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Abstract: Spices, condiments and extra virgin olive oil (EVOO) are crucial components of human
history and nutrition. They are substances added to foods to improve flavor and taste. Many
of them are used not only to flavor foods, but also in traditional medicine and cosmetics. They
have antioxidant, antiviral, antibiotic, anticoagulant and antiinflammatory properties and exciting
potential for preventing chronic degenerative diseases such as cardiomyopathy and cancer when used
in the daily diet. Research and development in this particular field are deeply rooted as the consumer
inclination towards natural products is significant. It is essential to let consumers know the beneficial
effects of the daily consumption of spices, condiments and extra virgin olive oil so that they can choose
them based on effects proven by scientific works and not by the mere illusion that plant products
are suitable only because they are natural and not chemicals. The study begins with the definition
of spices, condiments and extra virgin olive oil. It continues by describing the pathologies that can
be prevented with a spicy diet and it concludes by considering the molecules responsible for the
beneficial effects on human health (phytochemical) and their eventual transformation when cooked.

Keywords: spices; condiments; extra-virgin olive oil; antiviral properties; antioxidant properties;
nutricosmetic

1. Introduction

Spices and condiments have played an essential role in human nutrition and par-
ticipated in developing most cultures worldwide. The use of curry was known in 2000
B.C.E. in India. In Egypt and Babylon, spices such as garlic, cumin and coriander were
considered magical. The Greeks and Romans used anise, savory, basil, garlic, hyssop,
fennel, mustard, capers, cumin, coriander, oregano, myrtle, parsley, verbena in the kitchen,
medicine and cosmetics. Marco Polo in the 13th and the European colonization of Africa,
America and Asia during the 15th to 17th centuries improved and spread condiments and
spices worldwide [1]. Spices and cooking processes contribute to the ethnic identity of
food [2]. Ethnic foods have increased their popularity among consumers worldwide since
tourism, international trade and immigration raised the possibility of tasting them. Social
media and the opportunity to share culinary experiences also contributed [3–6]. Partly
driven by the improved popularity of ethnic food consumption, the global seasoning and
spices market was USD 136.24 billion in 2019 and its growth rate is probable to grow by
4.8% from 2015 to 2025 steadily. The global seasoning and spices market size was valued
at USD 13.77 billion in 2019 and is expected to grow at a compound annual growth rate
(CAGR) of 6.3% from 2020 to 2027 [7]. The nutrients and phytochemicals in spices, extra
virgin olive oil and flavorings are widely used in traditional medicine, pharmaceuticals,
dental preparation, aromatherapy and nutraceuticals [8]. The Dietary Supplement and
the Education Act have defined “nutraceuticals” as supplements containing herbs, plant
products, metabolites, or extracts singly or combined [9]. Currently, the cosmetics industry
uses spices and extra virgin olive oil to prepare food supplements and topical skincare
cosmetics to combat blemishes from the inside and outside simultaneously [10–13]. In this
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study, the nutraceutical potential of spices, herbs and condiments, is revised to demonstrate
the fundamental role of safeguarding our health that they have in the diet. Special attention
is paid to the transformations that can occur during cooking, the synergistic effects linked
to the simultaneous use of more than one seasoning and any toxic effects to maximize
the biological impact and avoid any side effects. A brief mention of extra virgin olive oil
properties is given since it contributes synergistically with spices, herbs and condiments to
the nutraceutical value of the finished dish when used to flavor foods.

2. What Differentiates Spices from Herbs, Condiments, Aromas and Extra Virgin
Olive Oil?

According to the Codex Alimentarius, “herbs, spices, seasonings and condiments”
are considered food flavoring substances usually from botanical sources, dehydrated,
ground or whole, added food to improve aroma and taste. Instead, extra virgin olive oil
is contained in the section “fat and oils” [14]. Spices, herbs, salt, salt substitutes, vinegar,
seasonings, condiments, mustards, sauces, soups and broths, salads, spreads, soy-based
condiments, protein products from sources other than soy, yeast and similar products are a
part of “herbs, spices, seasonings, and condiments” section.

2.1. Spices and Herbs

Spices are mixtures in powder or paste form, such as chili seasoning and curry paste.
They are sometimes dried before use. Spices are obtained from the bark, bulbs (e.g., onion
and garlic), fruits (e.g., peppers and star anise), flowers (orange and lavender, seeds (e.g.,
fennel, coriander, sesame and cumin), roots (e.g., ginger and turmeric), or the entire plant
(e.g., cinnamon) [15]. Spice plants are often used as sources of phytochemicals and essential
oils (Eos) [16]. Phytochemicals are bioactive substances which quality and content in spices
depend on plant variety, part of the plant, pedoclimatic condition, harvest period, drying,
type of processing and storage [15]. The Eos in spices are aromatic oily liquids containing
pharmacologically active components (principally terpenoid and phenolic compounds).
Eos are obtained by steam distillation, cold-soaking, extrusion, or solvent extraction [17].

The “herbs or culinary herbs” are plants with aromatic leaves, stems and flowers such
as basil, parsley, rosemary and oregano.

2.2. Condiments and Seasonings

Condiments are prepared food flavoring containing spices or spices extractives in
single forms (e.g., onion salt, garlic salt) or mixtures of constituents (e.g., mustard, chili
sauce) which are added to food during cooking and/or eating [18]. They are available
in liquid, semisolid and solid forms. The food category “condiments”, in the Codex
Alimentarius, does not contain condiment sauces (e.g., mayonnaise, ketchup, mustard) or
relishes. Sauces are liquid or semi-liquid products able to enhance the appearance, aroma
and flavor of foods. They may or not include spice or spice extracts [18]. Seasoning is the
method of adding salts, spices, or herbs to food to improve the flavor. In the last years,
condiments, seasonings and spices are used as vehicles for micronutrient fortification since
they are cheap and widely consumed by people of all socioeconomic backgrounds [19].
Their colors and flavors mask undesirable organoleptic characteristics from fortification
and intensely flavored condiments avoid the overconsumption of a fortified nutrient. Soy
sauce, bouillon cubes and fish sauce are used as vehicles to enhance iron consumption [20].
Bouillon cubes are dry broth made by dehydrated meat stock or vegetables. In West Africa,
where the bouillon industry is more enhanced than the salt production industry, bouillon
cubes are fortified with iodized salt alone or combined with zinc, iron, folic acid, vitamin
A, or other B vitamins [21,22].
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3. Condiment
3.1. Vinegar

Vinegar is a common condiment worldwide. It is obtained from the transformation
of sugars to ethanol by yeasts and ethanol’s oxidation to acetic acid by bacteria in cider,
wine, malt, grain, spirit, raisin and other fruit [23]. It is possible to buy a spray-dried
vinegar powder, which provides maximum vinegar taste and may be rehydrated with
water in a ratio of 1:1/vinegar:water. The health benefits of vinegar are due to acetic
acid and other organic acids (mainly acetic acid and lactic acid together with malic acid,
tartaric acid, citric acid and succinic acid), amino acids, phenolic compounds (e.g., catechin,
chlorogenic acid, syringic acid, ferulic acid, protocatechuic acid, caffeic acid, gallic acid
and p-coumaric acid), flavanols (e.g., epicatechin), flavonols (e.g., rutin), anthocyanidin
(e.g., malvidin-3-glucoside), anthocyanin (e.g., pyranoanthocyanin), carotenoids, vitamins
(B group and C), minerals (Al, Ca, Cr, Fe, K, Mn, Mg, Na, P, S and Zn), alkaloids and
sugars (glucose, arabinose, fructose, xylose and mannitose) able to induce antioxidant,
antitumor, antidiabetic, antihypertensive, antiobesity, antiinflammatory and antimicrobial
effects [24,25]. The bioactive compounds’ composition and concentration depend on the
raw material used to produce the vinegar and the production method [26]. Cosmetic
products based on vinegar are formulated to counteract the signs of skin aging [27].

