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Abstract
The 2017 annual symposium organized by the University Medical Center Groningen in The Netherlands focused on the role 
of the gut microbiome in human health and disease. Experts from academia and industry examined interactions of prebiotics, 
probiotics, or vitamins with the gut microbiome in health and disease, the development of the microbiome in early-life and 
the role of the microbiome on the gut–brain axis. The gut microbiota changes dramatically during pregnancy and intrinsic 
factors (such as stress), in addition to extrinsic factors (such as diet, and drugs) influence the composition and activity of 
the gut microbiome throughout life. Microbial metabolites, e.g. short-chain fatty acids affect gut–brain signaling and the 
immune response. The gut microbiota has a regulatory role on anxiety, mood, cognition and pain which is exerted via the 
gut–brain axis. Ingestion of prebiotics or probiotics has been used to treat a range of conditions including constipation, 
allergic reactions and infections in infancy, and IBS. Fecal microbiota transplantation (FMT) highly effective for treating 
recurrent Clostridium difficile infections. The gut microbiome affects virtually all aspects of human health, but the degree 
of scientific evidence, the models and technologies and the understanding of mechanisms of action vary considerably from 
one benefit area to the other. For a clinical practice to be broadly accepted, the mode of action, the therapeutic window, and 
potential side effects need to thoroughly be investigated. This calls for further coordinated state-of-the art research to better 
understand and document the human gut microbiome’s effects on human health.
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Introduction

The University Medical Center Groningen (UMCG) in The 
Netherlands organizes annual symposia within the compass 
of medicine and nutrition, as part of its Healthy Ageing pro-
gram. Previously published proceedings of these symposia 
have examined the relationship of nutrients with lifelong 
health and disease [1], with healthy aging [2], with malnutri-
tion and obesity [3], and with nutrient–drug interactions [4].

The 2017 annual meeting at the UMCG focused on the 
role of the gut microbiome in human health and disease. The 
symposium, which brought together experts from academia 
and industry, examined interactions of prebiotics, probiotics 
or vitamins with the gut microbiome. The panel discussed 
the role of the microbiome on various aspects of healthy 
and diseased subjects throughout lifespan. In the context of 
disease, the symposia focused on two main intestinal con-
ditions: inflammatory bowel disease (IBD), manifesting as 
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Crohn’s disease (CD) or ulcerative colitis (UC); and irritable 
bowel syndrome (IBS). Moreover, the various benefits of 
prebiotics on human health, the microbiome–nutrient inter-
action and the role of vitamins in promoting the selective 
growth of microbes in the gut as well as determinants of 
the development of a healthy microbiome were presented 
and discussed intensively. Last but not least, the panel dis-
cussed how the brain and the microbiome may affect and 
control each other’s functions and the implications of such 
communication for treating or preventing the brain-related 
functional decline during aging.

It is worth noting that the terms microbiota and micro-
biome are frequently used interchangeably and this also 
applies here. Strictly speaking, however, microbiota is 
defined as the microbial taxa associated with complex organ-
isms such as humans, whereas microbiome is the catalogue 
of these microbes and their genes [5]. The totality of data 
suggests great promise for use of pre- and probiotics in pro-
moting general health and treating human diseases.

Prebiotic interactions with the microbiome

Dietary prebiotics have been defined as “a selectively fer-
mented ingredient that results in specific changes in the 
composition and/or activity of the gastrointestinal micro-
biota, thus conferring benefit(s) upon host health” [6]. This 
definition has been subjected to debate as it focuses largely 
around the need for selective metabolism. An alternative 
definition which includes the mechanism of action has been 
established recently in a consensus statement [7]. The expert 
panel revised the definition of a prebiotic as “a substrate 
that is selectively utilized by host microorganisms conferring 

a health benefit”. This updated definition still requires a 
selective microbiota-mediated mechanism to be defined as 
a prebiotic.

