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Abstract

Neuropathic pain (NP) is a sustained and nonreversible condition characterized by long-term devastating physical
and psychological damage. Therefore, it is urgent to identify an effective treatment for NP. Unfortunately, the
precise pathogenesis of NP has not been elucidated. Currently, the microbiota-gut-brain axis has drawn increasing
attention, and the emerging role of gut microbiota is investigated in numerous diseases including NP. Gut
microbiota is considered as a pivotal regulator in immune, neural, endocrine, and metabolic signaling pathways,
which participates in forming a complex network to affect the development of NP directly or indirectly. In this
review, we conclude the current understanding of preclinical and clinical findings regarding the role of gut
microbiota in NP and provide a novel therapeutic method for pain relief by medication and dietary interventions.
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Introduction
Neuropathic pain is a sustained and nonreversible condi-
tion presenting pain as a direct aftereffect of a lesion or
disease of the somatosensory system involving peripheral
and central levels. It is typically chronic and frequently
manifests as persistent or recurrent pain. Hence, the un-
pleasant feeling induces sleep, fatigue, and emotional dis-
orders, and thereby results in an imbalance of work,
leisure life, and family relationships. Epidemiological sur-
veys showed that the prevalence of chronic pain with
neuropathic characteristics is approximately 7–10% [1].
Additionally, 40% of patients went through some features
of NP, referring to a survey of more than 12, 000 patients
with both nociceptive and NP in Germany [2]. To date,
accumulating evidence revealed that the occurrence and
development of NP are implicated with peripheral and

central sensitization, aberrant ectopic activity, pathological
activation of microglia, and impaired inhibitory modula-
tion [3]. Whereas, the underlying mechanism concerning
NP are not fully understood, which causes the absence of
effective treatments to alleviate pain substantially.
According to current estimates, approximately 1014

microbes are residing in the human body and the num-
ber of microbial cells is outnumbering the human cells
[4]. In humans, the gastrointestinal tract is a huge,
populous, and intricate microbial ecological community
that mainly contains bacteria, archaea, fungi, protozoa,
and viruses. Alteration of gut microbiota or unexpected
exposure to specific bacteria in the intestine can regulate
the peripheral and central nervous systems (CNS), lead-
ing to the change of brain function and illustrating the
existence of the microbiota-gut-brain axis. It is now
commonly believed that interaction in the microbiota-
gut-brain axis is bidirectional. Excitingly, the interactive
signal transmission has been proved to be involved in
different kinds of diseases. Abundant work indicated that
gut microbiota indeed plays a predominant role in the
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appearance of visceral pain and provides an infusive re-
search interest in pathological pain linked to gut dysbio-
sis. The emerging role of gut microbiota in neurological
diseases, including chronic pain, has attracted ever more
traction recently.
Currently, the relationship between gut microbiota

and pain modulation has attracted more and more clini-
cians’ attention along with the advancement of medical
science. A growing body of research showed that bac-
teria could activate nociceptors directly via their prod-
ucts and constitutive elements [5]. During infection,
bacterial formyl peptides induce calcium flux and action
potentials in nociceptor neurons and thereby result in
mechanical pain sensitivity in mice [6, 7]. Moreover, α-
hemolysin, one of the pore-forming toxins secreted by
Staphylococcus aureus, could induce neuronal firing and
spontaneous pain [7, 8]. Interestingly, previous studies
indicated that nociceptor neurons could especially
recognize bacterial constitutive/secreted molecules,
which are partly involved in the pain signaling [5, 9]. Be-
sides, viral and fungal pathogens are identified to elicit
alteration of pain sensitivity via inducing immune activa-
tion [10]. Additionally, there is no denying that microbes
may serve as a critical and irreplaceable modulator in
the progression of pain transduction according to previ-
ous researches.
Emerging evidence strongly demonstrated that gut

microbiota plays a crucial role in abdominal pain, opioid
tolerance, headache, inflammatory pain, and NP [11].
Among them, the connection establishment between gut
microbiota and NP provides significant potential for re-
searchers to overcome this type of refractory pain. Shen
et al. investigated the role of gut microbiota in
chemotherapy-induced peripheral neuropathy (CIPN)
and confirmed that oxaliplatin-induced mechanical
hyperalgesia was decreased in both germ-free (GF) mice
and mice pretreated with antibiotics [12]. Accordingly,
the protection would be abrogated after colonizing the
microbiota in GF mice. Lately, a study established a rat
model of spared nerve injury (SNI) and demonstrated
that the anhedonia susceptible rats prefer to show gut
microbiota dysbiosis when compared to sham-operated
and resilient rats. Meanwhile, the transplantation of fecal
microbiota from SNI rats to the pseudo-GF mice can
also alter the severity of NP and the phenotypes of
depression-like and anhedonia-like [13]. Although NP is
rather difficult to treat and its mechanism remains un-
clear to date, increasing studies suggest that gut micro-
biota may be a promising target for improving NP
management.
We comprehensively retrieved the PubMed database

from 2000 to August 2020 and the retrieved keywords
mainly consist of ‘neuropathic pain’ AND ‘gut micro-
biota’, ‘neuropathic pain’, ‘gut microbiota’, ‘neuropathic

pain mechanism’, ‘neuropathic pain treatment’, ‘micro-
biota-gut-brain axis’. All types of literature were narra-
tive review, systemic review, randomized controlled trial,
comparative study, and article, respectively. Moreover,
additional publications were searched from the bibliog-
raphies of relevant articles to guarantee an integrated
collection. Collectively, we systematically address recent
advances regarding the role of gut microbiota in regulat-
ing the incidence and progression of NP and attempt to
provide a potential therapeutic strategy for alleviating
NP.

