBG
anti-inflammatory and anti-oxidant capacities.

2. Results

2.1. CBG Increased Cell Viability in NSC-34 Motor Neurons

In order to evaluate the effects on cell viability of different concentrations of CBG, NSC-34 motor
neurons were incubated 24 h with the following CBG doses: 1, 2.5, 5, 7.5, 10, 12.5, 15 and 20 µM.
We observed with all doses an increase in cell viability compared to the control, even if the difference
was not statistically significant. In particular, for doses from 2.5 to 7.5 µM we observed about a 20%
increase in cell viability compared to the control. For higher concentrations, cell proliferation decreased
even if it was still higher compared to the control (Figure 1A). We included in our analysis also NSC-34
cells incubated with similar concentrations of dimethyl sulfoxide (DMSO) and no cytotoxicity was
observed. On the bases of these results, we decided to perform the other experiments with CBG 7.5 µM,
because with this concentration we observed the highest increase in cell viability, even if not significant.
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Figure 1. (A) Cell viability in NSC-34 motor neurons exposed to different CBG concentrations. All CBG
doses increased cell viability compared to the control (CTR). (B) Cell viability in NSC-34 exposed to the
medium of LPS-stimulated macrophages and in cells pre-treated with CBG. The exposure to the cell
culture medium of LPS-stimulated macrophages reduced cell viability, but the pre-treatment with CBG
partially restored it. The experiments were performed in triplicate. ** p < 0.01 NSC-34 cells treated with
the medium of LPS stimulated macrophages vs. NSC-34 cells pre-treated with CBG and then exposed
to the medium of LPS stimulated macrophages; **** p < 0.0001 NSC-34 treated with the medium of LPS
stimulated macrophages vs. control.

2.2. CBG Counteracted the Loss of Cell Viability and Inhibited Apoptosis in NSC-34 Cells Treated with the
Medium of LPS-Stimulated Macrophages

The incubation with the medium of LPS-stimulated RAW 264.7 macrophages caused a significant
loss of cell viability compared to control cells. Indeed, cell viability decreased of about 50% compared
to control NSC-34 cells. Interestingly, the pre-treatment with CBG 7.5 µM was able to reduce the loss
of cell viability (Figure 1B).

Accordingly, we observed the induction of apoptosis in NSC-34 motor neurons exposed to the
medium of LPS-treated macrophages, as demonstrated by the significant increase of the protein levels
of cleaved caspase 3 and Bax, while Bcl-2 expression was reduced (Figure 2). On the contrary the
pre-treatment with CBG inhibited apoptosis, abolishing the increase in Bax level and reducing cleaved
caspase 3, while Bcl-2 expression increased (Figure 2). Control cells and NSC-34 treated with CBG
alone expressed Bcl-2, but neither Bax nor cleaved caspase 3.
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abolished Bax expression and restored those of Bcl-2. (B) The treatment with the medium of 
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Figure 2. CBG pre-treatment was able to inhibit apoptosis induced by the medium of LPS-stimulated
macrophages in NSC-34 motor neurons. (A) Immunocytochemistry showed that NSC-34 cells treated
with the medium of LPS-stimulated macrophages expressed Bax but not Bcl-2. CBG pre-treatment
abolished Bax expression and restored those of Bcl-2. (B) The treatment with the medium of
LPS-stimulated macrophages induced caspase 3 activation in NSC-34 cells, but CBG pre-treatment
reduced its expression. (C) Quantitative analysis of positive staining. The experiments were repeated
three times. **** p < 0.0001, NSC-34 cells treated with the medium of LPS stimulated macrophages
vs. NSC-34 pre-treated with CBG and then exposed to the medium of LPS stimulated macrophages,
NSC-34 treated with the medium of LPS stimulated macrophages vs. control; Scale bar: 50 µm.

2.3. CBG Reduced the Expression of Pro-Inflammatory Cytokines and Proliferator-Activated
Receptor γ (PPARγ)

The treatment of NSC-34 motor neurons with the medium of LPS-stimulated macrophages
induced inflammation as demonstrated by the increased protein levels of the pro-inflammatory
cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α) and interferon-γ (IFN-γ) evaluated
by immunocytochemical assay (Figure 3). Interestingly, the pre-treatment with CBG was able to reduce
IL-1β, TNF-α and IFN-γ protein levels (Figure 3). Control and CBG treated NSC-34 motor neurons did
not express pro-inflammatory cytokines.
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cells, we observed the expression of PPARγ assessed by immunocytochemistry. However, the 
pre-treatment with CBG reduced PPARγ protein levels (Figure 4). 

