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The immune system is comprised of 2 arms, innate and adap-
tive immunity, which function in concert to protect an organism 
from pathogens and toxins. The immune system also plays an 
integral role in the process of tissue repair after injury.58,127 The 
process by which the immune system responds to pathogens, 
toxins, and tissue injury and initiates tissue repair is known 
as inflammation. Inflammation and its association with pain 
have been recognized since it was first described by the Roman, 
Aulus Celsus.177 More recently, it has been elucidated that the 
immune and nervous systems interact to mediate and modu-
late central and peripheral nociceptive processes that influence 
acute and chronic pain.69,95,190,217 There is a dizzying array of cells, 
receptors, enzymes, cytokines, peptides, and neurotransmit-
ters that constitute the inflammatory process and neuroimmune 
interactions related to pain. To further complicate the picture, 
drugs that are used to control pain, modulate immune func-
tion and the immune system can produce endogenous anal-
gesics.129,200 The goal of this article is to improve the reader’s 
understanding of the relationship between pain, analgesia, and 

immune function in the context of preclinical in vivo studies. 
We hope this article will serve as a guide for laboratory animal 
professionals, IACUCs, and investigators in the selection of ap-
propriate analgesics for preclinical studies of inflammatory dis-
ease and immune system function.

Neuroimmune Interactions
With regards to pain and analgesia, it is critical to understand 

the complex interactions between the immune and nervous 
systems. It has been postulated that a well-regulated neuroim-
mune response to infection, noxious stimuli, and tissue injury 
represents a cohesive system for host defense and tissue heal-
ing.36 Thus, conceptual siloing of immune and nervous system 
responses to pain is no longer appropriate.

Neurogenic Inflammation
Multiple lines of evidence indicate that nociceptive neurons 

can initiate and modulate inflammation. Considering the speed 
at which they respond to any form of insult, (traumatic, ther-
mal, chemical) and their broad tissue distribution, nociceptive 
neurons are uniquely poised to function as monitors and rapid 
initiators of a neuroimmune response.36 When triggered by nox-
ious stimuli or alarmins (ATP, uric acid, hydroxynonenals) from 
damaged tissue, receptors primarily in the Transient Receptor 
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Potential ion channels (TRP) and ATP Purine Receptor X (P2×) 
and Y (P2Y) family activate nociceptors which release neurop-
etides that initiate a response referred to as neurogenic inflam-
mation.36,95 Specifically, tachykinins (substance P and neurokinin 
A) and calcitonin gene-related peptide (CGRP), released from 
nociceptive neurons, act on vascular endothelium and smooth 
muscle cells, causing vasodilation and increased endothelial 
permeability.16,116,143,174,179,185 Activated nociceptive neurons also 
release neuropeptides and cytokines which attract and activate 
innate and adaptive immune cells.65,85,86,104,187,219 Over a course of 
days, the inflammatory response recruits monocytes, which dif-
ferentiate into macrophages. Over time, macrophages undergo 
phenotype changes from inflammatory/host defense (M1) to 
antiinflammatory/wound healing (M2) cells as the wound mi-
croenvironment changes.58,127 Thus, nociceptor activation can 
induce the factors that cause the classic signs of inflammation: 
rubor, tumor, calor, and dolor, and may contribute to wound 
healing.

Bidirectional Interactions
Interactions between the immune system and nervous system 

are bidirectional and not all nociceptor driven. Nociceptive neu-
rons express and respond to a receptor profile similar to that of 
leukocytes. These include receptors for cytokines, eicosanoids 

(prostaglandins), Toll-like receptors, and ATP purine receptors 
P2× and P2Y.76,147,209,214 Leukocytes express TRP receptors, mac-
rophages, express high levels of Transient Receptor Potential 
Vanilloid (TRPV2), and mast cells express TRPV1. To further 
complicate the picture, both leukocytes and nociceptors express 
µ, δ, and κ opioid receptors, and T-lymphocytes, granulocytes 
and monocytes-macrophages can release endogenous opioid 
peptides.129,133,154,200

The pattern of aforementioned receptor expression suggests 
that the immune system can modulate nociception, and the ner-
vous system can modulate inflammation. Nociceptors can also 
be directly activated by infectious agents, damage-associated 
molecular pattern molecules (DAMPs) and pathogen-associated 
molecular pattern molecules (PAMPs) through Toll-like recep-
tors.35,59,146,214 It has been well established that inflammatory 
mediators activate nociceptors (causing pain) and can initiate 
neural plasticity in nociceptive pathways. This results in periph-
eral and central nociceptor sensitization.15,43,199 Clinically, periph-
eral and central nociceptor sensitization manifests as allodynia, 
hyperesthesia, and hyperalgesia.208

Neuroimmune activation of nociceptive neurons occurs in 
the PNS and CNS. In response to injury or alarmin stimulation, 
leukocytes, endothelial cells, and neurons in the dorsal root gan-
glion (DRG), trigeminal ganglia (TG) and the dorsal horn of the 
spinal cord release eicosanoids, growth factors, kinins, and cy-
tokines.120,121,173,223 This milieu of biochemicals binds to receptors 
on nociceptive neurons, which are coupled to TRPV receptors 
and ion channels, resulting in increased neuron activity and 
sensitization.110,111,164,199,206,208