Microbiota-gut-brain communication
The bidirectional communication between the gut and
brain involves multiple pathways including immune,
neural, endocrine, and metabolic routes. Efferent and af-
ferent fibers form a sophisticated reflexive network be-
tween the brain and intestine and facilitate interactions
within the microbiota-gut-brain axis [14]. This axis com-
prises various tissues and organs comprising of glands,
immune cells, autonomic nervous systems, brain, intes-
tine, and gut microbiota, which crosstalk with a bidirec-
tional manner to maintain homeostasis (Fig. 1). Over
past decades, much work has been carried out to define
the role of gut-brain interactions in the setting of gastro-
intestinal tract functional disorders and other disorders
that may be related to dysregulated gut-brain communi-
cation [15]. Recently, the microbiota-gut-brain axis has
drawn increasing attention with the going deep of the
medical research. Additionally, microbiota-gut-brain
communication implicated in plenty of pathological con-
ditions including Alzheimer’s disease, Parkinson’s dis-
ease, depression, and pain, which may directly result in
the occurrence of disease by disturbing the balance of
the axis.

Role of gut microbiota in neuropathic pain
Microbiome-associated immune signaling

Chemokines and cytokines Abundant literature illus-
trated that the peripheral and central nervous systems
impair triggers cascade of reactions, and thereby con-
struct the chemokine–cytokine architecture, which is
closely correlated to the occurrence of neuroinflamma-
tion [16, 17]. The alteration of chemokine–cytokine net-
work results in the peripheral sensitization associated
with peripheral nociceptive processing [18]. Similarly,
glial cells in the spinal dorsal horn (SDH) triggered by
inflammatory molecules directly participate in the devel-
opment of NP via central sensitization [16, 19]. Pro-
inflammatory cytokines and chemokines, such as tumor
necrosis factor-alpha (TNF-α) and interleukin-1β (IL-
1β), produced by various types of cells including im-
mune cells. These molecules form the main mechanism
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that promotes the neuro-immune communication [20]
and elicits the spontaneous discharges by directly sensi-
tizing A- and C-fibers, which is associated with allodynia
and hyperalgesia following nerve injury [21, 22]. Related
studies showed that the inhibition of upregulated che-
mokines and their receptors in the peripheral and cen-
tral nervous systems effectively relieves NP [23]. Thus,
cytokines and chemokines play a vital role in processes
causing NP. Consistently, numerous drugs have been de-
signed to block cytokine and chemokine signaling;
nevertheless, preclinical and clinical studies assessing
these receptor antagonists are limited.
The alteration of gut microbiota and its metabolites is

related to intestinal dysfunction and systemic immune
responses that are generally accompanied the release of
numerous pro-inflammatory mediators by immune and
glial cells. Pathogen-associated molecular patterns
(PAMPs) derived from gut microbiota contain a remark-
able array of components, including lipopolysaccharides
(LPS) and peptidoglycan (PGN), which are released lo-
cally, enter the bloodstream and interact with pattern
recognition receptors (PRRs) [24, 25]. Also, PAMPs are
key mediators of peripheral sensitization of chronic pain
[26]. Clinically, chemotherapy-induced destruction of
the intestinal epithelial barrier causes intestinal flora to
translocate and release harmful endogenous substances.

These substances stimulate PAMPs and PRRs of host
antigen-presenting cells and provoke the generation of
pro-inflammatory mediators, which constitute an
important component of the pathogenesis of CIPN [27].
Shen et al. revealed that the aggregation of macrophages
and cytokines in dorsal root ganglion (DRG) are
considerably reduced after the administration of oxali-
platin compared with water, demonstrating that the in-
flammatory response caused by gut microbiota was
suppressed in mice treated with antibiotics [12]. Of note,
Lactobacillus fermentum KBL374 and KBL375 can
prominently increase the production of the anti-
inflammatory cytokine IL-10, with subsequently inhibit-
ing the expression of other pro-inflammatory cytokines
and chemokines [28–30] (Table 1). Also, results from
other strains of lactobacillus suggested that these bac-
teria mediate immunosuppression by decreasing the pro-
duction of pro-inflammatory cytokines. These results
documented that alteration of gut microbiota could lead
to the up-regulation and down-regulation of cytokines
and chemokines at the same time, which may affect the
occurrence of NP. Due to the absence of specific bio-
markers for diagnosing NP to date, further studies are
needed to research gut microbiota dysbiosis and deter-
mine whether gut microbiota influences the develop-
ment of NP via the induction of immune responses with

Fig. 1 Communication pathways of the microbiota-gut-brain axis. This graph describes the crosstalk of the microbiota-gut-brain axis, which
mainly comprise of four modules: metabolic, neural, immune, and endocrine signaling pathways

Lin et al. The Journal of Headache and Pain          (2020) 21:103 Page 3 of 16



these pro-inflammatory mediators. In addition, studies
also could identify microbiota subgroups that play the
greatest role to obtain better efficacy.

Toll-like receptors (TLRs) Broadly distributed on most
immune cells and other cell types, TLRs are a member
of PRRs that activate innate and adaptive immune sys-
tems [26]. TLRs are categorized into two types, includ-
ing extracellular and intracellular receptors. The former
recognizes PAMPs, such as LPS derived from

microbiota, whereas the latter recognizes the nucleic
acids of viruses, bacteria, and hosts [54, 55]. When acti-
vated, their downstream signaling pathways contribute
to the sustained production of numerous immune pro-
inflammatory mediators [56]. TLR4 may also play an
indispensable role in the occurrence of NP. Previous
studies illustrated that hyperalgesia and allodynia in
TLR4-mutant mice are significantly reduced in chemo-
therapy and nerve injury-induced NP models [57, 58].
Different TLRs sense different PAMPs. For example,

Table 1 Microbial mediators/species associated with the underlying mechanisms of neuropathic pain

Microbial mediators or species Function Potential mechanisms related to
neuropathic pain

References

LPS Activate TLR4 TLR4 contributes to neuropathic pain Kawai et al. (2010) [31]

Activate TRPA1 in a TLR4-independent
and membrane-delimited manner

The activation of TRPA1 can evoke
nociceptive neurons depolarization
and firing

Meseguer et al. (2014) [32]