Fermentation of dietary prebiotics in the gut involves 
metabolic cross-feeding where the products of fermentation 
by one or more bacterial species provide the substrate(s) 
for other bacterial species (Fig. 1) [8]. This complex coop-
erative activity of the gut microbiota is essential for good 
health [8, 9]. Bacterial fermentation of amino acids and 
proteins, which occurs mainly in the distal colon, generates 
a range of metabolites, many of which have a toxic poten-
tial. These include hydrogen sulphide, branched-chain fatty 
acids (BCFAs), phenol, indole, p-cresol, indoxylsulfate, 
p-cresylsulfate, and ammonia [10–12]. Even if also present 
in the healthy colon, it must be noted, however, that we cur-
rently have a very poor understanding of the concentrations 
of microbial metabolites in the human colon [12].

Several studies have demonstrated modulation of colonic 
microbiota by prebiotic inulin or inulin-type fructans. Real-
time polymerase chain reaction (PCR) identification of 
selected bacterial species in the feces of human volunteers 
after inulin ingestion showed that the prevalence of Fae-
calibacterium prausnitzii and two Bifidobacterium species, 
B. adolescentis and B. bifidum, increased significantly [13]. 
In a placebo-controlled study, dietary inulin-type fructans 
increased the relative abundance of Bifidobacterium spp. and 
F. prausnitzii in obese women [14]. In healthy adults with 
mild constipation, inulin-type fructans increased the relative 
abundance of Anaerostipes, Bilophila and Bifidobacterium 
in feces, and reduced the abundance of Bilophila [15]. Dif-
ferences in selectivity for the fermentation of several car-
bohydrate substrates (lactulose, galacto-oligosaccharides, 
sugar beet pectin and apple fiber) were found between the 

Fig. 1  Fermentation and gut 
microbiota. The figure shows 
the principle sources of nutri-
tion entering the human colon 
at the top and the principle 
metabolic outputs at the bottom. 
Arrows indicate known cross-
feeding relationships between 
the principle microbial groups 
present. Metabolites in green 
boxes are believed to be health-
positive while those in red 
boxes are potentially harmful. 
Gaseous products are in orange 
boxes and the most signifi-
cant intermediate products of 
metabolism are in blue
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microbiotas from lean and obese healthy subjects using an 
in vitro model (TIM-2) of the proximal colon, providing 
the evidence that the composition of the microbiota changes 
depending on the body mass index (BMI) in humans [16].

Figure 2 summarizes the effects of prebiotics on human 
health. Several studies have examined the effect of prebiot-
ics on allergic reactions and infections in infancy. A pla-
cebo-controlled randomized trial of infants with a parental 
history of atopy showed that formula milk supplemented 
with a prebiotic mixture of galacto-oligosaccharides (GOS) 
and long chain inulin significantly reduced the incidence 
of atopic dermatitis. Prebiotic supplements were associated 
with a significantly increased number of fecal bifidobacteria, 
but with no significant change in lactobacilli numbers [17]. 
In this same cohort of infants, the prebiotic supplemented 
milk significantly reduced the incidence of infectious epi-
sodes during the first 6 months of life [18]. In a 2-year 
follow-up study of this cohort, infants receiving prebiotic 
supplementation had a significantly lower incidence of 
allergic manifestations [19]. At 5-year follow-up, infants 
in the prebiotic supplementation group had a significantly 
lower incidence of any allergic manifestation and atopic 
dermatitis compared to the placebo group [20]. The pro-
posed mechanism for this long-lasting effect of prebiotics is 
immune modulation mediated through changes in the intes-
tinal microbiota [19]. In a three-group randomized interven-
tion study, infants fed prebiotic GOS+inulin supplemented 
milk had comparable numbers of fecal bifidobacteria and 
lactobacilli to infants who were breast fed, whereas infants 

fed standard formula milk had significantly lower numbers 
of both bacterial genera. Incidence of gastrointestinal and 
upper respiratory tract infections was significantly lower in 
breast fed infants or the ones fed prebiotic supplemented 
milk compared to standard formula milk. Similarly, allergic 
reactions to food and milk were significantly higher in the 
standard formula milk group [21].