Figure 3. CBG pre-treatment was able to reduce the levels of pro-inflammatory cytokines in NSC-34
cells treated with the medium of LPS-stimulated RAW 264.7 macrophages. Immunocytochemistry
with the quantitative analysis of positive staining showed that the treatment with the medium of
LPS-stimulated RAW 264.7 macrophages induced the expression of the pro-inflammatory cytokines
IL-1β, TNF-α and IFN-γ. CBG pre-treatment reduced the protein levels of the pro-inflammatory
cytokines. The immunocytochemical assays were repeated three times. **** p < 0.0001, NSC-34 cells
treated with the medium of LPS stimulated macrophages vs. NSC-34 pre-treated with CBG and then
exposed to the medium of LPS stimulated macrophages, NSC-34 treated with the medium of LPS
stimulated macrophages vs. control; Scale bar: 50 µm.

In addition, in NSC-34 motor neurons treated with the medium of LPS-stimulated RAW 264.7 cells,
we observed the expression of PPARγ assessed by immunocytochemistry. However, the pre-treatment
with CBG reduced PPARγ protein levels (Figure 4).
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Figure 4. CBG pre-treatment was able to reduce the levels of PPARγ in NSC-34 cells treated with the
medium of LPS-stimulated RAW 264.7 macrophages. The treatment with the medium of LPS-stimulated
RAW 264.7 macrophages induced the expression of PPARγ, but CBG pre-treatment reduced its levels.
The immunocytochemical assays were repeated three times. **** p < 0.0001, NSC-34 cells treated with
the medium of LPS stimulated macrophages vs. NSC-34 cells pre-treated with CBG and then exposed to
the medium of LPS stimulated macrophages, NSC-34 cells treated with the medium of LPS stimulated
macrophages vs. control; Scale bar: 50 µm.

2.4. CBG Exerted an Antioxidant Action in NSC-34 Cells Treated with Medium of
LPS-Stimulated Macrophages

As we said above, inflammation and oxidative stress are two correlated processes, indeed the
treatment of NSC-34 motor neurons with the medium of LPS-stimulated RAW 264.7 induced oxidative
stress, as demonstrated by the increase in nitrotyrosine levels evaluated by immunocytochemical
assay. However, CBG pre-treatment was able to reduce nitrotyrosine expression (Figure 5). In addition,
CBG pre-treatment was able to counteract the increase of superoxide dismutase 1 (SOD1) and inducible
nitric oxide synthase (iNOS) expression induced by the treatment with the medium of LPS-stimulated
RAW 264.7, reducing their levels (Figure 5) as evidenced by immunocytochemistry. Control NSC-34
motor neurons and cells treated with CBG alone evidenced the absence of oxidative marker expression.

Controls and NSC-34 motor neurons exposed to CBG expressed nuclear factor erythroid 2–related
factor 2 (Nrf-2). The exposure of NSC-34 motor neurons to the medium of LPS-stimulated macrophages
reduced the levels of Nrf-2 (Figure 6). However, CBG pre-treatment restored Nrf-2 levels.
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Figure 5. CBG pre-treatment was able to reduce the levels of oxidative stress markers nitrotyrosine,
iNOS and SOD1 in NSC-34 cells treated with the medium of LPS-stimulated RAW 264.7 macrophages.
The treatment with the medium of LPS-stimulated RAW 264.7 macrophages induced the expression of
nitrotyrosine, iNOS and SOD1, but CBG pre-treatment reduced their levels. The immunocytochemical
assays were repeated three times. **** p < 0.0001, NSC-34 cells treated with the medium of LPS
stimulated macrophages vs. NSC-34 cells pre-treated with CBG and then exposed to the medium of
LPS stimulated macrophages, NSC-34 cells treated with the medium of LPS stimulated macrophages
vs. control; Scale bar: 50 µm.
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Figure 6. CBG pre-treatment was able to restore Nrf-2 expression in NSC-34 cells treated with the
medium of LPS-stimulated RAW 264.7 macrophages. Control cells and NSC-34 cells treated with
CBG alone expressed Nrf-2. On the contrary, the treatment with the medium of LPS-stimulated
RAW 264.7 macrophages abolished its expression, but CBG pre-treatment restored its levels.
The immunocytochemical assays were repeated three times. **** p < 0.0001, NSC-34 cells treated
with the medium of LPS stimulated macrophages vs. NSC-34 cells pre-treated with CBG and then
exposed to the medium of LPS stimulated macrophages, NSC-34 cells treated with the medium of LPS
stimulated macrophages vs. control; Scale bar: 50 µm.