Activate TRPV1-mediated capsaicin
responses via TLR4

Capsaicin responses lead to the excitation
of nociception neurons

Diogenes et al. (2011) [33]

Bacterial flagellin Activate TLR5 TLR5 facilitates the release of
pro-inflammatory mediators

Kawai et al. (2010) [31]

Activate TLR5 TLR5-mediated A-fiber blockade
inhibits mechanical allodynia

Kawai et al. (2010) [31]

Indole, LPS Regulate the secretion of GLP-1 GLP-1 is associated with pain
hypersensitivity

Chimerel et al. (2014) [34],
Nguyen et al. (2014) [35]

SCFAs Activate microglia The activation of microglia leads to
pain hypersensitivity

Borre et al. (2014) [36]

Stimulates the production of PYY
and GLP-1 in a FFAR2 and FFAR3
receptors dependent way

GLP-1, PYY are associated with pain
hypersensitivity

Tolhurst et al. (2012) [37],
Psichas et al. (2015) [38],
Lin et al. (2012) [39]

PUFAs An endogenous agonist of TRPV4 The activation of TRPV4 leads to
peripheral hypersensitivity

Cenac et al.(2015) [40]

Bacteria-derived secondary bile
acids

Facilitates the release of GLP-1 and
PYY via TRG5

GLP-1, PYY are associated with pain
hypersensitivity

Ullmer et al. (2013) [41],
Thomas et al. (2009) [42],
Katsuma et al. (2005) [43]

Lactobacillus fermentum KBL374
and KBL375

Increase IL-10 secretion while
decrease pro-inflammatory
mediators secretion

IL-10 is associated with anti-inflammatory
effects

Jang et al. (2019) [28]

Bacteroides fragilis Facilitate the polarization of
macrophages to M1 type and
enhance their phagocytosis

M1 macrophages can release
pro-inflammatory cytokines and
express TLRs

Deng et al. (2016) [44]

Escherichia coli, Lactobacillus Synthesize GABA GABA can reverse allodynia in the
neuropathic pain model

Zhao et al. (2017) [45],
Wu et al. (2017) [46]

Escherichia coli, Streptococcus spp.,
and Enterococcus spp.

Produce 5-HT 5-HT serve as a special regulator in NP Guo et al. (2019) [11]

Corynebacterium glutamicum Produce glutamate Glutamate can affect hyperalgesia
in neuropathic pain models

Nakayama et al. (2018) [47],
Yang et al. (2017) [48],
Persicke et al. (2015) [49]

Lactobacillus, Peptostreptococcus,
Clostridium sporogenes

Generate AHR ligands derived
from tryptophan

Act directly on astrocytes through
AHR and limit inflammation and
neurodegeneration

Zelante et al. (2013) [50],
Wlodarska et al.(2017) [51],
Dodd et al. (2017) [52]

DSF formulation Attenuate inflammatory signals Neutralize the influence of upregulation
of TRPV1 and TRPV4 induced by paclitaxel

Castelli et al. (2018) [53]

Abbreviations: LPS lipopolysaccharide, TLR Toll-like receptor, TRPA1 transient receptor potential cation channel, subfamily A, member 1, TRPV1 transient receptor
potential cation channel, subfamily V, member 1, TRPV4 transient receptor potential cation channel, subfamily V, member 4, SCFAs short-chain fatty acids, PUFAs
polyunsaturated fatty acids, GABA γ-aminobutyric acid, GLP-1 glucagon-like peptide 1, PYY peptide YY, FFAR free fatty acid receptor, TRG5 G protein-coupled bile
acid receptor, AHR aryl hydrocarbon receptor, IL-10 interleukin-10
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TLR2 detects PGN and lipoteichoic acids, TLR4 binds
LPS and TLR5 recognizes bacterial flagellin [31] (Table
1). A series of TLR4-mediated signaling pathways are
triggered after TLR4 recognizes LPS and promotes the
activation of glial cells. When stimulated by flagellin,
TLR5 also facilitates the release of pro-inflammatory
mediators from immune cells, which contributes to the
development of NP [25]. Interestingly, TLR5 activation
simultaneously also results in the blockade of sodium
currents mainly in A-fibers of mouse DRG and success-
fully inhibits mechanical allodynia following chemother-
apy, diabetic neuropathy, and nerve injury [59] (Fig. 2).

Thus, we conclude that gut microbiota plays a dual role
by acting on the TLR-mediated pain-related conduction
pathways. Due to the vague definition of “harmful”, it
might be excessively simplistic to remove some patho-
gens from gut microbiota, to improve the pain
condition.

Macrophages Numerous macrophages reside in the
gastrointestinal tract and play a critical role in regulating
body function and maintaining homeostasis. According
to different functional phenotypes, macrophages can be
polarized into two types: M1 and M2. M1 is