A meta-analysis of 26 randomized controlled trials 
(RCTs) involving 831 healthy adults showed that dietary 
prebiotic supplementation significantly increased self-
reported feelings of satiety compared with placebo [22]. 
Healthy adults fed an oligofructose-enriched inulin diet 
experienced lowered hunger and increased satiety rates com-
pared with the placebo, maltodextrin. The increased feeling 
of satiety was accompanied by an increase in plasma gut 
peptide concentrations of glucagon-like peptide 1 (GLP-1) 
and peptide YY in prebiotic supplemented subjects, which 
may have contributed to the change in appetite [23], suggest-
ing a potential for use in treating obesity. Similarly, in obese 
or overweight children, an oligofructose-enriched inulin diet 
significantly increased satiety compared with maltodextrin. 
Prebiotic supplementation led to a significant reduction in 
energy intake in older (aged 11–12 years), but not younger 
(aged 7–10 years) children [24] suggesting that prebiotic 
supplementation can potentially help to regulate energy 
intake in obese children.

Prebiotics have been used in several studies to treat 
constipation. A meta-analysis of RCTs involving 252 sub-
jects (experimental group: n = 144, control group: n = 108) 

Fig. 2  Effect of prebiotics 
on gut function and health. 
The figure indicates likely 
mechanism of prebiotic action 
in the gut. In many cases the 
suggested mechanisms are 
speculative at the present time. 
Physiological functions are in 
purple and health outcomes 
are in green. Abbreviations: 
FFAR2/GPR43, free fatty acid 
receptor 2; FFAR3/GPR41 free 
fatty acid receptor 3; GLP-1, 
glucagon-like peptide 1; GLP-2, 
glucagon-like peptide 2; IFN-γ, 
interferon gamma; IL-1β, inter-
leukin 1 beta; IL-6, interleukin 
6; IL-10, interleukin 10; LPS, 
lipopolysaccharide; NK, natural 
killer cells; PYY, peptide YY; 
Th, T helper cells; TGF-β, 
transforming growth factor beta; 
Tr, T regulatory cells; ZO-1 
zona occuldens protein 1
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reported that inulin significantly improved bowel function 
in patients with chronic constipation exhibiting beneficial 
effects on stool frequency, the Bristol scale of stool consist-
ency, transit time and stool hardness [25]. Following an evi-
dence review the European Food Safety Authority (EFSA) 
concluded that “chicory inulin contributes to maintenance of 
normal defecation by increasing stool frequency” [26]. The 
results were recently confirmed in a randomized, placebo-
controlled study showing that chicory inulin was effective in 
treating healthy subjects with constipation, increasing stool 
frequency significantly compared with placebo [27].

Additional described effects of prebiotics include reduc-
ing toxins produced from protein metabolism in urine 
(p-cresol and ammonia) [28] and serum (p-cresyl sulphate) 
[29], and increasing calcium absorption in adolescents [30, 
31]. Prebiotics may also exert beneficial effects on host 
physiology which are independent of the microbiota as dem-
onstrated by in vitro experiments for GOS. These included 
modulation of goblet cells to enhance mucosal barrier 
function [32], a direct protective effect on intestinal barrier 
function [33], and inhibiting adherence of enteropathogenic 
Escherichia coli to Caco-2 enterocyte and Hep-2 epithelial 
cells [34].

An improved understanding of the functional ecology of 
the gut and a more detailed knowledge of gut metabolites are 
particularly important for understanding the role of prebi-
otics on human health. For some products there is already 
good evidence on gut health and these findings should be 
communicated to health care professionals and consumers. 
On the other side, more studies on the effect of prebiotics on 
health outcomes in humans are imperative.

The intestinal microbiome: a clinical 
perspective

The human gut microbiota consists of trillions of microbes 
which form a complex ecosystem [35]. Although, some 
researchers have suggested that the number of microbes in 
the human gut is tenfold the total number of human somatic 
cells, a recent estimate has calculated that the numbers are 
of the same order, with the total number of bacteria in the 
human body being around 3.8 × 1013 [36]. An aberrant gut 
microbiota has been described in several disorders including 
IBS, with exogenous factors such as antibiotics also causing 
disturbance of the intestinal microbiota [35].