Microglial Activation
Activation and proliferation of microglial cells is thought to 

be a central feature of the neuroimmune interface both in physi-
ologic and pathologic pain, and a primary element in the de-
velopment of central sensitization and potentially, chronic pain 
(Figure 1).216 Microglia are the predominant cell type in the CNS, 
and reside at a critical interface; the synapse between 1st and 
2nd order nociceptive neurons in the spinal dorsal horn. The 
activation of microglia represents a key feature of the neuroim-
mune interface, since activation can occur through neuronal, im-
mune and pathogen mediated pathways.49,96,217 In addition, sex 
differences in glial activation have been reported, which may 
contribute to the established sexual dimorphism of pain.49,134

Microglia are activated by ATP, CC-chemokine ligand 2 and 
21, CX3CL1 (fracktalkine), and neuregulin 1, released from 1st 
order neurons during high threshold activation or injury.148,212 
Of particular note is that the receptor for CX3CL1, CX3CR1, is 
only expressed on microglia and may represent a unique neu-
roimmune interface.212 Pathogens, DAMPs and PAMPs can 
directly activate microglial cells through binding to Toll-like 
receptors.72,184 Cytokines released from leukocytes both activate 
microglial cells and directly contribute to nociceptive hyper-
activity. When activated, microglia release proinflammatory 
cytokines, reactive oxygen species, brain-derived neurotrophic 
factor, and integrins. This biochemical barrage results in en-
hanced excitability in 2nd order neurons, increased release of 
substance P, glutamate and excitatory amino acids from primary 
afferent neurons, astrocyte activation, inhibition of inhibitory 
interneurons and recruitment of T-cells.216

Endocannabinoid System
The Endocannabinoid system (ECS), an endogenous “on-

demand” messaging system comprised of lipophilic ligands, 

Figure 1. Interactions between nociceptive neurons and microglial 
cells after neuronal damage or activation by alarmins are depicted. 
l-glutamate (l-glu), substance P (SubP), adenosine triphosphate 
(ATP), brain-derived neurotrophic factor (BDNF), cysteine-cysteine 
chemokine ligand CCL2 neurokinin-1 receptors (NK-1R), extracel-
lular signal-regulated kinase (ERK), α-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid receptors (AMPAR), cyclic adenosine 
monophosphate response element binding protein (CREB). ATP pu-
rinergic receptors,   (P2X7, P2Y12 and P2Y13R), mitogen-activated 
kinase (p38), c-jun-N terminal kinase (JNK), nuclear factor kappa B 
(NFκB), Interleukin-1β (IL1β) and its receptor, (IL-1R) tumor necrosis 
factor α (TNFα) and its receptor (TNFR), chloride (Cl−) transporter 
(KCC2), gamma aminobutyric acid  A receptor (GABAA), chemokine 
ligand 2 (CCL2), chemokine receptor 2,3 (CCR2, CCR3), Cathepsin 
S (CatS),  fractalkine (FKN, also termed CX3C-chemokine ligand 1), 
chemokine receptor 1 (CX3CR), Matrix metalloprotease 2, 9 (MMP2 
MMP9), toll-like receptor 4 (TLR4).
Reprinted by permission from Wolters Kluwer Health. Central neu-
ron-glia interactions and neuropathic pain, Eduardo E. Benarroch 2010
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their receptors, and synthetic proteins, represents another neu-
roimmune interface.167 The ECS has widespread and varied 
physiologic functions throughout the body including neuro-
immune modulatory effects. The 2 principle endocannabinoid 
receptors (CB) are CB1 and CB2. CB1 receptors are found primar-
ily in presynaptic neurons and are abundant in peripheral and 
central nociceptive pathways.1,82,83,102 CB2 receptors are expressed 
at lower levels in neurons and principally reside in peripheral 
tissues and leukocytes, including microglia.162 While CB1 expres-
sion appears constitutive in the CNS, CB2 is highly induced by 
inflammation and tissue injury.20,21,40,41,125 However, it remains 
unclear if the increase in CB2 is due to increased expression in 
resident leukocytes or due to infiltration from CB2 expressing 
monocytes. In response to high levels of activity, the primary 
endocannabinoid ligands 2-arachidonoylglycerol and arachi-
donoylethanolamide are synthesized from membrane phos-
pholipids in postsynaptic neurons.4,45,222 Glial cell production of 
endocannabinoids has also been demonstrated in vitro, and is 
postulated to occur during neuronal injury.32,52 Ligand binding 
to CB1r results in antinociception by activation of descending 
antinociceptive pathways and inhibition of nociceptive neuro-
transmission and supraspinal processing.1,82,102,139,153 Cannabinoids 
exert broad antiinflammatory effects on peripheral leukocytes 
and glial cells, including reduced proinflammatory cytokine re-
lease, increased antiinflammatory cytokine release, decreased cell 
migration and activation, and inducing apoptosis.30,167

Effect of Pain on Immune System Function
Clearly, the nervous and immune systems are inexorably 

linked. However, separating the effect of pain resulting from 
tissue injury and the direct effect of tissue damage on immune 
function can be problematic. In addition, the effects of chronic 
pain on immune system function are significantly different 
than the effects of acute pain, and often involves a chronic in-
flammatory stimulus. Experimental procedures that employ 
noxious stimuli which do not (or should not) cause tissue dam-
age have been shown to suppress selective immune function. 
For example, foot shock has been shown to suppress NK cell 
activity and mitogen induced cell proliferation. 172,183,193 Sup-
pression of antigen stimulated IgG production and a reduced 
in vitro proliferative response to alloantigens (as assessed by 
mixed lymphocyte reaction) has been demonstrated in a tail-
shock model.63,112 These studies suggest the possibility that pain 
or aversion (stress) induce the release of immunosuppressive 
hormones that modulate immune function in these models.