Fig. 2 The potential role of gut microbiota in neuropathic pain. Gut microbiota-derived mediators participate in the modulation of neuropathic
pain through three routes: a LPS and flagellin act on immune cells and macrophages through TLR, and lead to the release of pro-inflammatory
mediators; b Different mediators alter nociceptor excitability via diverse receptors expressed on DRG neurons; c Metabolites regulate glial cells
activity directly or through AHR. The red dotted line represents exacerbating pain and the green one represents alleviating pain. Abbreviations:
DRG, dorsal root ganglion; TLR, Toll-like receptor; TRPA1, transient receptor potential cation channel, subfamily A, member 1; TRPV1, transient
receptor potential cation channel, subfamily V, member 1; TRPV4, transient receptor potential cation channel, subfamily V, member 4; GABA, γ-
aminobutyric acid; Glu, glutamate; AHR, aryl hydrocarbon receptor; LPS, lipopolysaccharide; PUFAs, polyunsaturated fatty acids; SCFAs, short-chain
fatty acids; ECCs, enteroendocrine cells; SCI, spinal cord injury; PNI, peripheral nerve injury
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characterized by a high expression of pro-inflammatory
cytokines and receptors, while M2 is characterized by a
good deal of anti-inflammatory cytokines [60–62]. There
is a bilateral communication between macrophages and
nociceptors, which is embodied in macrophages releas-
ing pro-inflammatory mediators to ‘talk to’ nociceptors
while macrophages showing ‘listening to’ neuropeptides
and chemokines secreted by nociceptors [63]. Many ex-
perimental NP animal models exhibit the activation and
accumulation of macrophages. Specific inhibition or
consumption of macrophages in these models can effect-
ively prevent pain hypersensitivity [64–67], demonstrat-
ing that macrophage is an essential regulator of NP (Fig.
2). It is reported that a new strain of Bacteroides fragilis
could facilitate the polarization of macrophages to M1
type and enhance their phagocytosis [44]. Accumulating
evidence suggested that when stimulated by gut micro-
biota dysbiosis, M1 macrophages release pro-
inflammatory cytokines and express TLRs, thus further
enhancing neuron-macrophage communication through
various pathways. However, a recent study elucidated
that gut microbiota could trigger cathepsin K secretion
and then induce TLR4-dependent M2 macrophage
polarization [68], which may potentially promote anti-
inflammatory responses. Grounded on these studies, we
conclude that gut microbiota might also play a dual role
in macrophage polarization. Given that macrophage
polarization and activation is altered in response to the
environment [69], how to subtly guide gut microbiota to
be more inclined to inhibit the differentiation of M1
macrophages or induce the transformation from M1 to
M2 may become a potential treatment to improve NP
conditions. Along this direction, the development of an
inducing agent with extensive action on microbes repre-
sents a significant advance in the goal to specifically
block the damage caused by macrophages in NP while
maintaining their phagocytic function.

Microbiome-associated neural signaling

Neurotransmitters Pain perception involves a variety of
neurotransmitters, which can be mainly divided into in-
flammatory mediators and noninflammatory mediators
[70]. The most specific of these neurotransmitters are
glutamate and GABA, which are the most widely distrib-
uted excitatory and inhibitory neurotransmitters in the
body, respectively. Both host and bacteria can convert
glutamate to GABA [71]. Some previous studies re-
ported that agents promote the release of GABA by acti-
vating GABA receptors, thus effectively relieving
trigeminal and diabetic-related NP [72, 73]. Braz et al.
demonstrated that GABAergic precursor cell transplant-
ation can reverse allodynia in a mouse NP model and
propose transplantation as a therapeutic option in

various NP-related models [74, 75]. Furthermore, both
the increase of glutamate and the administration of glu-
tamate release inhibitors are sufficient to affect hyper-
algesia in animal models [76, 77]. Recently, it has been
confirmed that some environmental bacteria strains
employed in food fermentation can produce glutamate
[47–49]. Also, several strains of bacteria, such as Escheri-
chia coli [45], and Lactobacillus [46], synthesize GABA
(Table 1, Fig. 2). Excitingly, the probiotic Escherichia coli
strain Nissle 1917 (EcN) can generate a GABA-related
analgesic lipopeptide that inhibits downstream responses
caused by nociceptor activation after crossing the intes-
tinal epithelial barrier [78]. In summary, glutamate and
GABA in the gut are linked to abundant signaling path-
ways that modulate pain conditions, regulate the release
of pro-inflammatory cytokines, and sense or inhibit af-
ferent innervation of the gastrointestinal tract [79]. How-
ever, the host itself also produces GABA. Thus, which of
these two sources of GABA predominantly stimulates
intestinal neurons and the vagus nerve and ultimately
plays a greater role in NP remains unknown.
Serotonin (5-HT), as an important neurotransmitter,

could effectively modulate the nociceptive response and
serve as a special regulator in NP. When 5-HT acts on its
receptors, 5-HT1 receptor activation create a hyperpolariz-
ing effect; while 5-HT2 and 5-HT3 activation leads to pri-
mary nociceptive neurons depolarized in DRG [80] (Fig.
2). Ji et al. found the activation of the 5-HT2c receptor in
the basolateral amygdala facilitates activities in NP-
associated central nucleus [81]. Correspondingly, 5-HT2c

receptor knockdown contributes to the reduction of NP-
related behaviors [82]. More than 90% of 5-HT in the
body is synthesized by enteroendocrine cells (EECs) and a
growing body of literature reveals that the microbiota is
correlated with the host level of 5-HT. Notably, 5-HT can
be generated by several strains of bacteria, including
Escherichia coli, Streptococcus spp., and Enterococcus spp.
[11] (Table 1), but whether gut microbiota can produce 5-
HT by de novo remains unknown. Interestingly, 5-HT is
reported to be a structural analog of auxins of Escherichia
coli, Rhodospirillum rubrum, and Enterococcus faecalis,
and activates the growth of these bacteria. Therefore, it
might be a hot spot to investigate whether the microbes
are able to influence the host 5-HT biosynthesis, and
thereby reverse the colonization and development of spe-
cial microbiota in the intestine [83]. In a word, these find-
ings suggest that the alteration of the microbes may make
a difference in the nociception, which is potentially in-
volved in the progression of NP. Though the mechanisms
of these neuroactive molecules referred to NP induction
and the production of neurotransmitters affected by gut
microbiota being far from explicit, it is no denying that
gut microbiota is concerned with NP pathogenesis
through neurotransmitter routes.
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Transient receptor potential (TRP) channels TRP
channels are ion channel family members and they are
widely expressed on primary afferent nociceptors in
DRG. TRP channels act as sensors that convert mechan-
ical, chemical, and thermal stimuli into an inward
current [84–86]. TRPA1 and TRPM8 are considered as
cold transducers that dominantly mediate cold allodynia
[87–89], and experimental results indicated that the ad-
ministration of their specific inhibitors could alleviate
cold hypersensitivity induced by physical nerve injury or
chemotherapy [87, 90, 91]. Through altering cell-specific
expression patterns, TRPV1 upregulates its expression in
DRG [92] and then elicits thermal and chemical hyper-
algesia [93]. However, there is a large gap in the under-
standing of endogenous pro-nociceptive agonists that
could activate these channels in pain-related diseases. As
a toxic byproduct of bacterial lysis, LPS evokes nocicep-
tive neuron depolarization and firing [7, 33, 94] via the
activation of TRPA1 in a TLR4-independent and
membrane-delimited manner, supporting the role of
TRPA1 in NP [32]. On the other hand, LPS also acti-
vates TRPV1-mediated capsaicin responses via TLR4, in-
cluding intracellular calcium accumulation and inward
currents [33], and induces the activation of nociception
neurons. Also, polyunsaturated fatty acids (PUFAs) are
intestinal microbial metabolites and endogenous ago-
nists of TRPV4 that leads to peripheral hypersensitivity
after TRPV4 activation [40, 95] (Fig. 2). On the contrary,
the DSF formulation, a high concentration probiotic for-
mulation, attenuates inflammatory signals, thereby neu-
tralizing the upregulation of TRPV1 and TRPV4 induced
by paclitaxel. Thus, the DSF formulation is a valid adju-
vant agent for inhibiting CIPN [53] (Table 1). Currently,
the effect of gut microbiota on ion channels is more
concentrated on intermediate media. For example, mi-
crobial metabolites act as endogenous agonists of ion
channels. Whereas, whether a direct interaction occurs
between ion channels and microbes remains unclear.