3. Discussion

Both oxidative stress and inflammation play a main role in neurodegenerative disorders,
including Alzheimer’s disease, Parkinson’s disease and multiple sclerosis [13,14]. Neurodegeneration
represents a major problem for human health, being one of the major causes of mortality and disability.
Given that a cure against neurodegenerative disorders is not available, the research is focused on the
discovery of new compounds able to exert a beneficial action against neurodegeneration, protecting
neuronal cells, and able to stop or delay the progression of this kind of diseases. In particular,
compounds with both anti-inflammatory and anti-oxidative actions may represent a successful
strategy. Different phytochemicals were shown to exert a protective action, and, among these ones,
some cannabinoids extracted from Cannabis sativa were studied for their beneficial properties. Even if
CBD is one of the most studied non-psychoactive phytocannabinoids, CBG was reported to be able to
exert different beneficial actions.

In a previous work we showed that CBG reduced oxidative markers, such as iNOS, nitrotyrosine
and Poly (ADP-ribose) polymerase 1 (PARP-1) and increase cell anti-oxidant defense through the
modulation of SOD1. We reported that CBG anti-oxidant action depends on the CB2 receptors.
Moreover, CBG treatment prevented IκB-α phosphorylation and translocation of the nuclear factor-κB
(NF-κB) and modulated the mitogen-activated protein (MAP) kinases pathway. All these actions
resulted in an inhibition of cell death [7].

Other than the anti-oxidant action, CBG showed neuroprotective effects in experimental
models of Huntington’s disease [12] and beneficial actions in a model of inflammatory bowel
disease [8]. Furthermore, CBG derivatives showed also neuroprotective effects in models of Parkinson’s
disease [11], Huntington’s disease [21] and multiple sclerosis [9,10].

In this work, we evaluated the beneficial properties exerted by CBG in an in vitro model of
neuroinflammation. With this aim, we exposed NSC-34 motor neurons to the cell culture medium of
LPS-stimulated RAW 264.7 macrophages.
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We observed that CBG increased the number of viable cells compared to the control at all
concentrations tested. The highest cell viability was observed at the dose of CBG 7.5 µM, and this
concentration was used for further evaluations.

Incubation with the medium of LPS-stimulated RAW 264.7 macrophages caused a 50% loss
of cell viability in NSC-34 motor neurons. This result is in line with a study reporting that LPS
treatment induced in PC12 rat pheochromocytoma cells, an in vitro model used for neurological and
neurochemical studies, loss of cell viability [22]. Interestingly, CBG was able to decrease neuronal
cell loss. These results are in line with those obtained with a CBG derivative in M-213 neuronal cells
exposed to the conditioned medium of LPS stimulated BV2 cells, in which it was able to reduce M-213
cell death [11]. In addition, the capacity of CBG and of its quinone derivatives to counteract the loss of
cell viability induced by neurotoxic stimuli, was also reported in HT22 mouse hippocampal cells and
Neuro-2a neuroblastoma cells treated with glutamate [9,21].

Accordingly to the loss of cell viability, the medium of LPS-stimulated macrophages induced
apoptosis in NSC-34 motor neurons, as demonstrated by the expression of cleaved caspase 3 and Bax,
while Bcl-2 was not expressed. We evaluated cleaved caspase 3 protein level by western blot analysis
because this assay better evidenced the presence of the cleaved bands. However, CBG pre-treatment
decreased the protein levels of active caspase 3 and Bax was not expressed, instead Bcl-2 levels
increased. Similar results were obtained in RAW 264.7 treated with H2O2, where it was shown that
CBG inhibited apoptosis [7].