3.2. Extra-Virgin Olive Oil

Extra virgin olive oil (EVOO) is described in Section 2 of the Codex Alimentarius:
“Standards for Fats and Oils from Vegetable Sources”. EVOO is made from the olive tree’s
fruit by mechanical processes and purified by washing with water, filtering, settling and
centrifuging only [28]. It is often debated whether EVOO should be considered a condiment
or a functional condiment since it is used to enhance the appearance, aroma and flavor
of foods and it is rich in nutrients and natural antioxidants like a functional food. The
healthy and nutritional values are ascribable to monounsaturated fatty acids (MUFAs: 16:1;
18:1; 20:1), polyunsaturated fatty acids (PUFAs), squalene, triterpenic acids, phytosterols,
dialcohols, polyphenols and tocopherols [29,30]. Oleic acid (55.0–83.0% of the lipid con-
tent), palmitic (7.5–20.0% of the lipid content), linoleic (3.5–21.0% of the lipid content),
stearic (0.5–5.0% of the lipid content), palmitoleic (0.3–3.5% of the lipid content), linolenic
acids are the more representative fatty acids in the EVOO. Instead, myristic, eicosanoic
acids, heptadecanoic are present in traces [31]. Olive variety, agronomic conditions and
the olives’ ripening affect the fatty acid composition and content. The International Olive
Council [32], Codex Alimentarius [33] and European regulations [34–36] norm their content
in the EVOO. Sterols (or phytosterols) are another group of naturally occurring lipids in
EVOO. Their range varies between 800 and 2600 mg/Kg [37]. Three sterols’ classes are
identified in the EVOO according to the presence of methylic groups in position C4 in rings
A. 4-desmethylsterols are sterols without methyl group (e.g., β-sitosterol, ∆5-campesterol
and avenasterol), 4-monomethylsterols have one methyl group (e.g., citrostadienol, cycloeu-
calenol, obtusifoliol and gramisterol) and 4,4′-dimethylsterols have two methyl groups (e.g.,
α-amyrin, cycloartenol and β-amyrin) (Figure 1). The most abundant sterol is β-sitosterol
(75–90%). The sterol’ levels diminish during the oil’s storage and enhance peroxides [38].
The most concentrated phenolic compounds in the EVOO are lignans (e.g., pinoresinol,
hydroxypinoresinol, acetoxypinoresinol), followed by secoiridoids (e.g., ligstroside, ligstro-
side decarboxymethyl aglycone, oleuropein, oleuropein aglycone mono-aldehyde, etc.),
phenolic alcohols (e.g., tyrosol), flavones (e.g., luteolin, apigenin), flavonols (e.g., quercetin-
3-rutinoside), anthocyanidin, (e.g., cyanidin glucosides) and phenolic acids (e.g., vanillic
acid, ferulic acid, cinnamic acid, hydroxybenzoic acid) [39]. These substances modulate
aging-associated processes and have antiviral, antitumor, anti-atherogenic, antihepatotoxic,
antiinflammatory, immunomodulatory, anti-autoimmune (i.e., rheumatoid arthritis) and
hypoglycemic properties [40]. The phenolic compounds profile and concentration in EVOO
vary significantly according to the olive cultivar, pedoclimatic factors (altitude and amount
of irrigation), agricultural practices [41], oil extraction methods and storage conditions.
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The EVOO quality is linked to olive fruits free of damage and the absence of pesticide
residues (e.g., fungicides, insecticides and herbicides). Biological control using Trichoderma
species or their metabolites are new options to select the EVOO phenolic profile [40] and
terpenoid profiles [42]. The nutraceutical importance of phenolics forced researchers to
develop reliable analytical methods for their oil dosage [43]. Moreover, EVOO contains
tocopherols [31]. They act as free radical scavengers in membranes and lipoproteins and
transform fatty acid peroxyl radicals into tocopheroxyl radicals. α-tocopherol regulates
signal transduction, apoptosis pathways and transcriptional regulation of the cell cycle [44].

Figure 1. Representative sterol’s identified in EVOO.
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4. Sauces
4.1. Soy Products Fermented

Soybeans contain some bioactive compounds such as proteins (e.g., β-conglycinin and
glycinin), polyunsaturated fatty acids, lecithin, vitamin E, saponin and isoflavones (e.g.,
genistein, daidzin, daidzein and glycitein) [45,46]. The fermentation processing method
enhances the organoleptic and nutritional properties of soybean products. In fermented
soybean products, the isoflavone profiles change (isoflavones aglycone-form increase)
and improve the phenols’ total content, flavonoids [47] and bioactive peptides. Bioactive
peptides have shown hypotriglyceridemic, hypocholesterolemic, antiobesity, antidiabetic,
hypotensive, anticancer, antioxidant and antiinflammatory in experimental models [48].

4.1.1. Soy Sauce

Soy sauce is a liquid seasoning currently, used in cooking worldwide. Studies suggest
that soy sauce contains polysaccharides, protein, MUFA (e.g., 18:1 fatty acids), PUFA (18:2
and 18:3 fatty acids), minerals (calcium, iron, magnesium, phosphorus, potassium, sodium,
zinc, copper, selenium), vitamins (C, B1, B2, B3 and B6) [49], melanoidins, isoflavones,
phenolic acids, furan ketones, peptides, organic acids and β-carbolines [50]. The polysac-
charides from soy sauce regulate iron and lipid absorption in the gastrointestinal tract [51].
Soy sauce exhibits antioxidant, antihyperuricemic, antimicrobial, anticarcinogenic, an-
ticataract and antiplatelet activities [52]. Sometimes medicinal herbs are added in soy
sauce to improve the antioxidant profile, e.g., citrus peels rich in flavanons (e.g., rutin and
hesperidin), flavones (nobiletin), with anticancer, antioxidation, anti-inflammation and
cardiovascular diseases protective properties [52].

4.1.2. Miso

Miso is a seasoning made by fermenting soybeans with kōji (the fungus Aspergillus
oryzae), salt and sometimes barley, rice, seaweed or other ingredients. It contains vi-
tamins (B2, B12, E), fat, protein, minerals (iron, calcium, sodium), carbohydrates, [53],
saponin, lecithin, phenolic acids (ferulic, vanillic, p-OH-benzoic, p-coumaric, syringic) and
isoflavonoids (daidzein, genistein) [54,55]. Miso has antioxidant, ACE-inhibitor, stroke
preventive, antihypertensive and anticancer properties [56]. Miso improves the absorption
of Coenzyme Q10 (CoQ10) supplements. The CoQ10 is a lipid-soluble antioxidant involved
in energy production which can improve the symptoms of some geriatric disorders (e.g.,
glucose metabolism in diabetes, high blood pressure and the symptoms of Parkinson’s
disease), decrease peripheral oxidative stress and inflammation [57].

4.2. Fish Sauce

Fish sauce is a fermented condiment with a mild fishy flavor, traditionally used in
East and Southeast Asian countries [58]. It is obtained by transforming lipids and proteins
with enzymes and halophilic microorganisms [59]. Endogenous proteases and proteases
produced by microorganisms hydrolyze the proteins in fish into peptides and amino
acids [60,61]. The amino acids in fish sauces contribute to the umami taste and have
some biological activity among these anti-oxidative, antithrombotic, hypocholesterolemic,
antidiabetic and antihypertensive effects are reported [62,63]. Moreover, they inhibit the
ACE enzyme (angiotensin I-converting enzyme) [64], able to stabilize blood pressure by
transforming angiotensin I to the potent vasoconstrictor angiotensin II and inactivating the
vasodilator peptide bradykinin [65]. The fish sauce contains vitamins (A, B1, B2, B3 and B9),
fat, protein, minerals (iron, calcium and phosphorus), carbohydrates [66,67] and high levels
of docosahexaenoic acid [68] are able to regulate the symptoms of atopic dermatitis [69].

4.3. Tabasco

Tabasco is red pepper hot-sauce sauce obtained by lactic acid fermentation due to
autochthonous bacteria [70]. Sodium chloride is added to the peppers to make the pulp
microbiologically safe. It selects homofermentative lactic acid bacteria and destroys enter-
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obacteria [71]. After four weeks, vinegar and salt are added to pepper extract to obtain
tabasco sauce. Tabasco contains vitamins (C, B1, B2, B3, B5, B6, B9, A and E), fat, pro-
tein, minerals (iron, calcium, magnesium, potassium, sodium and phosphorus), carbohy-
drates [72]. Enzymatic hydrolysis disrupts the cell walls cutting the polysaccharide chains,
improve the extract yield and make available bioactive molecules, such as capsaicinoids
(capsaicin, dihydrocapsaicin and nordihydrocapsaicin), carotenoids, flavor compounds
and polyphenols [73].