Microglia Microglial cells are macrophage-like and quies-
cent immune cells in the CNS, which modulate homeosta-
sis in the spinal cord and brain. Although the precise
mechanism of microglia activation in the development of
NP has not been fully illustrated, compelling evidence in-
dicates that microglia plays a significant cellular role in
the process. In spinal cord injury (SCI) and CIPN models,
continuous and massive activation of microglia is widely
observed, while a decrease in microgliosis is noted after
intrathecal injection with minocycline, contributing to al-
leviate mechanical allodynia [96–98]. The morphology of
microglia within the spinal cord undergoes dramatic
changes following increased expression of microglial
markers, such as CD11b and Iba1, representing microglial
activation after peripheral nerve injury (PNI) [99]. It is

well documented that the primary sensory neurons would
release microglial activators and associated-signaling mol-
ecules are upregulated after PNI, both of which are com-
petent to elicit microgliosis and microglial activation
[100]. Additionally, TNF-α and IL-1β, two major pro-
inflammatory cytokines, are released and produced by
microglia, causing pain conditions through various regula-
tory mechanisms [101]. Recent emerging evidence has
confirmed that microglial activation both in SDH and
many brain regions leads to changes in synaptic structure
and function and pain hypersensitivity following PNI.
Nevertheless, the mechanism by which microglia in these
brain regions are activated remains unknown given the
long distance from the injured peripheral nerves to the
brain [102].
Emerging evidence indicated that the temporal ab-

sence of gut microbiota could severely alter the charac-
teristics of microglia. A complex gut microbiota
conduces to maintain microglia homeostasis; otherwise,
the lack of complex microbiota results in defective
microglia. No microglial alteration occurs when
microbe-associated molecular patterns are not recog-
nized by various TLRs, demonstrating that microglia
may be affected in a microbial-dependent manner [103].
Bacterial products or metabolites such as short-chain
fatty acids (SCFAs) serve as a crucial molecule in the
maturation and activation of microglia (Fig. 2). These
molecules can be translocated from the gut mucosa to
the circulatory system and cross the blood-brain barrier
(Table 1). Of note, the losing of input signals derived
from microbiota in mature microglia can lead to the re-
acquisition of an immature status. However, the pheno-
type of microglia can be reversed with the recolonization
of complex microbiota in the intestine, which pro-
foundly reveals the significant plasticity of gut
microbiota-microglia connection [103]. However, just as
the mechanism by which distant microglia cells are acti-
vated in the brain remains unclear, the mechanism by
which the microbe remotely affects microglia cells in
CNS should be explored. We identified that gut micro-
biota plays an essential role in microglia-mediated sig-
naling pathways in NP.

Astrocyte In the CNS, astrocytes are the dominating
population of glia, accounting for approximately 20–40%
[104]; these cells supply metabolic support to neurons
and maintain glutamate and electrolyte homeostasis
[105–107]. Mounting evidence suggests the key modula-
tor of astrocytes in the pathogenesis of pain, especially
NP after nerve injuries. First, it has been reported that
pain hypersensitivity following PNI in rodents is linked
to astrocyte hypertrophy in SDH. In mouse models, it
shows that the NP would be ameliorated by suppressing
the proliferation of astrocytes [108, 109]. Second,
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abundant studies elucidate that astrocyte-derived media-
tors could produce pain hypersensitivity [109]. For in-
stance, the overexpression of C–C motif chemokine 2 in
astrocytes results in increased hyperalgesia in mice
[110]. Third, recent research found that stimulating as-
trocytes by transient optogenetic leads to mechanical
allodynia as soon as 1 hour after the stimulus in naive
rats, demonstrating that astrocyte activation completely
drives the occurrence of pain [111]. Collectively, accord-
ing to the breadth of published literature, we reason out
that astrocytes a key driver of NP.
Astrocyte activation is influenced by many factors