The systemic effect of microbiota is mediated by micro-
bial metabolites such as short-chain fatty acids (SCFAs), 
and the gases hydrogen sulfide, ammonia, hydrogen, meth-
ane, carbon monoxide and carbon dioxide [37, 38]. SCFAs, 
which comprise mainly acetate, propionate and butyrate, 
are produced under anaerobic conditions in the large intes-
tine by fermentation of dietary fibers [37]. SCFAs activate 

the G protein-coupled receptors, GPR41/FFAR3 (free fatty 
acid receptor 3) and GPR43/FFAR2, which are present on 
multiple cell types including intestinal epithelial cells, mac-
rophages, dendritic cells and mast cells [37, 39, 40]. Conse-
quently, SCFAs have multiple effects on the host, including 
acting as an energy source, promoting glucose and energy 
homeostasis, regulating immune responses and inflamma-
tion, regulating anorectic hormones which have a role in 
appetite control, tumor suppression (especially butyrate), 
and regulating central and peripheral nervous systems [37, 
39–42].

The effects of butyrate on the human colonic mucosa 
were examined following administration of butyrate enemas 
at physiologically relevant concentrations in healthy volun-
teers. Transcription analysis of microbiome revealed that 
butyrate induced differential expression of multiple genes 
involved in fatty acid oxidation, electron transport chain and 
oxidative stress pathways [43]. In addition, butyrate led to 
dose-dependent decreases in visceral sensitivity [44]. How-
ever, butyrate enemas administered to patients with UC in 
clinical remission had relatively minor effects on inflamma-
tory and oxidative stress parameters, although the selection 
of patients with chronically mild levels of inflammation and 
oxidative stress may have limited the scope of this study 
[45].

Protection against microbial invasion is provided by the 
intestinal barrier [46]. The intestinal barrier has multiple 
lines of defense including commensal bacteria, which com-
petitively inhibit the colonization of pathogenic bacteria and 
the production of metabolically protective compounds such 
as butyrate [46]. Impaired intestinal barrier function may 
result in a local or systemic immune response, mast cell 
degranulation, neuroinflammation and afferent vagus nerve 
activation [46]. In addition, commensal bacterial species 
such as Lactobacillus plantarum regulate intestinal epithelial 
integrity by stimulation of Toll-like receptor 2 (TLR2) in the 
gut epithelium [47]. In one study, extensive transcriptome 
analysis following consumption of three probiotic strains, 
Lactobacillus acidophilus, L. casei, and L. rhamnosus, by 
healthy volunteers showed that each species induced differ-
ential gene expression in networks involved in regulation of 
major basal pathways in the small intestinal mucosa, which 
resembled those induced by specific bioactive molecules and 
drugs [48]. The potential of probiotic bacteria to improve 
intestinal barrier function is discussed extensively in a recent 
review [49].

Investigation of intestinal barrier function and intesti-
nal permeability can be done by using a so-called Ussing 
chamber, an ex vivo method that uses intestinal specimens. 
The multi-sugar test is a non-invasive method that meas-
ures urinary excretion of ingested sugars as a measure of 
gut permeability [50, 51]. Indicators for gastroduodenal 
and small intestinal permeability are sucrose excretion and 
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the lactulose/rhamnose ratio in 0–5 h, respectively. Colonic 
permeability is estimated by the sucralose/erythritol ratio 
from urine sampled 5–24 h after the sugar ingestion. Appli-
cation of the multi-sugar test showed that small intestinal 
permeability was increased in patients with diarrheal IBS 
compared to healthy controls [50].

Patients with post-infectious IBS have reduced mucosal 
and fecal microbial diversity compared with healthy con-
trols. In addition, the intestinal microbiota of post-infectious 
IBS patients was shown to be different from that of general 
IBS patients [52]. Differences between post-infectious IBS 
patients and healthy controls were also found with respect 
to release of immunoregulatory cytokines (IL-13, IL-10 
and IL-1β) following ex vivo stimulation of colonic biop-
sies with selected species of anaerobic commensal bacteria. 
These results are consistent with an altered immune response 
against commensal gut microbes in post-infectious IBS 
patients [53].

Therapeutic alteration of intestinal microbiota in condi-
tions such as IBS may be achieved by ingestion of probiotics 
and prebiotics to increase the number of commensal bac-
teria within the gut, antibiotics which deplete pathogenic 
bacteria, and fecal microbiota transplantation (FMT) which 
introduces a healthy, diverse microbiota into the gut [35]. A 
meta-analysis of FMT reported that the method was highly 
effective for treating recurrent Clostridium difficile infec-
tion [54] and an expert consensus panel has recommended 
indications, technical procedures and clinical trial details 
of FMT for treating various conditions [55]. The panel also 
considered that, at the present time, FMT should be per-
formed only in research settings for treatment of IBD, IBS 
and metabolic syndrome [55]. Further research is needed to 
establish the role of FMT for treating these disorders.