5. Spices Commonly Used in Food Preparation
5.1. Curry

Curry is a combination of spices (turmeric, cumin, coriander, paprika, cardamom
and other spices) and herbs and its composition varies between regions [74]. It contains
fat, protein, minerals (e.g., iron, calcium, sodium), carbohydrates, fiber [75] and phyto-
chemicals such as flavanols (e.g., catechin), flavonols (e.g., quercetin, kaempferol) [76],
carbazole (murrayanol, murrayagetin, marmesin-1”-O-rutinoside, mukoenine-A, -B and C,
murrastifoline–F, bis–2-hydroxy-3-methyl carbazole, bismahanine, biskoeniquinone-A and
bismurrayaquinone A, koenoline, mukoline, mukolidine). Phytochemicals in curry have
antioxidant, antidiabetic, cytotoxic, anticancer, immunomodulatory, antiobesity, antihyper-
lipidemic, hepatoprotective [77] and skincare activities [78].

5.2. Tumeric

Turmeric (Curcuma longa) is considered the golden spice of India. It is obtained from
the rhizome of a herbaceous plant that belongs to the ginger family Zingiberaceae. [79].
Tumeric is widely used as a spice, coloring material, food and preservative in South
East Asia, Africa and Brazil. The bright yellow spice is obtained by boiling and dry-
ing rhizomes. Turmeric spice has a hot, bitter flavor and a minor fragrance of gin-
ger and orange. It is used to make a curry spice and mustard [80]. The rhizomes
contain vitamin C, minerals (e.g., iron, calcium and sodium) [81], flavanols (e.g., cat-
echin), flavonols (e.g., kaempferol and myricetin) [76], curcuminoids (e.g., curcumin,
5-methoxycurcumin, demethoxycurcumin, bis-demthoxycurcumin, cyclocurcumin and
dihydrocurcumin), sesquiterpenes (e.g., germacrone, ar-, α, β-turmerones, turmerone,
β-bisabolene, zingiberene, α-curcumene, bisacurone, β-sesquiphellandene, curcumenone,
procurcumadiol dehydrocurdinone, bisacumol, isoprocurcumenol, curcumenol, epipro-
curecumenol, curlone zedoaronediol and turmeronols A and B), steroids (e.g., β-sitosterol,
stigmasterol, cholesterol, 2-hydroxymethyl anthraquinone and anthraquinone) and essen-
tial oils (e.g., α-phellandrene, cineol, sabinene, sesquiterpenes with turmerones skeleton
and borneol) [82]. Tumeric rhizomes are used as stimulants, stomachs and blood purifiers
to prevent anorexia, diabetic wounds, hepatic disorders, rheumatism, sinusitis, bronchitis,
asthma, skin infections and eye infections [82].

5.3. Fenugreek

Fenugreek (Trigonella foenum-graecum Linn.) belongs to the Fabaceae family. The
leaves, seeds and flowers are used dry. The seeds release a maple–curry–nutty flavor
by crashing. Leaves and sprouts have a sweeter taste than the seeds and are eaten as
a vegetable and mixed into dough, stews and beans. It contains amino acids (glutamic
acid, aspartic acid, leucine, tyrosine, phenyl cysteine and alanine), fatty acids (e.g., mono-
and di-galactodiacylglycerols, oleic acid, linolenic acid, linoleic acid, glycolipids, phos-
phatidylethanolamine and phosphatidylcholine), vitamins (e.g., A, B1, B2, C, niacin, nico-
tinic acid and folic acid) and minerals (e.g., Fe, P, Ca, Mg, S, Cu, Co, Zn, Mn and Br) [83].
The phytochemical analysis of fenugreek has revealed the presence of furostanols (e.g.,
protodioscin derivatives) and spirostanols (e.g., dioscin derivatives) saponins, steroids, al-
kaloids (e.g., trigonelline), flavonols (e.g., quercetin-3-O-rhamnoside), flavons (e.g., vitexin-
7-O-glucoside, apigenin-6-C-glucoside, apigenin-6-C-glucoside, apigenin-8-C-glucoside,
apigenin-6-C-xyloside-8-C-glucoside, apigenin-6 and 8-C-diglucoside), isoflavonoids (e.g.,
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maackiaian and medicarpin), terpenes and phenolic acid derivatives (e.g., caffeic acid,
p-coumaric acid and chlorogenic acid, hymecromone, trigocoumarin, trigoforin, scopoletin
and γ-schizandrin) [83]. Pharmaceutical employment of fenugreek is related to diabetes,
obesity, hyperlipidemia, inflammation damages, cancer, oxidative stress reparations and
improving women’s health [83].

5.4. Garlic

Garlic (Allium sativum) is an herb of the Liliaceae family. Allium is derived from
the Celtic word al (burning, pungent). The bulb is widely used as a culinary spice and
in traditional medicine [84]. It contains vitamins (e.g., A and C) [85] and some bioac-
tive compounds such as flavanols (e.g., catechin), flavonols (e.g., kaempferol, myricetin
and quercetin) [76], organosulfur compounds (e.g., allicin, diallyl sulfide, diallyl disul-
fide, diallyl trisulfide, S-allyl-cysteine, E/Z-ajoene and alliin), phenolic compounds (e.g.,
β-resorcylic acid, pyrogallol, gallic acid and protocatechuic acid), saponins (e.g., proto-
desgalactotigonin, desgalactotigonin-rhamnose, proto-desgalactotigonin-rhamnose, sativo-
side B1-rhamnose, voghieroside D1 and sativoside R1) and polysaccharides [86–90]. Garlic
has antioxidant, antiinflammatory, antiobesity, antidiabetic, anticancer, cardiovascular
protective, immunomodulatory and antibacterial properties [91]. The antioxidant prop-
erties of garlic are related to organosulfur compounds, flavonoids and saponins. Garlic
improves and regulates the antioxidant enzyme activities (heme oxygenase-1 and the
glutamate-cysteine ligase modifier) and the nuclear erythroid 2-related factor 2 (Nrf2-ARE)
pathway [92,93]. Garlic could constrain inflammation by impeding inflammatory medi-
ators’ action (e.g., nitric oxide, tumor necrosis factor-α and interleukine-1). It decreases
nitric oxide production and prostaglandin E-2 by reducing the expression of inducible
NO synthase, cyclooxygenase-2 and the transcription of the nuclear factor-kappa B [94,95].
The main immune-modulating components in garlic are polysaccharides. They have an
immunomodulatory effect and regulate the expressions of tumor necrosis factor-α, IL-6,
IL-10 and interferon-γ in macrophages. Polysaccharides in fresh garlic exhibit a more
potent activity on the immune system than fermented garlic since the fructans degrade
during processing [96]. Garlic’s cardiovascular protective effects are related to inhibition
of oxidative stress and lipid peroxidation, control of angiotensin-converting enzymes and
NO and H2S production. Moreover, garlic powder can reduce blood pressure, cholesterol
(total and low-density lipoprotein cholesterol) and platelet aggregation [91]. It decreases
hypertension by reducing oxidative stress, improving NO and hydrogen sulfide production
and inhibiting the angiotensin-converting enzyme [92]. Garlic prevents different cancer
pathologies by regulating carcinogen metabolism, decreasing cell growth and proliferation,
inducing apoptosis, destructing angiogenesis and preventing invasion and migration [91].
Garlic enhances gastrointestinal functions and relieves gastric ulcers and colitis, by decreas-
ing inflammation, oxidative stress and Helicobacter pylori levels [91]. Finally, fermented
garlic reduces obesity by impeding lipogenesis and controlling lipid metabolism [91].