from inside and outside the CNS [112]. Recently, an
emerging study reports a new signaling pathway wherein
gut microbiota and environmental cues are integrated to
modulate astrocyte activity via circHIPK2 [113], which
inhibits astrocyte activation [114]. In addition, dietary
tryptophan metabolized by gut microbiota can act dir-
ectly on astrocytes through aryl hydrocarbon receptors
(AHR), limiting inflammation and neurodegeneration in
the CNS and providing neuroprotective effects [115,
116] (Fig. 2). Meanwhile, microbial metabolite signaling
also regulates the production of transforming growth
factor-α (TGFα) and vascular endothelial growth factor-
B (VEGF-B) via microglial AHR, further impacting pro-
inflammatory activities of astrocytes [116]. Notably,
derived from tryptophan, AHR ligands are generated by
certain types of bacteria, including Lactobacillus [50],
Peptostreptococcus [51], and Clostridium sporogenes [52]
(Table 1). On the other hand, TGFα produced by micro-
glia facilitates axon regeneration and increases neuronal
survival by inducing astrogliosis and neuroprotective fac-
tor generation in SCI models [117, 118]. Thus, we con-
clude that microglial TGFα promotes salutary astrocyte
activities. Currently, the use of commensal bacteria to
control TGFα–ErbB1 signaling via AHR has been pro-
posed as an alternative strategy for treating SCI [119].
Therefore, targeting of AHR is likely to establish a
microbiota-microglia-astrocyte-oriented treatment for
NP.

Enteric glia In the enteric nervous system, enteric glial
cells are a unique community of peripheral glial cells
related to neurons. Enteric glia takes part in neurotrans-
mission by producing and modulating neurotransmit-
ters, and many of these delivery systems are correlated
with the excitability of nociceptors [120]. New data dem-
onstrated that some microbial roles are closely associ-
ated with the function and development of enteric glia
[121], and the formation of the mucosal enteric glial cell
network is synchronized with gut microbiota maturation
[122, 123]. Moreover, the introduction of a group of
normal gut microbiota can restore the population of im-
paired mucosal glia [123]. Additionally, enteric glia and

astrocytes exhibit morphological and functional similar-
ities, potentially indicating a similar role in pain signal-
ing. Anatomically speaking, enteric glial cells are much
closer to intestinal flora than glia in the CNS. Given a
lack of understanding of how pain signaling communica-
tion occurs between gut microbiota and glia in the CNS
due to the significant distance, we hypothesize that en-
teric glial cells are both a structural and functional medi-
ator of this process. Consequently, adjusting gut
microbiota to trigger alterations in these will likely con-
tribute to the identification of a novel treatment for NP.

Microbiome-associated endocrine and metabolic signaling
As the gastrointestinal tract is the largest endocrine
organ in the human body, gut hormones produced by
the enteroendocrine system have a wide range of targets
both within and outside the intestinal lumen. To date,
several types of EECs have been identified, and all of
them are sensory cells [124]. Multiple pleiotropic gut
hormones released from EECs are involved in pain
modulation, including glucagon-like peptide 1(GLP-1),
neuropeptide Y(NPY), and peptide YY(PYY). Previous
studies reported that the administration of a GLP-1 ana-
log, such as exendin-4 [125] and the orthosteric agonist
of GLP-1 morroniside [126] could alleviate pain hyper-
sensitivity. NPY, acknowledged as a promising target for
the treatment for NP for a long time, is widely expressed
in the central and peripheral nerve systems, such as en-
teric neurons and primary afferent neurons [127]. An-
other member of the neuropeptide family, PYY is
exclusively expressed by EECs [127] and has been dem-
onstrated its involvement in the regulation of somatic
and visceral pain sensitivity [128]. At present, there is
still a large gap in the research on the relationship be-
tween EECs with their secreted gut hormones and NP
conduction. Given that EECs have a long lifespan [129],
they are potentially integrated into the pain-related sig-
naling network involving the immune and nervous sys-
tems. Thus, these gut hormones are likely not only
endocrine mediators but also immune and neural
mediators.
Given the direct dialogue between EECs and gut

microbiota at the enteroendocrine interface, their inter-
action influences gut hormone metabolism. Strikingly,
bacterial metabolites directly activate the overwhelming
majority of L cells in the distal intestine. For example,
the G protein-coupled bile acid receptor (TGR5) distrib-
uted on L cells is activated by bacteria-derived secondary
bile acids, thus facilitating the release of GLP-1 and PYY
from peripheral [41–43]. Additionally, bacterial LPS and
the indole produced by bacteria regulate the secretion of
GLP-1 [34, 35]. Furthermore, SCFA signaling promotes
the generation of PYY and GLP-1 in a free fatty acid re-
ceptor 2 ( FFAR2 ) and FFAR3 receptor-dependent
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manner [37–39] (Table 1). On the other hand, gut
microbiota also impacts bile acid metabolism in the host
[130]. When bile acids bind to TGR5 expressed in mac-
rophages and primary sensory neurons, two dramatically
different outcomes are noted. The activation of neurons
in DRG leads to hyperexcitability in a TRPA1-dependent
manner, while activation of peripheral macrophages con-
tributes to analgesia [131, 132]. Taken together, through
its metabolites and its influence on host metabolism, gut
microbiota has established a microbiota-endocrine-
metabolic system. Although a considerable portion of
gut hormones secreted by EECs are related to pain,
more direct preclinical, and clinical studies indicating
that hormone molecules participate in signaling involved
in the pathogenesis of NP are lacking. To a large extent,
gut microbial metabolites potentially participate in NP
development through immune and neural signaling
pathways, but the existence of an endocrine-
metabolism-mediated mechanism also requires further
research.
Overall, gut microbiota serves as the intersection of

immune, neural, endocrine, and metabolic signaling
pathways and has become an intense focus of research.
Based on the exciting results in neuroscience over recent
years, gut microbiota undoubtedly facilitates the forma-
tion of complex and enormous networks and thereby re-
sults in the occurrence and development of NP as a
pivotal and systematic modulator.