Microbiome‑nutrient interactions 
in the diseased gut

LifeLines is a large prospective cohort study in The Neth-
erlands that includes more than 165,000 individuals, rep-
resenting three generations, with a proposed duration of 
30 years. The study collects extensive data on participants 
including demographic, biological and phenotypic infor-
mation including genetic, epigenetic and ‘omics’ data 
(metabolomics, transcriptomics, proteomics), with a wide 
range of biomaterials stored in a biobank. Subjects are 
required to complete a questionnaire each year, and several 
biomarkers are measured every 5 years [56]. LifeLines 
Deep is a cohort of 1500 individuals within LifeLines for 
whom multiple layers of omics information have been gen-
erated including both 16S and whole genome metagen-
omic sequence data [57]. At the time of the symposium, 
full metagenomic sequence data was available from ~ 1600 

population-based individuals including approximately 
1100 of the LifeLines DEEP population [57] and ~ 500 
from the Functional Genomics Project [58, 59]. In addi-
tion, two disease focused cohorts are also available includ-
ing 380 patients with IBD and 400 patients suffering from 
IBS [57, 60–63].

Genetic analysis of the human gut microbiota is com-
monly performed by high-throughput metagenomic sequenc-
ing and taxonomic profiling following analysis of 16S 
ribosomal RNA gene sequences [64]. Full metagenomic 
sequencing of isolates enables not only taxonomic profil-
ing, but also can gain insight at the strain level, and into 
functional parameters such as metabolic pathways and other 
biological processes, virulence factors, and antibiotic resist-
ance. However, there is still a limited understanding of indi-
vidual factors that shape the microbiota on individual level.

It is known that the overall diversity of the human gut 
microbiota changes throughout life, increasing steadily from 
birth until around 12 years of age, remaining relatively stable 
throughout adulthood, and then declining in later years [65]. 
In adults, 60–70% of the gut microbiome is stable, with the 
degree of stability varying between phyla [66]. Infections, 
lifestyle and dietary changes cause microbiome instability, 
producing major perturbations of the gut microbiome as 
nicely shown in a high-resolution longitudinal study in two 
individuals [67]. To study the role of the gut microbiome in 
health and disease, the scientific world first must address the 
question: what is a “healthy” microbiome and which factors 
influence the gut microbiome composition. For addressing 
this question and defining the intrinsic and extrinsic factors 
that influence the gut microbiome, Zhernakova et al analyzed 
the LifeLines Deep cohort utilizing metagenomic shotgun 
sequencing of the gut microbiome of 1135 participants and 
more than 200 phenotypic features. This study highlighted a 
relationship between the microbiome and multiple extrinsic 
and host factors, comprising 60 dietary factors, 31 intrinsic 
factors, 19 drug categories, 12 diseases, and 4 smoking cat-
egories. Together, these factors accounted for 18.7% of the 
observed inter-individual variation in the gut microbiome 
with diet being a major modulator of gut microbiome vari-
ation [63].

Multiple intrinsic factors that were associated with 
inter-individual variation in the gut microbiome included 
chromogranin A, a member of the granin family of neu-
roendocrine secretory proteins, stool frequency and Bristol 
classification of stool type but interestingly also triglycer-
ide concentrations. Age and high-density lipoprotein (HDL) 
concentration were positively correlated with gut microbi-
ome inter-individual variation [63]. In another study, our 
group showed by performing a Mendelian Randomization 
study that the human gut microbiota is an independent fac-
tor for variation of blood lipid levels, accounting for 6% of 
triglyceride, and 4% of HDL variance. In addition, we could 
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show that 4.5% of the variance in BMI is attributable to the 
gut microbiome [68].