5.5. Ginger

Ginger (Zingiber officinale) rhizome is consumed as a fresh paste, dried powder, slices
preserved in syrup, crystallized ginger, or tea flavoring. It contains carbohydrates, protein,
free amino acids, fatty acids, triglycerides, ash, crude fiber [97–99], minerals (e.g., potas-
sium, copper, magnesium, silicon, manganese), vitamins (e.g., A, E, C, B1, B2, B3, B5, B6, B9
and B12) [100,101], flavanols (e.g., catechin), flavonols (e.g., myricetin) [76], oleoresin (e.g.,
sesquiterpene hydrocarbons), phenolic compounds (e.g., gingerole, shogoals), diasylehep-
tanoids (e.g., gingerenone), curcuminoids (e.g., curcumin), alkaloids, carotenoids, tannins,
flavonoids, saponins, cardinolides and steroids [100]. Ginger has antioxidant, antiinflam-
matory, anticancer, hypocholesterolemic, cardio preventive, antibiotic and antimicrobial
effects [102].
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5.6. Chilli Pepper

Chilli pepper (Capsicum annuum) is a well-known domesticated species of the genus
Capsicum. It contains vitamin C, carotenoids (e.g., β-carotene, antheraxanthin, violaxanthin,
zeaxanthin, capsanthin, capsorubin and lutein), capsaicinoids, phenolic acids (e.g., chloro-
genic acid, caffeic acid, ferulic acid, coumaric acid), flavonols (e.g., rutin and quercetin) and
flavanones (e.g., hesperidin), [103,104]. Health-promoting chilly pepper activities are asso-
ciated with antioxidants and antiinflammatory activities of carotenoids and phenols [104].
It has chemopreventive, antidiabetic, antiobesity, cardioprotective, hepatoprotective and
photoprotective skin properties [104].

6. Herbs Commonly Used in Food Preparation
6.1. Basil

Ocimum basilicum L., belonging to the Lamiaceae family, contains polysaccharides,
vitamins, minerals (e.g., magnesium, calcium, iron and zinc), fatty acids (e.g., stearic
acid, oleic acid, palmitic acid, linoleic acid, myristic acid, α-linolenic acid, capric acid,
lauric acid and arachidonic acid), steroids, phenolic acids (e.g., caffeic acid, vanillic acid,
rosmarinic acid, chlorogenic acid and p-hydroxybenzoic), flavonols (e.g., quercetin and
rutin), flavones (e.g., apigenin) [105], β-carotene, terpenes, alcohols, aldehydes, ketones
esters and ethers [106]. Biological effects of basil include antioxidant, anticancer, anti-
atherosclerotic, hypolipidemic, antidiabetic, immunity boost and antiaging activities [107].

6.2. Parsley

Parsley (Petroselinum crispum) belongs to Apiaceae (Umbelliferae) family. It contains
flavones (e.g., diosmetin 7-malonylapiosylglucoside, diosmetin/chrysoeriol 7-malonylapio-
sylglucoside, diosmetin 7-apiosylglucoside, apigenin dihexoside and apigenin 7-apiosylglu-
coside), flavonols (e.g., isorhamnetin 3-alonylglucoside-7-glucoside, isorhamnetin 3-malony-
lglucoside-7-glucoside, isorhamnetin 3-glucoside, apigenin 7-malonylapiosylglucoside,
apigenin 7-malonylapiosylglucoside, apigenin 7-malonylapiosylglucoside, apigenin 7-
dimalonylapiosylglucoside and apigenin 7-glucoside), flavanones (e.g., hesperetin 7-glucos-
ide), carotenoids (e.g., beta-cryptoxanthin, beta-carotene, lutein and zeaxanthin), coumarins
(bergapten, psoralen and xanthotoxin), tannins and triterpenes [108]. Biological activities
ascribed to parsley are antidiabetic, antihypertensive, antioxidant, antitumorigenic and
gastroprotective activities [109].

6.3. Fennel

Fennel (Foeniculum vulgare Mill.) is a perennial, umbelliferous herb. Stems, leaves
and shoots are used in culinary traditions. It contains carbohydrates, essential fatty acids
(e.g.,ω-6 andω-3) [110], phenylpropanoids (e.g., estragole and trans-anethole), monoter-
penes (e.g., α-pinene and α-phellandrene), hydrocinnamic acids (e.g., neochlorogenic
acid, chlorogenic acid, criptochlrogenic acid, 5-feruoylquinic acid,1,4-O-dicaffeoylquinic
acid and 1,5-O-dicaffeoylquinic acid) and flavonols (e.g., quercetin-3-O-glucuronide and
kaempferol-3-O-glucuronide). Fennel’s beneficial properties include antithrombotic, anti-
cancer, antioxidant, antiinflammatory, hepatoprotective and antidiabetic properties [111].

6.4. Sage

Sage (Salvia officinalis L.) is an aromatic herb belonging to the Lamiaceae family. It
contains carbohydrates, protein, total lipids, MUFA, fiber, minerals (e.g., calcium, iron,
magnesium, phosphorus, potassium, zinc, manganese, selenium), vitamins (e.g., C, B1,
B2, B3, B6, B9 and E) [112], phenolic acids (e.g., gallic acid, chlorogenic acid, caffeic acid,
coumaric acid ferulic acid, rosmarinic acid) flavonols (e.g., quercetin, rutin and myricetin),
terpene/terpenoids (camphor, borneol, caryophyllene, elemene, cineole, humulene, ledene,
thujone and pinene) [113]. The antioxidant and antiinflammatory properties of sage are
related to the terpenoids compounds, phenolic acids and flavonoids [114]. The cryptotan-
shinone (a diterpenoid) produces an agonistic activity on the opioid system [115]. Terpenes
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and terpenoids are responsible for anticancer activity. The α-humulene and caryophyllene
inhibit breast cancer and colorectal cancer tumor cells; manool induces selective cytotoxicity
on human glioblastoma and cervical adenocarcinoma; ursolic acid constrains angiogenesis
and invasion of melanoma cells; and rosmarinic acid inhibits the growth of the colon, breast,
hepatocellular, prostate, small cell lung carcinomas and chronic myeloid leukemia [114].

7. Description of Processes in Which the Phytochemicals and Nutrients in Spices,
Condiments and Sauces Can Intervene to Exert Their Beneficial Action
7.1. Oxidative Stress

Oxidative stress is produced by an excess of the reactive oxygen species (ROS, e.g.,
superoxide, hydroxyl radical, hydrogen peroxide and singlet oxygen) and reactive nitrogen
species (RNS, e.g., nitric oxide, peroxynitrite, nitrogen dioxide) [116]. ROS production in
living organisms is due to phagocytosis, respiratory chain (endogenous reactions), expo-
sure to UV radiation, air pollutants and other physical and chemical agents. The electrons
made in the mitochondrial respiratory chain are transferred to molecular oxygen forming
superoxide anion. The nitric oxide improves the generation of superoxide anion-producing
peroxynitrite enzyme, leading to the increased oxidation of proteins, carbohydrates and
lipids. ROS make membrane lipid peroxidation and determines the loss of membrane
fluidity, altering cell homeostasis. Humans have endogenous defense mechanisms, such as
superoxide dismutase, glutathione peroxidase and catalase, to protect against ROS-induced
damage. Improved ROS production alters the balance between oxidant and antioxidant
levels, determining a pro-oxidative condition [117]. Oxidative stress is involved in some
diseases, including inflammation, atherosclerosis, type 2 diabetes mellitus and cancer [118].
Biomarkers of oxidative stress are lipoproteins oxidation, lipid hydroperoxides, conju-
gated dienes, malondialdehyde (MDA), F2-isoprostanes (F2-IsoPs), glutathione, protein
carbonyls and activities of antioxidant enzymes [119]. A universal index does not identify
oxidative stress since the biomarkers used to define the stress status have different kinetics
of production and elimination [120]. The assay methods used to control lipid peroxidation
determine the levels of lipid peroxides or the end products of lipid peroxidation. [121].
The standard assays to determine protein modifications measure the nitration of protein
tyrosine residues and the carbonyl groups of the oxidized proteins [122,123].