Surgery
Surgical procedures have well documented and marked 

effects on immune system function in humans, including in-
creased susceptibility to infection, delayed wound healing, and 
enhanced tumor growth and spread of metastatic cancer.44,77,135 
Similar data exists in animal models. Reduced NK and B-cell 
and T- cell activity and enhanced tumor growth have been 
demonstrated in rat and mouse surgical model.7,19,159,168,186,204,205 
Impairment of macrophage function, including reduced phago-
cytosis of pathogens, microbicidal activity and H2O2 release and 
seemingly paradoxical increased TNFα release has been shown 
after surgical procedures in rodents.92,142,149,189 Macrophage dys-
function shows a phasic response over time in surgical models 
and decreased antigen presentation can last for a week.142 T-
cell dysfunction characterized, by decreased production of IL2, 
IFNγ, and loss of T cell receptor – ζ occurs after laparotomy in 
mice, and may be due to T-cell suppression by myeloid CD11b+/

Gr-1+ cells that infiltrate the spleen after surgery.132 Serum levels 
of the proinflammatory cytokines IL6 and IL1β transiently in-
crease after laparotomy, and the potent angiogenic cytokine Vas-
cular Endothelial Growth Factor, implicated in enhanced tumor 
growth, increases significantly around 6 to 12 d after surgery.168 
Seven days after surgical trauma and hemorrhage, there is a 
shift in splenic T-helper cytokine profiles from Th1 (decreased 
IFNγ, IL2) to Th2 (increased IL4, IL5, IL6, and IL10) in mouse.130 
Shifts in Th1 to Th2 phenotypes are associated with increased 
susceptibility to viral, bacterial and helminth infections and the 
development of sepsis.87,105 In addition, the effects of the surgi-
cal trauma and hemorrhage protocol on immune function are 
more pronounced in 18 to 20 mo old animals compared with 6 
to 8 wk old.98

The mechanisms underlying immunosuppression in surgery 
and trauma models are complex and involve, pain, activation 
of the Hypothalamic-Pituitary-Axis, sympathetic nervous sys-
tem activation, tissue trauma, and the effects of anesthesia and 
analgesia.81,105,107 Despite evidence that analgesics can inhibit 
immune function, a significant body of research suggests that 
robust pain management in humans reduces surgically related 
immunosuppression.3,9,17,18,97,192,225, 227 Although not as extensive 
as the human literature, similar findings have been made in ro-
dents, which suggest that surgical pain management improves 
immune function and reduces tumor spread.14,74,165,166,192

Analgesic Modulation of Immune Function. Opioids. Opioids 
are some of the most common and potent analgesics used in 
laboratory animal medicine and in vivo research. Considerable 
effort has gone into elucidating the effects of opioids on immune 
function, however, the exact mechanism by which opioids mod-
ulate immune function has not been clearly elucidated. Postu-
lated mechanisms for opioid modulation of immune function 
include alterations in the Hypothalamic-Pituitary-Axis, mu-
opioid receptor activation, drug binding to nonopioid receptors 
on leukocytes, modulation of autonomic tone, drug structure, 
or a combination of effects.5,25 In general, opioids can be classi-
fied as drugs with mild to moderate effects on immune function 
(buprenorphine, hydromorphone, oxycodone, tramadol, hydro-
codone, oxycodone) or marked effects on immune function (co-
deine, methadone, morphine, fentanyl, remifentanil).5 Because 
the effects of opioids on immune function vary by drug and 
species, this discussion will examine the immune modulatory 
profile of each drug individually.

Buprenorphine. Arguably, buprenorphine is the most com-
monly used opioid in laboratory animal medicine. It appears 
that buprenorphine has the least effect on immune function, 
compared to other opiods, although not inert in this respect. 
When used as an analgesic in the guinea pig Sereny test (0.05 
mg/kg BID for the duration of the test) buprenorphine had no 
effect on Shigella antigen induced or vaccine induced antibody 
responses or severity ratings.73 When infused to healthy dogs 
for 24 h, buprenorphine (1.7 µg/kg/h) had no effect on leu-
kocyte stimulated cytokine production, apoptosis, neutrophil 
phagocytosis, or oxidative burst. Similar effects were noted for 
morphine.151