The treatment of NSC-34 motor neurons with the medium of LPS-stimulated RAW 264.7 increased
the expression of the pro-inflammatory cytokines as already reported by previous works [23,24] and
in line with the pro-inflammatory role of LPS. CBG pre-treatment was able to reduce inflammation,
decreasing the expression of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ. CBG capacity
to counteract the release of cytokines was reported in other models. Indeed, in an experimental model
of inflammatory bowel disease, CBG reduced IL-1β and IFN-γ levels in inflamed colons [8], while in a
model of Huntington’s disease, CBG was able to decrease the expression of TNF-α and interleukin
6 (IL-6) [12]. Furthermore, CBG derivatives showed anti-inflammatory properties, such as CBG
quinone derivatives that reduced the release of TNF-α and IL-1β in the medium of LPS-treated BV2
cells [11] and the expression of TNF-α and IFN-γ in the spinal cord of a murine model of Experimental
Autoimmune Encephalomyelitis (EAE) [10]. Both CBG and its quinone derivative were able to inhibit
IL-1β, TNF-α and IL-6 in microglia stimulated with LPS [9]. In our experimental condition, we found
that the treatment of NSC-34 motor neurons with the medium of LPS-stimulated RAW 264.7 increased
the expression of PPARγ, but CBG pre-treatment reduced its level. PPARγ plays a crucial role in the
regulation of proliferation, metabolism, differentiation and inflammatory response in the nervous
system. PPARγ agonist can exert anti-inflammatory and anti-oxidant responses [25]. PPARγ was
reported to increase in vivo after LPS injection [26,27]. It is known that some cannabinoids can activate
PPARγ, that mediates at least in part the analgesic, neuroprotective and anti-inflammatory effects [28].
CBG derivatives exerted neuroprotective, pro-survival and anti-inflammatory actions, at least in part,
activating PPARγ [10,11,21].

The incubation with the medium of LPS-stimulated RAW 276.7 increased oxidative stress in
NSC-34 cells as demonstrated by the increase in nitrotyrosine levels, a well-known marker of oxidative
stress involved also in neurodegenerative disease [29,30]. In parallel, we observed increased levels
of iNOS in NSC-34 cells treated with the medium of LPS-stimulated RAW 264.7 macrophages.
NOS enzymes mediate the synthesis of nitric oxide (NO) from the conversion of the amino acid
L-arginine to L-citrulline. NO can interact with superoxide anion to form peroxynitrite, a potent
oxidant agent. It is known that iNOS expression may be induced by both LPS and cytokines [31],
such as in our study. However, the pre-treatment with CBG reduced both nitrotyrosine and
iNOS expression in NSC-34 motor neurons treated with the medium of LPS-stimulated RAW 264.7
macrophages. CBG ability to reduce the levels of these pro-oxidant markers was demonstrated
in vitro in macrophages stimulated with H2O2 [7]. However, also in in vivo models of Huntington’s
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disease and experimental inflammatory bowel disease CBG attenuated the expression of iNOS [8,12].
CBG derivatives were reported to decrease iNOS expression in vivo and in vitro [11]. We observed
increased SOD1 levels in NSC-34 motor neurons treated with the medium of LPS-stimulated RAW
264.7 macrophages. SOD1 protects cells from harmful amounts of superoxide anions, converting two
superoxide anions into oxygen and H2O2. The pre-treatment with CBG reduced SOD1 levels.

Decreased levels of the transcription factor Nrf-2 in NSC-34 motor neurons exposed to the
medium of LPS-stimulated RAW 276.7 macrophages were found. Nrf-2 takes part in the cell
anti-oxidant defense system, being a regulator of the expression of genes involved in the protection
against oxidative stress and inflammation in order to maintain mitochondrial function, cellular
redox, and protein homeostasis [32]. Indeed, among Nrf-2 target genes there are those encoding
for proteins involved in detoxification, antioxidant and anti-inflammatory actions [33]. Interestingly,
we observed that the pre-treatment with CBG restored Nrf-2 nuclear protein expression reducing
oxidative stress. The antioxidant action of CBG is particularly important taking into account that
the brain is particularly sensitive to changes in cellular redox status, making the maintenance of
redox homeostasis in the brain a critical point for the prevention of oxidative stress induced cellular
damage [34,35]. However, Nrf-2 showed also an anti-inflammatory action, given that evidence showed
a mechanism of transcriptional repression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6,
interleukin 8 in microglia, macrophages, monocytes, and astrocytes following Nrf-2 activation [36,37].
Interestingly, in our in vitro model of neuroinflammation we observed in parallel to the increased
Nrf-2 levels, a reduction of pro-inflammatory cytokines.