Potential therapeutic strategy
Probiotics and antibiotics
Given their tremendous potential to alter gut micro-
biota, probiotics are living bacteria that can provide
health benefits, including improved digestion, enhanced
immunity, and reduced risk of some diseases [133, 134].
Probiotics alleviate irritable bowel syndrome (IBS), in-
flammatory bowel disease, and other intestinal dysfunc-
tions. Previous studies suggested that visceral
hypersensitivity is improved after the consumption of
probiotics in animal models [135]. For instance, VSL#3
and Lactobacillus paracasei reverse hyperalgesia and
allodynia during colorectal distention [136, 137]. More-
over, probiotics impact the production of cytokines and
the expression levels of TLR2 and TLR4, thus modulat-
ing immune system activity (Fig. 3). Therefore, probio-
tics may serve as an inhibitor in immune signaling
transmission associated with NP. Despite the view pro-
posed that probiotics affect the nerve function of the
gut, there is little work to explicitly and directly prove
the veracity of this claim. Shen and colleagues illustrated
mechanical hyperalgesia is reduced both in mice prepro-
cessed with antibiotics and GF mice in the CIPN model
[12]. Since neither probiotics nor pathogenic bacteria
exist in GF mice, the therapeutic effect of antibiotics on
CIPN cannot be determined or excluded. In summary,
probiotics and antibiotics may change the complexity or
activity of microbiota via different mechanisms, but both

Fig. 3 The underlying therapeutic strategy for neuropathic pain through targeting of gut microbiota. There are primarily five therapeutic
regimens consisting of probiotics and antibiotics, fecal microbiota transplantation, low-FODMAP diet, vitamin D supplementation, and emotional
management for effectively relieving NP. The grey dotted line symbolizes potential mediators/influence factors. Abbreviations: TLR, Toll-like
receptor; BAs, bile acids; LPS, lipopolysaccharide; SCFAs, short-chain fatty acids; FODMAP, fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols; VDR, vitamin D receptor
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agents potentially relieve pain in animals and humans.
Despite promising findings reported for probiotic and
antibiotic therapies, their side effects cannot be ignored.
However, research remains at an exploratory stage in
this field, reminding us of the need to perform more
preclinical and clinical work to investigate the role of
probiotics and antibiotics treatment in NP based on gut
microbiota.

Fecal microbiota transplantation (FMT)
Recently, the restoration of gut microbiota to the pre-
disease state has become a vital novel treatment, and the
new trend of FMT has been used to cure several dis-
eases, such as ulcerative colitis [138] and Clostridium
difficile infection [139]. Surprisingly, it is reported that a
patient diagnosed with fibromyalgia completely recover
after the fecal microbiota transplantation [140], making
chronic refractory pain-related diseases a potential
therapeutic indication of the treatment. Although fibro-
myalgia is excluded from the diagnosis of NP since 2011,
the pathophysiology of fibromyalgia includes small fiber
neuropathy, suggesting a partial overlap between the two
pathogeneses. The underlying mechanism of FMT that
has been proposed to date suggests that it might play a
role in pain via immune and metabolic signal transduc-
tion. On one hand, certain components of the trans-
planted healthy flora may evoke accelerated genesis of
anti-inflammatory mediators, thereby counteracting the
pro-inflammatory mediators. On the other side, FMT
acts as a seemingly prominent player in bile acid metab-
olism, promptly helping to restore secondary bile acid
metabolism in patients [141, 142] (Fig. 3). Although the
exact treatment mechanism of FMT has not been re-
vealed, its significant potential in the treatment of
chronic pain, including NP, cannot be ignored.

Low-FODMAP diet
Furthermore, a dietary cure named low-FODMAP (fer-
mentable oligosaccharides, disaccharides, monosaccha-
rides, and polyols) modifies the complex and diverse
nature of gut microbiota and its metabolic output. A
high-FODMAPs diet results in increasing levels of LPS
derived from the microbial community and the imbal-
ance of gut microbiota, whereas a low-FODMAP diet
has a lower level of LPS [143]. Therefore, the low-
FODMAP diet tends to contribute to protect the intes-
tinal barrier and reduce gut mucosal inflammation by
regulating the level of LPS. In addition, some research
suggested that the low-FODMAP diet may also lead to
the decreased production of SCFAs in the gut [144]. An
animal study demonstrated that SCFAs are correlated
with abdominal hypersensitivity [145]. Given that a
higher concentration of SCFAs is linked to the symp-
tomatology of IBS, reducing SCFAs may be another

approach by which this dietary intervention plays its
role. Notably, findings are incompatible regarding the
impact of the low-FODMAP diet on SCFAs. It found
that the concentration of SCFAs makes no difference be-
tween the dietary intervention and controls in two ran-
domized controlled trials of IBS [146, 147]. A small part
of patients with IBS suffers from refractory and constant
pain, manifesting more as a neuropathic process to a
large extent, thus making the visceral pain of IBS adher-
ence to the characters of NP at least. Although there is a
lack of direct research on NP and the low-FODMAP diet
so far, a large number of studies have confirmed the ef-
fectiveness of this dietary intervention on curing IBS
through potential gut microbiota-related pathways.
Logically, the dietary intervention co-implemented with
microbe-targeted therapy is likely to be an emerging ap-
proach for NP treatment (Fig. 3).