Pain induced by immunization with complete Freund adju-
vant (CFA) and incomplete Freund adjuvant (IFA) in mice was 
reduced by buprenorphine (0.1 mg/kg BID X 72 h) and did not 
impair vaccine induced IgG titers.108 Infusion of buprenorphine 
in mouse for up to 7 d at 300 µg/day had no effect on NK cell 
activity and splenocyte lymphoproliferation, γ interferon release 
or IL2 production.140 In the mouse intracranial lymphocytic cho-
riomeningitis virus model, infusion of buprenorphine (0.15 mg/
kg/d) reduced pain scores and had no effect on the numbers 
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of splenic CD8+,CD4+, NK1.1, and CD19+ cells or cytotoxic T-
cell responses to viral epitopes.155 CNS Infiltration of leukocytes 
and virus-specific cytotoxic T cells in response to infection was 
also not affected.155 Administration of buprenorphine to mice 
at 2 mg/kg SID for 7 d had no effect on IgG and IgM titers in 
responses to sheep red blood cells, and increased the num-
ber of antibody producing cells.60 In the same study, using a 
contact hypersensitivity model, a process dependent on Th-1 
lymphocytes and macrophage function, buprenorphine and 
oxycodone were shown to suppress reactions during the induc-
tion and effector phase.60 Nitric oxide release from macrophages 
was suppressed, and no significant effects on cytokine release 
from either unstimulated or LPS stimulated macrophages was 
noted.60 Although not reported as statistically significant, mac-
rophage surface markers were also reduced by buprenorphine 
treatment.60

Buprenorphine can have strain and species dependent effects. 
In Lewis rat, buprenorphine reduced NK cell activity and sup-
pressed mitogen stimulated proliferation and γ-interferon re-
lease from splenic lymphocytes in a dose-dependent fashion.33 
Suppression of immune function was noted after single doses 
of buprenorphine either 0.1 and 1.0 mg/kg, although not at 0.01 
mg/kg. The immunosupressive effects of buprenorphine were 
inhibited by administration of naltrexone, suggesting mu-receptor 
modulation of immune function in this study.33 Conversely, in 
Fischer rats, 2 doses of buprenorphine (0.1 mg/kg) given 5 h 
apart, were shown to preserve NK cell function in a surgical 
model64 and 0.66 nmol injected once into the midbrain had no 
effect on splenic NK cell, T cell, and macrophage function.68

The advent of sustained release formulations of buprenor-
phine invites questions as to the potential effects of such 
preparations on immune function. Evidence is emerging that 
sustained release buprenorphine has a different immunomodu-
latory fingerprint and may be less immunomodulatory than 
buprenorphine HCl.6,78

Morphine and Fentanyl. Morphine and fentanyl have well 
documented immunosuppressant effects in humans. Owing to 
their infrequent use as analgesics, the effects of morphine and 
fentanyl on immune function in laboratory animals is not as 
well established. It is clear; however, that morphine and fen-
tanyl have different immunomodulatory profiles, despite their 
antinociceptive action being primarily through mu receptor 
binding. In the mouse, fentanyl infusion (12.5 mg/h) over 7 d 
resulted in significant depression of NK cell activity, lympho-
proliferation and IL2 and IFNγ release at day 1 and 3 of treat-
ment.140 At day 7, immunotolerance appeared to develop, and 
no significant changes in the aforementioned dependent mea-
sures were noted.140 Several studies in mouse have documented 
the suppressive effects of morphine and fentanyl on macro-
phage dependent humoral responses, stimulation of reactive 
oxygen intermediate production, and the alteration of immune 
responses in a contact hypersensitivity model.60,61 Morphine and 
fentanyl inhibit LPS induced TNFα release after single doses.146 
Repeated treatment every 8 h induces immunotolerance to mor-
phine and sensitization to fentanyl after 6 to 8 doses.150 Single 
doses of morphine (0.1 to 10 mg/kg) had antiinflammatory ef-
fects in a murine incision model.38 However the relevance of all 
these findings to clinical analgesia is questionable.

Tramadol. Although not commonly used, tramadol appears to 
have antinociceptive effects in rodents and dog.122,152,182,198,230 Tra-
madol is considered a drug with minimal immunosuppressive 
activity11,122,182,198,230 although it can have profound antiinflamma-
tory action and in some models be an immunostimulant.23,181,230

Local Anesthetics
Local anesthetics (LAs) are extremely effective and are im-

portant drugs for pain prevention and management protocols. 
All LAs work through the same basic mechanism, by inhibiting 
voltage gated sodium channels in nociceptive neurons, blocking 
depolarization and thus, neurotransmission. Thus, LAs would 
be expected to exert an antiinflammatory effect by preventing 
the release of proinflammatory molecules that occurs when noci-
ceptive neurons depolarize. Because a component of the patho-
physiology of inflammatory pain is upregulation of sodium 
channels in nociceptive neurons, in this context, LAs inhibition 
of nociceptive neuron depolarization should prevent periph-
eral and central sensitization induced by inflammatory media-
tors.8 Most studies on LAs use lidocaine as the prototypical drug 
and occasionally bupivacaine, and assume comparable effects 
across all LAs. Leukocytes, excepting neutrophils, express volt-
age gated sodium channels, some of which may be important in 
microglia and macrophage function.42 The extent to which the 
direct inhibition of Na channels on leukocytes, interactions with 
other receptors such as G-protein-coupled receptors, and the 
indirect inhibition of inflammatory mediator release contributes 
to the immunomodulatory effects of LAs is not known. Another 
noteworthy phenomenon is that the antiinflammatory effects 
of LAs in vitro require supra-clinical drug concentrations and 
that in vivo effects occur at clinically relevant doses. LAs have 
been shown to modulate PMNs, macrophages, and cytokine 
release in a variety of models.82 PMN and macrophage functions 
(including chemotaxis, adherence, production of toxic oxygen 
species, phagocytosis, and cytokine release) are inhibited by 
LAs.10,12,13,70,84,191 Lidocaine has been shown to inhibit cell pro-
liferation, cytokine production, and mitogen-activated protein 
kinase activation in T cells and upregulate regulatory T-cells 
that promote an antiinflammatory t-cell phenotype.84,94,101,118 One 
study in mouse showed that release of antiinflammatory cyto-
kine IL10 may be enhanced by lidocaine.211 Questions remain as 
to how long the immunomodulatory effects of LAs persist after 
drug administration is complete. To date, there do not appear to 
be any studies that have addressed this question.