7.2. The Immune Response

The immune system is a biological system that evolved host protection against viruses,
bacteria, fungi, parasites and cancer cells [124]. Four functions of the immune system
determine host defense. These include barrier production to stop pathogens, identifying
and removing the pathogens that pass the barrier by immune cells and immunological
memory creation [125]. Physical barriers are skin, respiratory, gastrointestinal tract (includ-
ing microbiota), nasopharynx, hair and cilia. Immune cells are granulocytes (neutrophils,
basophils and eosinophilic), lymphocytes (T-, B- and natural killer-cells) and phagocytes
(monocytes, macrophages, dendritic cells and mast cells) [126]. Cellular and humoral
responses can be innate and adaptive in the identification and eradication of pathogens.
The innate responses are non-specific responses to pathogens that occur when there is no
previous exposure or immunization. This action’s actors are physical barriers, biochemical
mechanisms, inflammatory response, complement system and phagocytes [127]. The speed
and effectiveness of these responses are independent of the number of exposures to the
pathogen. The adaptive responses are linked to the immunological “memory” and can
generate an antigen-specific response. They involve antigen-specific T lymphocytes, which
determine the adaptive response or destroy virally infected cells and B lymphocytes can
secrete immunoglobulins (antibodies specific against the infecting pathogen) [127]. When
the adaptive immune responses occur, the T helper cells (Th1 and Th17) migrate into
circulation from lymphoid tissue, penetrate infected sites and make cytokines. The innate
and adaptive immune responses control inflammation and the progress of the self and
non-self-discrimination. Immature T cell populations express antigen-specific receptors
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that distinguish self or non-self-macromolecules [128]. In the thymus, T lymphocytes with
T cell receptors (TCRs) recognize the self-peptides and major histocompatibility complex
(MHC) proteins destroy nonself-macromolecules [129]. Autoimmune diseases happen
when central and or induced peripheral tolerance do not work. Old age, obesity and
diet determine the most severe symptoms of the disease. Aging can cause the thymus
involution that decreases the output of naive T lymphocytes (T CD8+ kill cells directly and
T CD4+, T helper cells that secrete cytokines) [130–133], the answer to new antigens and an
increase of the inflammatory mediators in the blood (inflammageing) [134]. An excessive
inflammatory response determines a loss in acquired immunity [134]. Obesity reduces T
lymphocytes, B lymphocytes, natural killer cell activity, the antibody and IFN-γ (Interferon-
gamma) production [135–137]. Food bioactive molecules and micronutrients can increase
immune functions [138]. Fatty acids, amino acids, vitamins and mineral ions produce
leukotrienes, prostaglandins, chemokines, immunoglobulins, cytokines and acute-phase
proteins [135,139], valid for the immunity response. Carbazoles and tryptophan-enriched
proteins determine antiinflammatory action, activating aryl hydrocarbon receptors. More-
over, diet regulates the microbiota to produce short-chain fatty acids that affect immune
responses activating the G-protein–coupled receptors and epigenetic mechanisms [140].

8. Nutrient with Potential Nutraceutical Effects
8.1. Lipids

Lipids are essential energy sources for the human body. Fatty acids are constituents
of fats and oils. They are classified into: saturated (without double bond), monounsatu-
rated (with one double bond) and polyunsaturated fatty acids (with some double bond).
Polyunsaturated fatty acids (PUFAs) are considered essential acids because humans can-
not synthesize them. They are divided into two groups: the omega-3 and omega-6 fatty
acids [141]. The free fatty acids (FFAs) serve as energy sources and natural ligands free
fatty acid receptors, regulating the secretion of peptide hormones and inflammation. The
viruses use the fats to fuse the viral membrane and host cell during replication, endocytosis
and exocytosis [142].

8.1.1. Unsaturated Fatty Acids
Monounsaturated Fatty Acids’ Health Properties

Monounsaturated fatty acids (MUFAs) are carboxylic acids with hydrocarbon chains
having only one double bond. MUFAs inhibit coagulation, improve blood pressure and
glucose homeostasis, reduce oxidative states and inflammation and modify plasma lipids,
lipoprotein patterns, membrane composition and fluidity of blood cells [29]. In EVOO, the
main MUFA by content is the oleic acid (18:1 ω-9), representing 49% to 83% of the total
fatty acid. It promotes bile secretion and enhances gastric mucosa protection by decreasing
hydrochloric acid secretion [143]. The American Heart Association sets a limit of MUFA
consumption at 20% of total energy. The American Diabetes Association and Dietitians of
Canada approve almost 25% of energy [144].

Polyunsaturated Fatty Acids Health Properties

PUFAs are carboxylic acids with hydrocarbon chains having more than one dou-
ble bond. PUFAs are classified into ω-3 and ω-6 families. ω-3 fatty (alpha-linolenic,
docosahexaenoic and eicosapentaenoic acids) have the double bonds in the third bond
from the methyl end. ω-6 acids (linoleic, arachidonic and gamma acids) have it in the
sixth bond from the fatty acid’s methyl end [145]. PUFAs are precursors of eicosanoids
(mediator signaling molecules). Eicosanoids derived fromω-6 PUFAs are proinflamma-
tory molecules. Eicosanoids from ω-3 PUFAs have anti-inflammatory properties [146].
Arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3) and docosahexaenoic acid
(DHA, n-3) are lipid immune mediators (SPMs) [147]. Mammals do not synthesize them.
Humans transform linoleic acid (LA) and alpha-linolenic acid (ALA) found in foods to
n-6 and n-3 long-chain polyunsaturated fatty acids [148]. SPMs contribute to cytokine
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“kidnapping” and eliminating remnants making the available restoration of structure and
tissue homeostasis [149–152]. They decrease inflammation (duration and magnitude) and
accelerate reepithelization, tissue regeneration and wound healing [153]. Moreover, EPA
and DHA are the precursors of resolvins and ARA of maresins and protectins. Resolvins,
maresins and protectins inactivate polymorphonuclear leukocytes and increase leukocytes,
which remove remnants from neutrophil apoptosis (efferocytosis). Finally, EPA and DHA
activate nuclear factor kappa B (NFkB), the peroxisome proliferator-activated receptor
(PPAR) and destabilize membrane lipid rafts.

8.2. Vitamins
8.2.1. Vitamin A

Vitamin A is a fat-soluble retinoid group (retinol, retinyl esters and retinal) [154–156].
Retinol is obtained from animal sources as retinyl palmitate, or it can be synthesized in
the intestine starting from beta carotene, a precursor/pro vitamin of vegetable origin.
Vitamin A controls the differentiation of epithelial tissue, the imprinting of the B and T
cells with gut-homing specificity, the arranging T cells and IgA+ cells into intestinal tis-
sues [157], supports the gut barrier [158–160], reduces the toxic effects of ROS and regulate
the membrane fluidity and gap-junctional communication [161,162]. Vitamin A improves
epithelial construction (keratinization, stratification, differentiation) and functional mat-
uration of epithelial cells [163]. It is part of the respiratory and intestine apparatus’s
mucus layer, promoting the antigen non-specific immunity function enhancing mucin
secretion [163–165]. Vitamin A promotes the proliferation and regulation of the thymocytes
apoptosis [166,167]. It plays a crucial role in controlling the differentiation, maturation and
function of macrophages and neutrophils, which respond to pathogen invasion through
phagocytosis and activation of natural killer T cells [168,169]. Vitamin A supervises the
early differentiation of the natural killer T (CD4+) and dendritic cells (antigen-presenting
cells) [170] and synthesizes immunoglobulins [171]. The balance between T helper 1 and T
helper 2 lymphocytes is altered when vitamin A is deficient. Retinoic acid is essential for
CD8+ T lymphocyte proliferation and antibody generation by B lymphocytes [172].

8.2.2. B-Group Vitamins

B vitamins are a family of water-soluble vitamins able to act as cofactors and coen-
zymes in metabolic pathways and play roles in maintaining immune homeostasis [173,174].
B vitamins are obtained from the intestinal microbiota and diet [175]. They contribute
to gut barrier function controlling the intestinal immune regulation and are involved in
intestinal immune regulation. Vitamin B6 regulates T lymphocyte migration, the folic acid
and the T cells in the small intestine [176,177]. Vitamin B12 influences the phagocytic and
bacterial killing capacity of the neutrophils [125]. Human gut microbes use vitamin B12
as a cofactor for metabolic pathways [126]. Both vitamins maintain or enhance NK cell
cytotoxic activity [177–179]. Villarruz-Sulit and Cabaluna (2020) hypothesized that vitamin
B supplementation affects the treatment of COVID-19 [179].