Our results are in line with previous studies that showed the beneficial effects and
anti-inflammatory activity of CBG and its derivatives. In a model of colitis induced in mice by
intracolonic administration of dinitrobenzene sulphonic acid (DNBS), CBG was able to reduce
colon weight/colon length ratio, myeloperoxidase activity and exerts an anti-inflammatory activity
associated to DNBS administration. In addition, CBG reduced NO production and iNOS protein
expression in macrophages [8]. CBG showed neuroprotective effects in a Huntington’s disease model,
improving motor deficits and reducing microgliosis and inflammatory markers [12]. A derivative of
CBG, the CBG quinone VCE-003 showed neuroprotective actions in experimental models of multiple
sclerosis [9,10]. Indeed, VCE-003 mitigated disease symptoms, decreased microglia reactivity and
modulated the expression of genes involved in multiple sclerosis pathology. In addition, VCE-003
showed anti-inflammatory properties, protecting neurons from excitotoxicity and inhibiting the
release of pro-inflammatory mediators in LPS stimulated microglial cells. Another CBG derivative,
VCE-003.2 prevented neuronal degeneration in an experimental model of Parkinson’s disease, through
an anti-inflammatory action [11].

It would be interesting also to perform gene expression analysis, in order to evaluate the
transcriptional regulation exerted by CBG. However, we only evaluated protein levels, and then
this may be considered a limitation of this study. In addition, it is an in vitro study, then these results
have to be confirmed in vivo in a neuroinflammation model, but also in different neurodegenerative
disorder models.

4. Materials and Methods

4.1. Plant Material

Cannabis sativa var. Carma was obtained from a greenhouse cultivation at CREA-CIN
(Rovigo, Italy), where a voucher specimen is kept. The plant material was harvested in November
2010 and was supplied by Dr. Gianpaolo Grassi (CREA, Rovigo, Italy). The manipulation of the plant
was done in accordance with its legal status (Authorization SP/101 of the “Ministerodella Salute”,
Rome, Italy).
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4.2. General Experimental Procedures

1H NMR spectra were measured using JEOL ECP 300—300 MHz spectrometer (JEOL, Pleasanton,
CA, USA). Chemical shifts were referenced to the residual solvent signal (CDCl3: δH 7.26).
Reverse phase (RP) C-18 (POLYGOPREP60-30 C18) was used to remove waxes and pigments. Silica gel
60 (70–230 mesh) was used for gravity column chromatography. CBG purification was monitored
using TLC on Merck 60 F254 (0.25 mm) plates, that were visualized by UV inspection and/or spraying
with 5% H2SO4 in ethanol and heating.

4.3. Extraction and CBG Isolation

One Kg of dried, powdered flowered aerial parts were heated at 120◦C for 2.5 h in order to
decarboxylate precannabinoids and then extracted exhaustively with acetone (2 × 9 L) using a shaker.
The elimination of the solvent left a black resinous residue (74 g, 7.4%), that was dissolved in MeOH
(30 mL/g of extract) and filtered using RP C-18 silica gel to remove waxes and pigments.

The evaporation of methanol afforded 36 g of a dark-green extract that was further purified by
gravity column chromatography on silica gel (75 g, petroleum ether-EtOAc, 8:2, as eluent) to afford 5 g
of a yellow oil then crystallized with petroleum ether to give 3 g of pure CBG (0.3%). Pure CBG was
stored at −8 ◦C.

4.4. RAW 264.7 Macrophage Cell Culture and LPS Treatment

The murine macrophage RAW 264.7 cell line, obtained from InvivoGen (San Diego, CA, USA),
were cultured in monolayer at 37 ◦C in a moisturized atmosphere of 5% CO2 and 95% air using
DMEM-high glucose medium (Sigma-Aldrich,St. Louis, MO, USA supplemented with 10% fetal
bovine serum (FBS) (Sigma-Aldrich). With the aim to induce inflammation, cells were grown until
70–80% confluence was reached, and after they were incubated with 10 ng/mL LPS from Escherichia
coli 0111:B4 (Sigma-Aldrich) for 24 h [38]. Untreated cells were used as control. At the end of the
treatment the culture medium was collected to carry out experiments with NSC-34 cells.