Nonsteriodal Antiinflammatory Drug (NSAID). NSAID are 
arguably the most commonly used class of analgesic drugs in 
veterinary medicine and their use is prevalent in laboratory 
animal medicine. All NSAID work through the same primary 
mechanism; the inhibition of prostaglandin synthesis by inhibi-
tion of Cyclooxygenase (COX) isoenzymes 1 and or 2. NSAID 
anti-inflammatory and toxic effects, mediated by inhibition of 
prostaglandin synthesis, is exceptionally well documented in 
both human and veterinary literature. However, the analgesic 
effects of NSAID do not seem to rely on how selective an NSAID 
is for COX1 or 2. Recently, a host of prostaglandin and COX in-
dependent anti-inflammatory and analgesic effects have been 
proposed for NSAID. These effects vary by drug, but include 
antioxidant activity, inhibition of Nuclear Factor-κ B, inhibi-
tion of 5-lipoxygenase, prostaglandin receptor antagonism, anti-
bradykinin actions and inhibition of fatty acid amide hydrolase, 
cytokine release, cell adhesion, and metabolism of arachidonic 
acid. 27,46,48,56,79,89,93,115,157,188 Since virtually every cell in the body 
constitutively expresses COX1, and COX2 can be markedly in-
duced by inflammatory mediators, inhibition of COX has been 
ascribed to anti-inflammatory action in a staggering number 
of human and animal models. In addition, a wide range of be-
havioral actions have been associated with NSAID inhibition of 
COX.34,119,128,160 Data have been compiled on NSAID classified by 
chemical structure, COX selectivity, and putative mechanism of 
action. Any data on COX inhibitors must be carefully evaluated, 
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since COX selectivity is almost always based on in vitro deter-
minations using human cells, varies depending on the type of 
assay employed, and may not translate from human to animal 
cells or from one species to another.47,114,115,117,176 Thus the impact 
of any given NSAID on immune function in a particular animal 
species cannot be accurately extrapolated from other NSAID or 
human data.

Although macrophages and neutrophils are thought to be the 
principle target leukocytes for NSAID actions, T cells and NK 
cells may also be impacted by NSAID. In neurodegenerative 
diseases with an inflammatory component, such as Alzheimer, 
the immune function of neurons, microglia, astrocytes, and en-
dothelial cells can all be altered by NSAID.123 In T cells, NSAID 
inhibition of COX1 interferes with T cell receptor dependent 
activation of p38 MAP-kinase, which blocks upregulation of 
COX2.163 Both isoforms of COX and their metabolites play a 
significant role in the differentiation of CD4+ T cells to Th1, 
Th2, and Th17 phenotypes. In general, COX and their eico-
sanoid products suppress Th1 differentiation, and augment 
Th2 and Th17 phenotypes and function.117 In this fashion, 
NSAIDs may profoundly alter immune function, impacting 
a wide variety of models and processes that depend on CD4+ 
T-cell differentiation.

The effects of NSAID on immune function varies by com-
pound and species. The following section will discuss the effect 
of the most commonly used NSAID drugs (carprofen, ketopro-
fen, meloxicam), on immune indices.

Meloxicam. In a mouse vaccination study using complete 
CFA, meloxicam was shown to reduce CFA associated pain 
without altering primary or secondary antibody responses.108 
In 2 separate mouse models of infectious disease, meloxicam 
was shown to markedly reduced release of PGE2, TNFα, IFNγ, 
IL4, IL10 and increase IL2 release from splenocytes.144,145 Nor-
malization of lymphoproliferation, and reduced parasitemia 
and mortality were noted in response to meloxicam in the  
T. cruzi study.145 Meloxicam has also been shown to inhibit 
Nuclear Factor-κ B activation in LPS stimulated mouse mac-
rophages.89 Conversely, in a rabbit model of antigen induced 
arthritis, meloxicam was shown to decrease PGE2, leukocyte 
infiltration and release of IL8 and had no effect on monocyte 
chemotactic peptide-1.124 Meloxicam had no effect on LPS stimu-
lated serum IL6 release and augmented TNF release in Guinea 
pig.180 To date, no data has been published on immune modula-
tion by the sustained release formulation of meloxicam.