8.2.3. Vitamin C

Vitamin C is a water-soluble vitamin. Humans cannot synthesize it since they lack
a crucial enzyme in the biosynthetic pathway [180,181]. Vitamin C is an antioxidant
vitamin. It can donate electrons [182] and is a cofactor of monooxygenase and dioxyge-
nase (antioxidant enzymes) [183,184]. It is involved in collagen biosynthesis and plays
a crucial role in the immune system, including barrier integrity preservation and ac-
tion on leukocyte function [185–190]. It is a cofactor for two enzymes (lysyl and prolyl
hydroxylases) needed to maintain the tertiary structure of collagen I [184]. Moreover,
vitamin C protects against ROS-induced damage [157], improves keratinocyte differentia-
tion, lipid synthesis [191] and fibroblast proliferation and migration. It acts as an electron
donor [192–195]. Enhances motility/chemotaxis [196–205], phagocytosis, ROS genera-
tion [206–213] and microbial killing [196,197,214–217]. Moreover, vitamin C facilitates
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apoptosis, clearance [212,216,218], decreases necrosis and the formation of the extracellular
trap (NETosis), the cell death independent of apoptosis [216,218]. Vitamin C improves
differentiation and proliferation [204,205,219–225] of B and T lymphocytes, increases anti-
body levels [219,224–228], controls the cytokines production [219,229–238] and decreases
the histamine levels [198,204,239–245].

8.2.4. Vitamin E

Vitamin E is a collection of eight fat-soluble antioxidants that includes α-, β-, γ-
and δ-) tocopherol and (α-, β-, γ- and δ-) tocotrienol derivative [246]. Vitamin E deter-
mines both humoral and cell-mediated immune functions [247] and enhances infectious
pathogens’ susceptibility [248]. It protects membranes from damage caused by free rad-
icals [158,249], regulates NK cell cytotoxic activity [158,179,250,251] and decreases the
production of the PGE2 by macrophages [175,252,253]. Vitamin E protects the polyunsatu-
rated fatty acids and immune cells from oxidation [247,254]. It regulates natural killer cell
activity, lymphocyte proliferation, specific antibody production following vaccination, the
neutrophils’ phagocytosis and promotes interaction between CD4+ T lymphocytes and
dendritic cells [125].

8.3. Phytochemicals in Spices with Nutraceutical Properties
8.3.1. Phenols

Polyphenols are secondary metabolites of plants, involved in defense against attack
by pathogens or UV (ultraviolet) radiation. They are classified based on phenol rings in
phenolic acids, flavonoids, stilbenes, curcuminoids and lignans.

Flavonoids

The flavonoids consist of two aromatic rings bound together (A and B) and one hetero-
cycle (ring C). They are divided into six subclasses depending on the degree of unsaturation
and oxidation of the C ring and the carbon of the C ring on which the B ring is attached:
flavones, flavonols, isoflavones, chalcones, anthocyanins, flavanones, flavanols, catechins
and proanthocyanidins [255] (Table 1). Flavonoids have antioxidant, anti-mutagenic anti-
angiogenic, antibacterial, anti-allergic, antiinflammatory, anticancer, enzyme modulation
properties [256–258]. They can directly scavenge ROS, stabilize the free radicals, chelate
metal ions with phenolic hydroxyl groups, activate phase II detoxification enzymes and
block pro-oxidant enzymes. [259]. The flavonoids’ anticancer mechanisms employ the con-
trol of the ROS-scavenging enzyme’s activities, autophagy, apoptosis and inhibition of the
cancer cell proliferation and invasiveness [259]. The flavonoid’s antiinflammatory actions
involve immune cell regulation, suppressing the chemokines, COX-2, cytokines, proin-
flammatory transcription factors and kappa kinase/c-Jun amino-terminal kinases [260,261].
FDA (Food and Drug Administration) approved a clinical trial of quercetin against Covid-
19 [262]. In silico modeling works have shown that quercetin is one of the top five most po-
tent compounds in a database of 8000 small molecules) able to bind the interface site of the
ACE2 receptors and theoretically disrupt the initiating infection process of the SARS-CoV-2
Viral Spike Protein [263]. Apigenin, a 5,7-trihydroxyflavon, employs immune-regulatory
activity in an organ-specific manner modulating NF-κB activity in the lungs [264], decreas-
ing the secretion of the mast cell [265], T cells [266], COX-2, IL, TNF and NO [267]. In silico
modeling, works have shown that apigenin binds the interface site of the ACE2 receptors
and has great potential to act as COVID-19 main proteases inhibitors [268]. Isoflavones
are phytoestrogens belonging to the non-steroidal estrogens. They improve the adaptive
immune system, inhibiting lymphocyte proliferation, antigen-specific immune activities
(T- and B-cells) and allergic responses [269–272]. The isoflavone genistein enhances CD8
T-cells and cytokines’ production by T-cells [269,273–276]. Phytoestrogens interact with
the T-cell and contribute to cytokine responses compartment enhancing or inhibiting the
NF-kB pathway. Kojima et al. have shown that they improve gene expression mediated
by ROR γ and α (retinoic-acid-receptor-related orphan receptor) in T-lymphoma cells
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and enhancing the expression of IL-17 [275]. The phytoestrogens interact with the B-cell
compartment. The isoflavones inhibit IgG2a (immunoglobulin G2a) antibodies [270–272],
the antigen-specific IgG1 and IgG3 in thyroiditis [272], the expression of IgE [270], the
inflammatory immune response by inhibiting the antigen-presentation and functions of
dendritic cells (DCs) [270,271]. They modulate the innate immune system inhibiting the
production of IFN-γ, TNF-α, IL-9 and IL-13 from CD4+ T-cells [270,271], suppress allergic
inflammation-reducing mast cell degranulation [270,272] and control NK cell activity re-
ducing expression of IL-18Rα (IL-18 receptor α) and IFN-γ production in response to IL-12
and IL-18 [277]. Finally, they induce antiinflammatory responses in macrophages. Dia et al.
showed that some phytoestrogens (daidzein and genistein) reduce the production of NO
(nitric oxide), the expression of iNOS (inducible nitric oxide synthase) and enhance the
superoxide dismutase and catalase activities [278].

Table 1. Class of flavonoids and their seasoning sources.

Class of Flavonoids Chemical Structures Condiments and/or Spices Sources
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activities improving the glutathione transferase and NADPH quinone reductase (phase 2 
detoxification enzymes), reducing cytochrome formation P450 1A1, a pro-carcinogen ac-
tivating phase 1 enzyme and arachidonic acid production [283]. It has potential as a ther-
apeutic agent for neurological diseases (e.g., Alzheimer’s) since it inhibits amyloid-beta 
protein aggregation (e.g., α-synuclein, huntingtin, phosphorylated tau, prion proteins, 

EVOO, fenugreek, curry, tumeric, garlic, ginger, basil, parsley,
fennel, chilli pepper, sage.
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Table 1. Cont.

Class of Flavonoids Chemical Structures Condiments and/or Spices Sources

Isoflavonoids
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Figure 2. Curcuminoids in turmeric spice.