Analysis of the gut microbiome revealed that the use of 
proton pump inhibitors (PPIs) was associated with a signifi-
cant decrease in gut microbiota diversity and with signifi-
cant changes of around 20% of bacterial taxa. This adverse 
effect of PPIs on bacterial diversity was greater than for any 
other drug class, including antibiotics. PPIs depleted ben-
eficial bacteria such as the Ruminococcaceae family and 
Bifidobacterium, and increased potentially harmful bacte-
ria including Enterococcus, Streptococcus, Staphylococcus 
genera and Escherichia coli. Results suggested that PPIs 
diminished the gastric acid barrier, as species found in the 
oral microbiome of PPI users were more abundant in the gut 
than in non-users [61]. It is increasingly observed that the 
use of PPIs is associated with an increase in the incidence of 
enteric infections like Clostridium difficile and Campylobac-
ter. Given the profound effect of PPIs on the gut microbiome 
and the fact that over 11% of population in The Netherlands 
and other European countries are using PPIs on prescription 
(not including over the counter use of PPIs) implies a major 
PPI-dependent influence on the gut microbiome taxonomy 
and function on a populational scale.

The Microbiome working group within the UMCG has 
embarked recently on a large project within the LifeLines 
cohort: the 10K metagenome project. Full metagenomic 
sequence data will be generated from fresh frozen fecal sam-
ples of 10,000 individuals. In addition to the genetic data, 
more than 2000 phenotypic details will be available for each 
individual. It is planned that the subjects will prospectively 
followed up every 5 years.

Taken together, the population-based LifeLines cohort 
is providing valuable insight into the complex interaction 
of microbiome with human health and will be instrumen-
tal in outlining new biomarkers and treatments for human 
diseases.

Effects of vitamins on the microbiome

The human gut microbiota contains bacteria that are ben-
eficial to the host, and bacteria with pathogenic potential, 
termed ‘pathobionts’ [69]. An important role of beneficial 
bacteria is the metabolic production of SCFAs by cross-feed-
ing (Fig. 1). Fiber-degrading bacteria include Ruminococcus 
callidus, Ruminococcus albus, Blautia obeum and Prevo-
tella spp. which produce solubilized oligosaccharides and 
polysaccharides that act as substrates for butyrate-producing 
species such as Faecalibacterium prausnitzii, Eubacterium 
rectale, Roseburia spp, Eubacterium hallii and Anaerostipes 
spp [37]. Butyrate has multiple effects on the host including 
maintenance of gut barrier function by stimulating the pro-
duction of mucin, antimicrobial peptides, and tight-junction 

proteins and reducing colonic oxidative stress [70]. These 
effects on gut barrier function are important for health as 
changes in the mucosal barrier have been described in IBD 
[71].

Gut microbiota imbalance, or dysbiosis, is considered to 
play a significant role in the pathogenesis of intestinal disor-
ders such as IBD and IBS, and of extra-intestinal disorders 
including allergies, asthma, type 1 diabetes, cardiovascular 
disease, metabolic syndrome, and obesity [72]. Chemother-
apy-induced mucositis which occurs in the mouth and gut 
results from damage to the mucosal barrier and can result 
in bacteremia, which is the abnormal presence of bacterial 
in blood. It has been suggested that commensal intestinal 
bacteria may play a key role in amelioration of inflamma-
tion and bacteremia [51]. In a rat model of chemotherapy-
induced mucositis, the number and diversity of the fecal 
microbiota was substantially decreased, including anaerobes 
and Streptococci, although there was a relative increase of 
Bacteroides [73]. Supporting the beneficial anaerobic micro-
biota during chemotherapy may, therefore, improve treat-
ment and quality of life for cancer patients.

Faecalibacterium prausnitzii is a Gram-negative obligate 
anaerobe which is difficult to culture, and taxonomically is in 
the Clostridia order of Firmicutes (Fig. 3). It is present in the 
gut of all healthy humans and may act as a biomarker of a 
healthy gut [74]. Dysbiosis associated with CD is character-
ized by reduced abundance of F. prausnitzii [75], with dysbi-
otic ileal CD patients having a significantly lower abundance 
of F. prausnitzii and a concomitantly increased abundance of 
E. coli [76]. Mechanistically, animal experiments provide an 
explanation for the increased abundance of E. coli in IBD as 

Fig. 3  A picture of the Gram-stained cells of Faecalibacterium 
prausnitzii growing in a colony inside agar seen as a big ball at the 
left lower corner, chains of cells grow away from this colony [80]. A 
typical single cell has the size of 3–5 µm in length and 1 µm in diam-
eter. The bar represents 10 µm (Photo, M. Sadaghian Sadabad)
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nitrate, which was generated as a byproduct of the inflamma-
tory host response, selectively enhanced growth of E. coli in 
the large intestine of mice [77]. Moreover, F. prausnitzii pro-
duces a 15 kDa anti-inflammatory protein that inhibits the 
NF-κB pathway in intestinal epithelial cells and was shown 
to prevent colitis in a mouse model [78].