Carprofen. Similar to results for meloxicam in mouse,105 car-
profen had no significant effect on CFA enhanced polyclonal an-
tibody production in rabbit.62 Carprofen reduced inflammatory 
cell infiltrates, thrombus weight, vein wall thickness, and serum 
IL6 in a mouse model of venous thrombosis.80 TNFα activity 
was reduced by carprofen in a rat subcutaneous pouch model 
of inflammation109 In a mouse model of traumatic brain injury, 
carprofen was shown to be neuroprotective and reduced brain 
levels of IL6 and IL1.208

Ketoprofen. Although several studies on the effects of keto-
profen on immune endpoints in rat have been reported, the use 
of this drug in rat is likely contraindicated due to its potential 
for gastrointestinal toxicity194 and availability of other, less toxic 
options. In mice, ketoprofen has been shown to have profound 
effects on clinical endpoints, reducing cytokine release, and 
suppressing lymphocyte proportions of Th1 and Th17 cells in 
a collagen-induced arthritis model.37 In several mouse mod-
els, ketoprofen has been shown to increase TNFα levels which 
appears to be an effect of the S-isomer of the drug.66,67,141,158 In 
pig, ketoprofen can inhibit LPS stimulated cytokine release in 

vitro, although not in vivo, despite inhibiting PGE2 under both 
conditions.224

Model Specific Effects of Analgesia
Rodents are commonly used for studies of immunology, in-

flammation, and infectious disease. A partial list includes vac-
cine development, antibody production, inflammation induced 
with CFA or carrageenan, and models of inflammatory bowel 
disease and arthritis. The majority, if not all, of these studies 
are completed in rodents without analgesics despite being as-
sociated with significant levels of pain. A limited number of 
infectious disease models have assessed the effects of analgesia 
on immune endpoints and disease severity or mortality. The fol-
lowing section will discuss the effects of analgesia on immune 
function and in specific models.

Vaccines and Monoclonal Antibody Production. The adminis-
tration of vaccines is not generally associated with pain; how-
ever, the administration of infectious agents or neoplastic cells 
that the vaccines are targeting may be associated with signifi-
cant pain. This is especially true with the recent focus on the 
use of vaccines and immunotherapies to treat various cancers. 
Unfortunately, very few studies have attempted to look at the 
effects of analgesics on vaccine efficacy (see Figure 2). Kolstad 
and colleagues demonstrated that acetaminophen, meloxicam, 
and buprenorphine decreased signs of pain in male C57BL/6J 
mice, but did not decrease the antibody response to immuniza-
tion with antigen in either CFA or IFA.108 However, in conflict 
with this, Filipczak and colleagues showed that the timing of 
administration and the type of opioid administered affects the 
cell- and humoral- mediate immune response in CBA mice, with 
oxycodone having the weakest immunomodulatory properties 
in mice.60,61 Another group, who recognized that analgesics are 
never withheld from cancer patients, specifically studied the 
effects of physiologically relevant doses of analgesics on an an-
titumor vaccine. This study found that morphine administered 
alone suppressed the antitumor effect of the antigen-specific 
DNA vaccine, but when coadministered with ketorolac, analge-
sia was provided to female C57BL/6 mice without compromis-
ing the antigen-specific immunity and antitumor effect of the 
naked DNA vaccine.203

While vaccines may not be painful, monoclonal antibody 
production can be associated with significant amounts of pain 
and distress.170,178 In vivo growth of hybridoma cells, result-
ing in accumulation of ascites fluid, has been reported to be 
a source of pain and distress, as has the injection of adjuvants 
and antibodies used to induce ascites.202 The effects of mor-
phine on antibody production has been evaluated in a number 
of studies, and results suggest that it may suppress antibody 
production in a strain, but not sex dependent manner.28 More 
specifically, morphine consistently suppressed the primary 
antibody response in C3HeB/FeJ, C3H/HeJ, and C57BL/6 but 
not CxBk/ByJ or Balb/cByJ mice.28 In addition, C57BL/6J bgJ/
bgJ mice, which tend to be less sensitive than other strains to 
analgesic effects of morphine, were shown to have a decreased 
capacity to respond to antigenic challenge when implanted 
with morphine pellets.29

In contrast to morphine, clinically relevant doses of meloxi-
cam, buprenorphine, or a combination of both, did not affect 
antibody production in male BALB/c mice injected with pris-
tane followed by hybridoma cells for antibody production, com-
pared with saline controls.136

Due to the variety of immunomodulatory effects seen in 
vaccine and antibody production studies, caution should be 
used with any analgesic agent. Partial µ-agonists (for example 
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buprenorphine) or combinations of NSAID and partial µ-agonist 
can likely be used, but pilot studies may be necessary to identify 
any potential confounding effects of drug administration.

Inflammation models. Inflammation and associated pain is 
a primary component of many disease and injury conditions. 
Inflammatory pain can result from thermal, chemical, or me-
chanical injuries via nociceptors in the neural system. Mice and 
rats are used in a variety of different inflammation models that 
mimic the human condition, most commonly without any an-
algesia despite the knowledge that these conditions are associ-
ated with significant pain in humans. Figure 3 summarizes the 
effects that analgesics have been reported to have in models of 
inflammation.

Complete Freund Adjuvant and Carrageenan. An inflamma-
tory state can be created by injecting chemical agents, such as 
CFA or carrageenan. Plantar intradermal injections of CFA have 
been used to study the effects of COX isoenzymes and is also 
a good model for studying novel analgesics for rheumatoid 
arthritis.152 Both ketorolac and celecoxib, administered intra-
thecally, transiently increased expression of inducible COX2 in 
the spinal cord of male Sprague–Dawley rats with adjuvant in-
duced inflammation and relieved thermal hyperalgesia through 
blockade of COX.88 In CFA-induced unilateral paw inflamma-
tion in a rodent model, µ and κ agonists decrease the severity of 
inflammation.201 Similarly, carrageenan injection induces granu-
loma formation which has been used to evaluate general antiin-
flammatory agents. Butorphanol decreased paw inflammation 
following carrageenan injections, with or without concurrent 
administration of indomethacin in Sprague–Dawley rats,210 and 
acetaminophen reduced inflammatory hyperalgesia without af-
fecting inflammation and central hyperalgesia in male Sprague–
Dawley rats.22 It appears that both NSAID and opioids can have 
strong inflammation-modulating effects in these models and 
that their use is best avoided to avoid confounding analysis of 
the inflammatory response.