Curcumin, the principal polyphenol of Curcuma longa helps the antiinflammatory
system to decrease the metabolism of arachidonic acid, lipoxygenase and cyclooxygenase
activities, tumor necrosis factor, interleukins cytokines, nuclear factor-κB and steroids
production [280]. It supports antioxidant defense mechanisms, such as scavenge hydroxyl
radicals and superoxide anions, protection of cells from DNA damage, lipid peroxida-
tion, protein carbonylation, protein oxidation, improvement of the glutathione’s levels,
stabilization of the superoxide-dismutase, glutathione S-transferase and glutathione perox-
idase [281] and chelation of the heavy metals (aluminum, cadmium, copper, manganese,
zinc and iron) responsible of the ROS production [282]. Curcumin carries out chemopreven-
tive activities improving the glutathione transferase and NADPH quinone reductase (phase
2 detoxification enzymes), reducing cytochrome formation P450 1A1, a pro-carcinogen
activating phase 1 enzyme and arachidonic acid production [283]. It has potential as a
therapeutic agent for neurological diseases (e.g., Alzheimer’s) since it inhibits amyloid-beta
protein aggregation (e.g., α-synuclein, huntingtin, phosphorylated tau, prion proteins,
Aβ-oligomers and fibrils) and enhances motor coordination and cognition peroxidase [281].
Finally, curcumin has cardioprotective actions (e.g., antiplatelet and anticoagulant) and
improves the activities of detoxifying enzymes (e.g., glutathione-S-transferase) [284].
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Capsaicinoids

Capsaicinoids (CAPs) (Figure 3) are compounds responsible for the burning sensation.
Thirteen different CAPs are identified. They are characterized by one vanillyl group, a
carboxamide group and a variable aliphatic chain (Figure 3). Capsaicinoids have hypoc-
holesterolemic, antioxidant, antiinflammatory, antitumoral, antidiabetic and antiobesity
properties [285]. Capsaicin and dihydrocapsaicin have shown hypocholesterolemic action
obtained by reducing cholesterol absorption, improving its hepatic conversion to bile acids,
the excretion in the feces and inducing expression of hepatic LDL receptors [286]. Antioxi-
dant activity of CAPs is due to inhibition of lipid peroxidation; radical scavenge formation,
depletion of total hepatic thiols and hepatic antioxidant enzyme activities (glutathione-
reductase, glutathione-transferase, superoxide dismutase and catalase) [286]. CAPs block
the arachidonate metabolites’ production (PgE2, leukotrienes) and the release of the lysoso-
mal enzymes (elastase, hyaluronidase and collagenase) by macrophages [287]. Antitumoral
properties are related to the interaction with microsomal xenobiotic-metabolizing enzymes,
inactivation of cytochrome P-450 HE1 (and other isoforms of the P-450 family) block of
microsomal monooxygenases interested in carcinogen activation [288]. Capsaicinoids
have potential application in diabetes prevention since they improve insulin secretion by
activating, in islet β-cells, the transient receptor potential vanilloid subfamily member 1
(TRPV1) [289] decrease the concentration of postprandial blood glucose, enhance insulin se-
cretion and glucose tolerance [290]. Finally, capsaicinoids have an antiobesity effect due to
their ability to stimulate human brown adipose tissue growth. The human brown adipose
tissue is the primary site of non-shivering thermogenesis (NST). It increases whole-body
energy expenditure and regulates energy balance and body fatness [291].

Figure 3. Chemical structures of some capsaicinoids.

8.3.2. Organosulfur Compounds

Organosulfur compounds are biosynthesized for defensive purposes against abiotic
stressors by the Allium family’s plants (e.g., garlic and onion). Thiosulfates are trans-
formed by pH, temperature and solvent, into alk(en)yl cysteine sulfoxides, mono- di- and
tri-sulfides, S-allyl cysteine, (E)- and (Z)-ajoene and vinyl dithiins [292]. Organosulfur
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compounds act as anticancer molecules improving the immune system and inducing
proliferative signals by converting allyl sulfides into sulfane sulfur [293,294]. They stim-
ulate apoptosis, induce xenobiotic-metabolizing enzymes, enhance the detoxification of
carcinogens, have a role in cell cycle arrest and prevent nitrosamines and hydrocarbons’
metabolism, scavenging free radicals and modulate the enzymes responsible for DNA
repair [295,296]. Organosulfur compounds have antiinflammatory activities. The allicin
inhibits the proinflammatory cytokines from epithelial digestive cells, blocking TNF-α
secretion. Diallyl sulfide (DAS), diallyl tri- (DATS), tetra-sulfides and S-allylcysteine (SAC)
decreased inflammatory lipopolysaccharide. The allyl methyl disulfide reduces the forma-
tion of the IL-8/IP-10 by the TNF-α in intestinal cells [297].

9. Effect of Spices and Herbs on the Shelf Life of Foods

In past few years, the protective effects of essential oils (Eos) as antimicrobial and
antifungal agents in dairy products (e.g., chicken and meat) have been studied. Essential
oils are mixtures of organic chemical compounds from the terpenoid family (mainly mono-
and sesquiterpenes), phenols, aldehydes and ketones [298]. Eos have different modes of
fungal inactivation: chalcones reduce the synthesis of the cell wall polysaccharide 1,3-
beta-D-glucan causing fungal cell wall disruption [299] and decrease the conversion of
tubulin into microtubules, causing the interruption of the cell division [300]; aldehydes
inhibit fungal cell division by reacting with sulfhydryl involved in fungal cell division and
interfere with fungal metabolism forming a charge-transfer complex with electron donors
in fungal cells [301]; enones and enals stop fungal growth reacting with nucleophiles in
fungi [302]; ascaridole decrease hemin making toxic radicals in the presence of Fe2+ [303];
carvacrol causes a breakdown of ion gradients distributing into membranes and interferes
with the intracellular calcium homeostasis, improving the passive permeability of the
cell membrane, modulating the Ca2+ permeable transient receptor channels, preventing
sarcoplasmic reticulum Ca2+ ATPase and activating ryanodine receptors [303].

9.1. Spice Essential Oils in Postharvest Disease Mitigation

The composite solutions of aqueous extract of ginger, garlic and onion improve
the shelf life (for about 5–6 days), anti-bacteria, antioxidation and sensory quality of
stewed pork [304]. The addition in active packaging of ginger Eos extend the shelf life
of poultry meat and meat products since they reduce lipid oxidation and microbiological
growth [305,306]. Nanoemulsions of Thymus daenensis L. Eos are antibacterial, which can
prolong stability and meliorate sensorial attributes in mayonnaise [307]. Garlic and ginger
extracts improve the antioxidant activity, antimicrobial ability against some foodborne
pathogens (e.g., Bacillus subtilis DB 100 host, Escherichia coli BA 12296, Clostridium botulinum
ATCC 3584, Staphylococcus aureus NCTC10788 and Salmonella senftenberg ATCC 8400) and
reduce thiobarbituric acid reactive substances levels, in herring fish fillet [305]. The nanoen-
capsulated form of the Garlic Eos is more effective than free form when incorporating into
an active packaging (chitosan and whey protein films) to extend the shelf life of refrigerated
vacuum-packed sausage [308].

9.2. Herb Essential Pils in Postharvest Disease Mitigation

The cumin and clove essential oils reduced Escherichia coli, Listeria monocytogenes,
Salmonella, Campylobacter jejuni, Yersinia enterocolitica, Clostridium perfringens, Toxo-
plasma Gondi and Staphylococcus aureus bacterial cells in processed meat products [309].

Ethanolic extract of the Cinnamomum zeylanicum bark has a high antimicrobial effect
against Staphylococcus aureus, Escherichia coli [310], Listeria monocytogenes, Salmonella enterica,
food-borne pathogens [311].

Extracts of oregano and clove inhibit the lipid oxidation and reduce the Listeria mono-
cytogenes, Salmonella enterica and Staphylococcus aureus numbers in cheese at room tempera-
ture [311].
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The Ocimum basilicum L. Eos. have antifungal activity against Candida albicans, As-
pergillus niger [312], Aspergillus flavus [313] and Penicillium nalgiovense [314]. The basil
(Ocimum basilicum) leaves extract added to active film extends the shelf life of eggplant up
to 16 days. It reserved eggplants’ moisture loss, retarded the improvement in total soluble
solids, firmness and color changes [315]. Recently, Gundewadi et al. (2018) have shown a
desirable inhibitory activity of basil Eos against fungi, P. chrysogenum and A. flavus when
the nanoemulsions of the lipophilic active ingredients are dispersed in an aqueous media
and sapindus extract serves as a surfactant for nano emulsification purposes [316].

Chitosan packages infused with Origanum vulgare essential oil maintain the grapes’
quality, physical and sensory attributes in post-harvest storage [317].