Vitamin D supplementation
Vitamin D, a neurotrophic hormone and neuroactive ster-
oid, triggers a series of signal conduction systems includ-
ing pain. In recent years, more and more studies have
confirmed that hypovitaminosis D is an independent risk
predictor of diabetic neuropathy progression [148]. Some
research also proposed that vitamin D deficiency plays a
novel role in the involvement of the mechanistic pathway
of multiple sclerosis [149, 150]. It has been known for de-
cades that the lack of vitamin D results in the decreased
absorption of calcium, and induces gut stasis. Unfortu-
nately, the abnormality of intestinal motility enhanced gut
permeability allowing a growing release and transfer of en-
dotoxins from gut microbiota [150]. In the long term,
translocated LPS stimulates the increased production of
pro-inflammatory mediators, ultimately causing neuroin-
flammation and contributing to the development of mul-
tiple sclerosis. In addition to impacting on the gut barrier,
vitamin D may change the composition of gut microbiota
communities via activating vitamin D receptor signaling
[151]. Expressed in muscle tissue and CNS, these recep-
tors are associated with innate immune response [152],
which has an advantageous effect on keeping homeostasis
from disturbance related to neuropathy to some extent
[153]. Several previous works illustrated that a high dose
of vitamin D supplementation significantly conduces to
decrease typical pathogen species and increase the abun-
dance of phylotype of microbes in the gut [154]. Though
numerous studies have reported that vitamin D supple-
mentation prevents neuronal degeneration and improves
cold allodynia, mechanical, and heat hyperalgesia in the
rat models of NP [155, 156], the proven mechanism re-
mains uncertain. Based on these findings, future studies
could address more insights on vitamin D and gut micro-
biota and exploit a novel and promising strategy to treat
or prevent NP (Fig. 3).
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Emotional management
Presently, numerous studies indicated that depression
and anxiety play an instrumental role in the occur-
rence and development of NP. Clinical research
showed that certain antidepressants indeed attenuate
the symptom of NP. Whereas, there is a lack of
animal models to effectively account for the impact of
emotional outcomes on NP. Most strikingly, some
literature documented that gut microbiota is closely
correlated with psychiatry including depression and
anxiety [157]. Preclinical studies suggested that
depression induced by early life stress/surgical
procedures leads to the alteration of gut microbiota
[158, 159]. Correspondingly, the modulation of gut
microbiota also affects behaviors related to depres-
sion. Furthermore, compelling evidence documented
that anxiety-like behaviors could be influenced by the
altered gut microbiota [160, 161], and gut microbiota
also transfers the anxious phenotype in turn [162,
163]. Thus, the microbiota may be an underlying
therapeutic target for psychiatry. Achieving favorable
emotional management via the manipulation of gut
microbiota is conducive to relief NP by controlling
pain comorbidities (Fig. 3).

Discussion and conclusions
As more and more precise instruments have been de-
signed to identify NP, assessment of its prevalence and
socioeconomic influence have risen. The incapacity of
targeting underlying mechanisms accurately results in a
lower cure success rate. Following the concept of the
microbiota-gut-brain axis proposed, accumulating atten-
tion is concentrated on the role of gut microbiota in NP,
which is conceptually appealing and provides an emer-
ging perspective. This review comprehensively summa-
rizes the current research status of gut microbiota
involved in regulating the pathogenesis of NP through
various signaling pathways and deeply discusses the
feasibility and challenges of targeting of gut microbiota
for treating NP. As the saying goes “all disease begins in
the gut”, the microbiota-gut-brain axis provides a more
scientific explanation for illustrating the basic theory.
Along with this axis, we integrate the existing elements
associated with the mechanism of NP and establish a
complicated immune-neural-endocrine-metabolic sys-
temic network.
Currently, inadequate studies could fully clarify the

sophisticated principle concerning the relationship be-
tween gut microbiota and NP. A diverse array of
intermediate constructs a bridge between both, but
some phenomena lack rational explanations mechanis-
tically. One question is how the dysfunctional gut
microbiota and its derived mediators transfer into
DRG and some even cross the blood-brain barrier

(BBB) into the CNS. Although some previous studies
documented several pieces of evidence to support the
capability of gut microbiota to impact on BBB perme-
ability [164, 165], the proven mechanism is still un-
clear. Logically, we have to admit that gut microbiota
is correlative with NP instead of causal and men-
tioned signaling pathways of NP reinforce each other
and act concurrently. In terms of mechanisms, it will
be a great success if aiming at part of a matter along
the signal transduction pathways contributes to im-
proving NP-related symptoms.
Present therapies of NP are usually curative, and sur-

plus pain is common even during treatment. Several
safer, more economical, and less invasive settlements are
more adapted to some patients, and thus the therapeutic
approach step by step is cautious [166]. In lots of differ-
ent situations, the complexities and difficulties of indi-
vidual cases may reveal the need for multimodal and
multidisciplinary NP management strategies. Regarding
drug therapy, clinicians are required to pore over the ef-
ficacy, the adverse effects, as well as any comorbidities
[167]. Additionally, the interventional management of
NP is fraught with lots of practical challenges and ethical
bias [168]. Therefore, the proposed approach such as
low-FODMAP diet, vitamin D supplementation, and
emotional management are much less risky, operation-
ally easier, and more acceptable psychologically. Ex-
cluded traditional drugs and surgery, these emerging
treatments are likely to enjoy high popularity. But then
again, we must acknowledge that some controversial ap-
plications and secondary action exist. Certain previous
research claimed that antibiotics improve the condition
of NP, while some illustrated antibiotics could result in
hyperalgesia [27]. The administration of antibiotics in
different dosage and choice, and differences in compo-
nents of antibiotics lead to distinct dysfunction of gut
microbiota deserve to be discussed. As for FMT, though
some anaerobic microbes confirmed to be successfully
cultured [169] until recently multitude of gut microbiota
cannot be cultivated [170]. Furthermore, the side effects
of FMT comprise some self-limiting abdominal uncom-
fortableness, and, rarely, contagious diseases that are dif-
ficult to detect by testing [171], which also needs to be
alert.
So far concerned, majority studies have focused on the

general role of gut microbiota in NP, but the more de-
tailed characterization of the microbiome population,
species, and activity in the pain progression and whether
gut microbiota can be a biomarker for NP remains un-
known. As long as the most beneficial microbial compo-
nents for a particular clinical status is determined, the
difficulty would be to change the microbiota characteris-
tics to replicate this composition as much as possible.
The further step will be manipulating gut microbiota

Lin et al. The Journal of Headache and Pain          (2020) 21:103 Page 11 of 16



more precisely, for instance by bringing in specific mi-
crobes to defeat cacoethic strains. Collectively, there be-
ing tremendous enthusiasm for the microbiome in
academia, targeting gut microbiota has become a rapidly
growing therapeutic approach for a wide range of dis-
eases including NP, contributing to facilitating the trans-
lation of this finding from bench to bedside.
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