Rheumatoid Arthritis. Rheumatoid arthritis (RA) is a painful, 
chronic, autoimmune disease. Rodent models of rheumatoid ar-
thritis are similarly painful, and significant refinement of these 
models to improve rodent welfare is necessary. NSAIDs are 
the mainstay therapy for pain relief in human RA patients, and 
opioids are rarely used. Although NSAID may provide appro-
priate analgesia for rodent subjects in models of RA, they can 
also markedly confound experimental results, by significantly 
modulating the inflammatory response and decreasing disease 
severity.2,54,75,91,228 Opioids have shown variable effects on model 

endpoints that depend on the animal stock or strain used, type 
of opioid administered route of administration, and method of 
arthritis induction.50,71,213,215 A full discussion of the various ef-
fects of both NSAID and opioid analgesic agents can be found in 
the review by Peterson and colleagues.171 Because of the mixed 
response to conventional analgesics, pilot studies should be per-
formed to evaluate the confounding effects of any analgesic and 
nonpharmacological measures are strongly recommended to 
enhance animal comfort and welfare.

Inflammatory Bowel Disease (IBD). IBD is a complex inflam-
matory disease that is generally considered to include both 
ulcerative colitis (UC) and Crohn disease (CD). Inflammatory 
lesions are generally limited to the large intestines and rectum 
in UC, but can occur in any part of the gastrointestinal tract in 
CD.175 Regardless of the type of IBD, the condition is generally 
associated with significant abdominal pain, and requires man-
agement with an analgesic regimen in humans. Current work in 
mice shows that activation of the polymodal ion channel TRPV1 
is also associated with chronic abdominal pain in the dextran 
sodium sulphate model (DSS) of ulcerative colitis.110 Unfortu-
nately, translational rodent models frequently ignore the pain 
component of the disease process and analgesics are not com-
monly provided.

Many different methods are commonly employed to induce 
experimental inflammatory bowel disease. These are associ-
ated with acute and chronic intestinal inflammation and they 
all recapitulate different aspects of IBD.53,175,221,222 Pain is an es-
sential feature of IBD and optimal treatment in animals can aid 
the translation to human medicine, where the challenge of intes-
tinal pain is frequently met with opioids.24,31 This is because IBD 
is characterized by periods of remission and reactivation, and 
NSAID consumption is considered a primary cause of disease 
reactivation.57,106 Figure 4 summarizes the effects that analgesics 
have been reported to have in models of IBD.

In human medicine, it is not uncommon to also use non-
traditional analgesic agents to manage the visceral pain 
associated with IBD.31,197 This includes: antidepressants, pep-
permint oil (antispasmodic), 5-HT3 receptor antagonists, 
nonabsorbed antibiotics (such as, rifaximin), secretogogues, 
H1-receptor antagonists, Neurokinin-2 receptor antagonists, 
and GABAergic agents.31,197 These agents remain largely un-
tested in animals, but may provide alternative means of an-
algesia for the pain associated with experimental models of 
both UC and CD.

Figure 2. Summary of vaccine and antibody production models in which analgesic effects were evaluated. HI – humeral immunity, CMI – cell 
mediated immunity, SID – once a day, BID – twice a day, PO – by mouth, SC – subcutaneous, IP - intraperitoneal
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Ulcerative Colitis. Dextran sodium sulphate (DSS) causes a 
progressive chemical injury to the intestinal epithelium, result-
ing in exposure of the lamina propria and submucosal compart-
ment to luminal antigens and enteric bacteria, thereby triggering 
inflammation.100 The effectiveness of DSS-induced UC depends 
on several factors, including dosage (typically 1% to 5% DSS), 
duration (acute or chronic), manufacturer or batch of DSS, strain 
of animals (C3H/HeJ and BALB/c mice strains are more sus-
ceptible), sex of animals (male mice are more susceptible), and 
microbiota of animals (for example germ free compared with 
SPF).24,51,100,126,169 Several NSAID and opioids have been evaluated 

in both mice and rats in the DSS model for their effects on the 
inflammatory process. Rofecoxib decreased inflammation in 
male BABL/c mice,137 whereas indomethacin and celecoxib both 
worsened the severity of inflammation in both sexes of Wistar 
rats.161,195 Interestingly, although celecoxib administration exac-
erbated inflammation it protected from ulceration.195 Buprenor-
phine was generally antiinflammatory in both BALB/c and CD1 
mice, whereas tramadol did not affect inflammation, based on 
scoring of gut histology. Both treatment regimens appeared to 
provide adequate analgesia, and the authors recommend trama-
dol for future studies in either strain of mice.24

Figure 3. Summary of inflammation models in which analgesic effects were evaluated. IT – intrathecal, SID – once a day, BID – twice a day, 
PO – by mouth, SC – subcutaneous, IP - intraperitoneal