Eugenol and thymol extend strawberry shelf life by improving resistance to spoilage,
deterioration and enhances their free radical scavenging capacity [318]. Eugenol and
thymol reduce weight loss, skin color variation, ripening and decay of grape berries when
used in a modified atmosphere package [319].

The fennel Eos addition to biodegradable film (based on polyhydroxybutyrate and
polylactic acids) preserves oysters’ shelf-life improving the oxygen barrier performance,
antioxidant activity and antimicrobial activity against aerobic and anaerobic bacteria [320].
Carvacrol, perillaldehyde and anethole improve total anthocyanins, phenolics and antioxi-
dant activity, in blueberry fruit [321].

Postharvest Eos (e.g., linalool, perillaldehyde, cinnamaldehyde, anethole, cinnamic
acid and carvacrol) treatments improve the antioxidant potential in raspberries with peril-
laldehyde [322].

9.3. Sauce Contribution in Postharvest Disease Mitigation

The soy sauce added to the Tambaqui fillet (processed by the sous vide) improves its
shelflife [323].

9.4. Condiment Contribution in Postharvest Disease Mitigation

Vinegar prolongs the shelf life and palatability of common mackerel [324]. The
powdered-buffered vinegar and liquid-buffered vinegar decrease the psychrotrophic
growth of Salmonella typhimurium in ground beef patties [325]. During chilled storage,
vinegar added to silver carp inhibit acid phosphatase (related to the freshness and flavor of
fish) and alkaline phosphatase and enhances the accumulation of inosine monophosphate
and free amino acids [326].

10. Food-to-Food Fortification

Food fortification aims to enhance people’s health. The main problem of classic food
fortification depends on the economic problems related to food processing, especially in
developing countries where the risk of malnutrition is very worrying. Food to food fortifi-
cation is a new approach to food fortification. It uses the accessible local resource (animal
or plant) to fortify another food [327]. Herbs, spices (essential oils, extract powder, fresh,
etc.) and sauces are added to dairy products to improve their functional properties [323].

10.1. Spice’s Contribution to the Functional Properties of Foods

The addition of Allium sativum water extract during fermentation increases lactic acid
bacteria in yogurt [328].

The supplement of cinnamon powder into yogurt enhances the antioxidant activity,
the total phenolic content and phenolics bioaccessibility into the gastrointestinal tract [329].
The addition of ginger extracts into yogurt improves its antigenotoxic and antioxidant
effects [330].

10.2. Herb’s Contribution to the Functional Properties of Foods

The supplement of basil into yogurt enhances the content of bioactive peptides and
antioxidant properties [331]. The addition of dry basil leaves preserves and functionalizes
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cheeses. The basil leaves improve the cheese’s antioxidant activity, prevent the degradation
of the protein (due to basil’s antimicrobial activity), fatty acids peroxidation and accelerat-
ing moisture loss [332]. The treatment of shredded iceberg lettuce with basil leaves’ extract
positively affects its total phenolic content, antioxidant potential and no effect on consumer
acceptability [333].

The fortify of cheese with dry rosemary and parsley improves cheese’s antioxidant
properties [334].

The supplement of sage, or thyme and cumin essential oils to butter enhances its
oxidative stability during storage time [335,336].

The addition of ginger into ice cream improves its total phenols and antioxidant
activity [337].

10.3. Sauces Contribution to the Functional Properties of Foods

Soy sauce reduces lipid oxidation in meat products through the chelating activity of
Fe2+ [338]. Soy sauce, Miso and fish sauces improve the Z-isomerization of lycopene in
processed tomato products, enhancing the functionality of dishes since Z isomer is the
most bioavailable [339].

10.4. Condiments Contribution to the Functional Properties of Foods

Extra virgin olive oil improves polyunsaturated fatty acids oxidative stability in algae
oil. The EVOO’s MUFA decreased the n-3 algae’ PUFA and the EVOO’s secoiridoid reduced
the algae’s triglyceride hydrolysis, simplifying their industry’s application [340].

11. Effect of Cooking on Spices, Condiments, Extra Virgin Olive Oil and Aromas
11.1. Effect of Cooking on Spices

The radical scavenging potential of ginger, garlic, cinnamon and turmeric depends
on the cooking method. Microwaves decrease antioxidant activity. Instead, boiling and
steaming increase it. Heat treatment also regulates their antimicrobial activity. Microwave,
bake, grill and frying determine to lose their antimicrobial activity. Instead, boiled and
steam methods decreased it [341]. The use of pepper onion, garlic, chili pepper, fennel and
cumin, before grilling, frying, or roasting the meat prevents the formation of heterocyclic
aromatic amines (Has) and polycyclic aromatic hydrocarbons (PAHs), compounds known
to be associated with cancer development [342,343]. HAs are made during the cooking of
protein-rich foods by the interaction between creatine/creatinine and free amino acids or
with hexoses from the Maillard reaction [344]. The incomplete pyrolysis or combustion
makes PAHs of organic matter. They are obtained by thermal degradation of fatty acids,
triglycerides, steroids and amino acids [345]. The phenolics and organosulfur compounds
in spices suppress the reactive species and/or interact on reactions, stopping byproducts’
formation [342]. Cooking methods and the fermentation process affect garlic antioxidant
capacities. Raw garlic has more antioxidant activity than cooked garlic and black garlic
(fermented garlic) has more significant antioxidant activity than crude garlic [346].

11.2. Effects of Cooking on Soy Sauce

Soy sauce preserves lipids from oxidation during cooking [347]. Phenolic compounds
(by soybean) and antioxidative Maillard reaction products (by a non-enzymatic browning
reaction) chelate ferrous ion a catalyst of lipid oxidation reaction [348].

11.3. Effects of Cooking on EVOO Degradation

EVOO has good thermal resistance in comparison with other vegetable oils. It is
due to the high MUFA profile, phenolic composition and vitamin E. The initial olive oil
composition, the period of the olive harvest and heating conditions (temperature, cooking
process time and food presence) regulate the degradation rate and time required to degrade
the antioxidant pool [338]. The absence of refining gave a high acidity to the EVOO and
decreased its upper thermal limits in response to the released free fatty acids’ lower boiling
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point. Under frying and roasting conditions (180–190 ◦C), EVOO performance is better
than other vegetable oils. It is quickly degraded under microwave processing, but food
decreases the thermo-oxidative effects of microwave heating [338]. EVOO degradation and
underwater boiling conditions, mainly depend on heating time, food and loss of phenolic
compounds into the water phase. As a result, wherever possible, olive oil must be added
more closely to the final cooking process [349].

12. Spices Side Effects

The consumption of some spices can cause side effects. For example, ginger can
determine gastrointestinal (e.g., heartburn, diarrhea, bloating, gas, abdominal pain and
epigastric distress), cardiovascular and respiratory symptoms [350]. High doses are not
recommended in pregnancy, lactation and patient with bleeding disorders since it has anti-
platelet property [351]. The most common garlic’s side effect is halitosis (bad breath) and
body odor, especially when the raw form of the herbs is taken due to allyl methyl sulfide.
A rare allergy to garlic was ascribed to protein allinase, which made hypersensitivity re-
sponses via immunoglobulin E [352]. Fenugreek ingestion can determine hypoglycemia in
diabetics persons, diarrhea, abdominal distention, dyspepsia and flatulence [353]. Tumeric
and curcumin can determine dermatitis and urticaria (immunoglobulin E mediated) es-
pecially following direct curcumin exposure to the skin or scalp [354]. Higher curcumin
doses increase carcinogenesis, enhancing ROS cell levels [355].

13. Conclusions

The spices and condiments play an essential role in our diet that goes far beyond
flavoring our dishes. They can be considered supplements of molecules functional to
prevent oxidative stress injury, inflammation damage and chronic degenerative diseases
that afflict our society, such as cardiovascular diseases and cancer. When multiple spices
are used to prepare a dish, there is the possibility that they can have synergistic effects,
increasing their health potential. However, more in-depth information on the effects of
exposure to their bio components is needed to define intervention strategies to maximize
beneficial effects and minimize unwanted side effects.
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