4.5. NSC-34 Motor Neurons Treatment with the Medium of LPS-Stimulated RAW 264.7

The aim of this work was the evaluation of the anti-inflammatory and anti-oxidative stress
properties of CBG in a neuroinflammation model in vitro. In order to reproduce neuroinflammation
in vitro, we treated the murine motor neuron cell line NSC-34 with the cell culture medium of
LPS-stimulated RAW macrophages. NSC-34 cells, acquired from Cellutions Biosystems Inc., Cedarlane
(Burlington, ON, Canada), were cultured in DMEM-high glucose medium (Sigma-Aldrich) with the
addition of 10% FBS (Sigma-Aldrich), at 37 ◦C in a moisturized atmosphere of 5% CO2 and 95%
air. To examine anti-inflammatory effects of CBG against LPS-induced inflammation, NSC-34 cells
were pre-treated for 24 h with 7.5 µM CBG. At the end of pre-treatment, medium was replaced with
cell-free conditioned medium from LPS-stimulated RAW 264.7 macrophages, and incubated for 24 h.
As controls, NSC-34 cells were incubated with the medium of unstimulated RAW 264.7 macrophages.
Cells treated with vehicle (<0.1% DMSO) or with the CBG alone were also included as controls. Then,
motor neuronal cells were fixed for immunocytochemistry analysis or harvested for western blot.
All the experiments were done in triplicate and repeated for three independent times.

4.6. Thiazolyl Blue Tetrazolium Bromide (MTT) Assay

In order to evaluate the effects of CBG and LPS on cell viability the MTT assay was performed.
To evaluate the effects of CBG, NSC-34 cells were cultured in 96-well plates and incubated for 24 h
with different CBG doses (1, 2.5, 5, 7.5, 10, 12.5, 15 and 20 µM). With the aim to evaluate cell death
induced by LPS and whether CBG could counteract the loss of cell viability, NSC-34 motor neurons
were cultured in 96-well plates, and after pre-treatment with 7.5 µM CBG for 24 h, cells were incubated
with the medium of LPS-stimulated macrophages for 24 h. At the end of the treatments, cells were
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washed and incubated with fresh medium containing MTT (0.5 mg/mL; Sigma-Aldrich) at 37◦C for
4 h. After, formazan crystals were dissolved in acidic isopropanol at 37◦C for 1 h and the optical
density was evaluated by spectrophotometric measurement of absorbance. All the experiments were
done in triplicate and repeated for three independent times.

4.7. Protein Extraction and Western Blot Analysis

At the end of the treatment, NSC-34 motor neurons were collected and lysed using buffer A
[320 mM sucrose, 10 mM, 1 mM EGTA, 2 mM EDTA, 5 mM NaN3, 50 mM NaF, β-mercaptoethanol,
and protease/phosphatase inhibitor cocktail (Roche Molecular Diagnostics, Branchburg, NJ, USA)]
in ice for 15 min, and centrifuged at 1000×g for 10 min at 4 ◦C. The supernatant was collected as
cytosolic extract. The obtained pellet was lysed with buffer B [150 mM NaCl, 10 mM Tris-HCl (pH 7.4),
1 mM EGTA, 1 mM EDTA, Triton X-100, and protease/phosphatase inhibitor cocktail (Roche Molecular
Diagnostics, Pleasanton, CA, USA)] in ice for 15 min and centrifuged at 15,000×g for 30 min at 4 ◦C.
The supernatant was collected as nuclear extract. Protein concentrations were measured through
Bradford assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Twenty-five µg of proteins were heated
for 5 min at 95 ◦C and resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and after
transferred onto a PVDF membrane (Amersham Hybond, GE Healthcare Life Sciences, Milan, Italy).

Membranes were blocked with 5% skim milk in Phosphate Buffered Saline (PBS) for 1 h at
room temperature and incubated overnight at 4 ◦C with the primary antibody against cleaved
caspase 3 (1:1000; Cell Signaling Technology, Danvers, MA, USA). Membranes were washed with
PBS 1X and incubated with horse radish peroxidase (HRP)-conjugated anti-rabbit IgG secondary
antibody (1:2000; Santa Cruz Biotechnology,Dallas, TX, USA) for 1 h at room temperature. With the
aim to analyze if blots were loaded with equal amounts of proteins, membranes were incubated
with antibody for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) HRP Conjugated (1:1000;
Cell Signaling Technology). The relative expression of protein bands was analyzed through an
enhanced chemiluminescence system (Luminata Western HRP Substrates; Millipore, Burlington,
MA, USA). Protein bands were acquired using ChemiDoc™ MP System (Bio-Rad Laboratories, Inc.)
and quantified through the computer program ImageJ software (developed at the National Institutes of
Health, USA, http://rsb.info.nih.gov/ij). All blots are representative of three independent experiments.