Figure 4. Summary of IBD models in which analgesic effects were evaluated. SID – once a day, BID – twice a day, PO – by mouth, SC – subcutaneous, 
IP - intraperitoneal
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Oxazolone causes a superficial inflammatory acute colitis 
that is limited to the distal colon.100, 126, 226 Animals demonstrate 
weight loss, diarrhea, ulcers, and loss of epithelial cells in the 
large intestines. Although rodents are anesthetized for intrar-
ectal administration of Oxazolone, to the authors’ knowledge, 
there have been no studies on the effects of analgesics, nor has 
analgesic use been documented in this model.100,126,226

Acetic acid administration causes a chemical injury to the mu-
cosal epithelium that induces a transient phenotype mimicking 
UC.53,126,131 The injury is characterized by ulceration of the distal 
colon and crypt abnormalities that begin to heal within days in 
mice and a few weeks in rats.53,126,131 Few studies have evaluated 
the effects of analgesics in this model. In one study, specifically 
looking at the gastroprotectant effects of opioids, methadone 
improved macroscopic and microscopic disease scores of colitis 
in male Wistar rats previously treated with acetic acid.55

Crohn Disease. In the 2,4,6-Trinitrobenzene sulphonic acid 
(TNBS) model of Crohn disease, TNBS disrupts the epithelial layer 
of the colon and exposes the underlying lamina propria to bac-
terial components that lead to a severe transmural infiltrative 
colitis.100 Colitis is associated with diarrhea, rectal prolapse, and 
weight loss. Several NSAID and opioids have been evaluated 
in both mice and rats in the TNBS model for their effects on the 
inflammatory process. Administration of rofecoxib reduced the 
colonic damage and inflammation in Wistar rats.138 Administration 
of meloxicam to male Sprague–Dawley rats restored colonic 
contractility and decreased colonic inflammation.103 Diclofenac, 
indomethacin, and ketoprofen all exacerbated colitis in male Wistar 
rats, but celecoxib had no significant effect.26 In BALB/c mice, tra-
madol administration did not affect inflammation, but buprenor-
phine was antiinflammatory.24 BU08070, a buprenorphine analog, 
produced a concentration-dependent decrease in inflammation 
and visceral pain-induced behaviors in male BALB/c mice.229

To keep murine models of UC and CD consistent with human 
treatments, opioids are generally recommended as therapeutics 
to decrease model associated discomfort and improve animal 
welfare. However, pilot studies are warranted to evaluate for 
potential confounding effects of opioid or NSAID analgesia 
in the specific model type and species. Based on the collective 
body of literature described herein, tramadol should be con-
sidered for IBD studies due to its clinical efficacy for relieving 
visceral pain and its lack of modulatory effects on inflammation.

Infectious Disease Models. Most extant studies on the effects 
of analgesics on immune function and disease in infectious dis-
ease models have used NSAID to explore the role of COX and 
prostaglandins in disease pathogenesis.113,144,145,156,196,218 The one 
notable exception is a study on the effect of buprenorphine in 
a mouse model of intracranial lymphocytic choriomeningitis 
virus (LCMV) infection.155 Intracranial LCMV in mouse is used 
to model CTL-mediated meningitis, and produces characteristic 
fatal meningitis 6 to 8 d post infection, which may be associated 
with significant pain and distress.99 Mice intracranially infected 
with LCMV and treated with buprenorphine (0.05 mg/kg s.c) 
followed by osmotic pump delivery (0.15 mg/kg/day) for 1 
wk, had markedly reduced pain scores and no clinical signs 
of pain.155 Buprenorphine treatment had no effect on LCMV-
induced CTL responses or LCMV induced brain infiltration by 
lymphocytes and virus specific CTLs.155

Conclusion
The balance between appropriate analgesic use for animal 

welfare, and analgesic impact on experimental results continues 
to present significant challenges to the research community.171 
Furthermore, relatively little is currently known about the role 

of gender in the interaction between analgesics and immune 
function. However, gender has a major influence on both the 
prevalence and severity of pain and sex related differences in 
neuroimmune interactions (in particular glial cell function) ap-
pears to underpin this phenomenon.49,96,134 Thus in light of NIH 
directives, better understanding of gender-related differences in 
the effects of pain and analgesia on neuroimmune function in 
preclinical studies is critically important. In human medicine, 
archaic concepts such as “pain medication may mask clinical 
signs” and “nobody ever died from pain” have been refuted by 
years of research and clinical experience. It would be unethical 
and malpractice to withhold analgesics from human patients 
experiencing pain from cancer, autoimmune disease, infection 
or the innumerable other diseases which cause pain. In this con-
text, the possibility should be considered that in some instances 
the translatability of animal models may be improved if analge-
sics are administered, not withheld, and used in a manner that 
more closely matches human treatment.39,90 What is clear from 
this review is that many questions remain regarding the impact 
of analgesics on immune function and that there is no one drug 
that represents the “Magic Bullet” analgesic for all models. In 
many cases, the literature is incomplete, or does not exist, ne-
cessitating empirical choices or pilot studies to evaluate or opti-
mize the use of analgesics for in vivo studies of immunology and 
inflammation. Responsibility for appropriate analgesic drug 
use in the absence of published data lies with the investigator, 
and is shared with laboratory animal veterinarians and IACUC 
members. Our hope is that research and development of new 
analgesic drugs and regimens will progress and help improve 
our ability to appropriately manage pain and minimally impact 
experimental results
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