4.8. ImmunocytoChemistry

NSC-34 motor neurons were grown on coverslips (12 mm; Thermo Fisher Scientific, Waltham,
MA, USA) and, at the end of the treatments, they were fixed with 4% paraformaldehyde at room
temperature for 30 min and after washed with PBS (pH 7.5). Afterwards, cells were incubated with
3% H2O2 at room temperature for 15 min in order to suppress the endogenous peroxidase activity.
After three washes with PBS, cells were blocked with horse serum +0.1% Triton X-100 for 20 min and
incubated overnight at 4◦C with the following primary antibodies:

- anti Bax (1:50; Santa Cruz Biotechnology);
- anti Bcl-2 (1:50; Santa Cruz Biotechnology);
- anti IL-1β (1:250; Cell Signaling Technology);
- anti IFN-γ (1:50; Santa Cruz Biotechnology);
- anti TNF-α (1:250; Cell Signaling Technology);
- anti SOD1 (1:100; Abcam, Cambridge, UK);
- anti iNOS (1:50; Santa Cruz Biotechnology);
- anti nitrotyrosine (1:1000; Millipore);
- anti Nrf-2 (1:50; Santa Cruz Biotechnology);
- anti PPARγ (1:50; Santa Cruz Biotechnology).

After, cells were washed with PBS and incubated with biotinylated secondary antibody (1:200;
Vector Laboratories, Inc., Burlingame, CA, USA) and streptavidin AB Complex-HRP (ABC-kit from

http://rsb.info.nih.gov/ij
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Dako, Glostrup, Denmark). The immunostaining was developed with the DAB peroxidase substrate kit
(Vector Laboratories, DBA Italia S.r.l., Milan, Italy; brown color; positive staining) and counterstaining
with nuclear fast red (Vector Laboratories, DBA Italia S.r.l.; pink background; negative staining).

The immunocytochemical assays were repeated three times and each experimental group was
plated in duplicate, for a total of 6 coverslips for each antibody. With the aim of calculating the
percentage of positive cells stained, the images were captured using a light microscopy (LEICA DM
2000 combined with LEICA ICC50 HD camera) with an objective ×40 and the densitometric analysis
was carried out using the software LEICA Application Suite ver. 4.2.0 (LEICA, Wetzlar, Germany).
Quantitative analysis was performed on 6 coverslips by covering approximately 90% of the total area.

4.9. Statistical Data Analysis

Statistical analysis was carried out using GraphPad Prism version 6.0 software (GraphPad
Software, La Jolla, CA, USA). The data were statistically analyzed by one-way ANOVA test and
Bonferroni post-hoc test for multiple comparisons. A P value less than or equal to 0.05 was considered
statistically significant. Results are reported as mean ± SEM of N experiments.

5. Conclusions

In conclusion, our results indicated that CBG exerted a protective action in an in vitro
neuroinflammation model. CBG reduced neuronal death in NSC-34 cells treated with the medium of
LPS stimulated macrophages, reducing inflammation and oxidative stress. In particular, CBG restored
cell anti-oxidant defense, increasing the expression of Nrf-2, reduced oxidative stress and inflammatory
markers. On the bases of these results, thanks to its neuroprotective effects, we encourage the use of
CBG against neurodegeneration and in those pathological conditions where neuroinflammation and
oxidative stress play a main role.
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Abbreviations

∆9-THC ∆9-tetrahydrocannabinol
CBD Cannabidiol
CBG Cannabigerol
H2O2 Hydrogen peroxide
LPS Lipopolysaccharide
DMSO Dimethyl sulfoxide
PPARγ Proliferator-activated receptor γ
IL-β Interleukin-1β
IFN-γ Interferon-γ
TNF-α Tumor necrosis factor α
iNOS Inducible nitric oxide synthase
SOD1 Superoxide dismutase1
Nrf-2 Nuclear factor erythroid 2–related factor 2
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PARP-1 Poly [ADP-ribose] polymerase 1
NF-κB Nuclear factor-κB
MAP Mitogen-activated protein
IL-6 Interleukin 6
EAE Experimental Autoimmune Encephalomyelitis
NO Nitric oxide
DNBS Dinitrobenzene sulphonic acid
FBS Fetal bovine serum
MTT Thiazolyl Blue Tetrazolium Bromide
HRP Horse radish peroxidase
GAPDH Glyceraldehyde 3 phosphate dehydrogenase
PBS Phosphate Buffered Saline
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