F. prausnitzii uses riboflavin (vitamin B2) as a media-
tor for extracellular electron transfer, as demonstrated in a 
microbial fuel cell system [79]. A Human oxygen-Bacteria 
anaerobic (HoxBan) co-culture system has been developed 
in which F. prausnitzii was cultured with adherent Caco-2 
cells. Caco-2 cells promoted the growth and metabolism of 
the anaerobic F. prausnitzii, while genes involved in inflam-
mation and oxidative stress in Caco-2 cells were suppressed 
by F. prausnitzii [80].

Anti-oxidants including riboflavin and vitamin C are 
being investigated as new targets for intervention for the 
treatment of dysbiosis. A first pilot open-label study with 
100 mg/day riboflavin showed indeed an increase in fae-
calibacteria and a reduction in E. coli in most participants 
[81]. The double-blind, parallel-group, placebo-controlled 
Ribogut trial is currently examining the effect of 50 or 
100 mg/day riboflavin administered to healthy volunteers 
for 14 days on the gut microbiota composition with results 
to be expected in 2018.

Early‑life development of a healthy 
microbiome

The development of the perinatal gut microbiota is influ-
enced by multiple factors including gestational age, mode 
of delivery, maternal microbiota, infant feeding method, 
genetics, and environmental factors such as the choice of 
food. Microbial diversity increases dramatically during 

first months of infancy (Fig. 4). At birth, the microbiota is 
aerobic, with low numbers and low diversity, with the most 
common bacteria facultative anaerobes and members of the 
Enterobacteriaceae phylum [82]. Within a few days, the gut 
environment becomes anaerobic resulting in growth of bac-
teria such as Bifidobacterium [82], which is the dominant 
bacterium genus in the infant gut in the first months of life. 
With the introduction of solid food, a more adult-like micro-
biome starts to develop as of 6 months of life, dominated by 
Firmicutes and Bacteriodetes [82].

Factors promoting a healthy microbiota in neonates 
include a vaginal delivery, delivery at term, breast feeding, 
and exposure to a variety of microorganisms. In contrast, a 
Caesarean section, premature delivery, formula milk, and 
exposure to antibiotics have a negative impact on the diver-
sity and composition of microbiota in infants [25, 83–85].

Preterm infants show delayed colonization of the gut 
microbiota with Bifidobacterium, and have a high preva-
lence of Enterobacteriaceae, Staphylococcus, and Enterococ-
caceae [25]. Vaginally delivered neonates have an increased 
prevalence of maternal microbiota derived from the vagina 
and intestine (e.g. Lactobacillus, Prevotella and Sneathia) 
compared with neonates delivered by Caesarean section. 
Caesarean section delivered infants have a relatively high 
prevalence of skin bacteria such as Staphylococcus, Propi-
onibacterium and Corynebacterium compared to the ones 
that are vaginally delivered [25, 84]. Maternal antibiotic 
treatment that results in reduced utilization of human milk 
and prolonged hospitalization normally causes an increased 
prevalence of Proteobacteria, Firmicutes, Enterobacteriaceae 
(E. coli and Klebsiella spp.), Staphylococcus, Propionibac-
terium and Corynebacterium [25]. Feeding formula milk 
is associated with increased bacterial diversity, increased 
prevalence of Bacteroides fragilis, Clostridium difficile, and 
E. coli, and a decreased prevalence of bifidobacteria [84].

Fig. 4  Development of the gut microbiome during infancy. The 
development of the infant microbiome is dependent on various fac-
tors, such as infant feeding method, diet and the environment. Also, 
the mode of delivery (either vaginal or by cesarean section) affects 

the early life microbiome. Transfer of bacteria from the mother to the 
fetus has also been shown, indicating that pregnancy may be impor-
tant for colonization of the fetal/infant gut
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As previously mentioned, dysbiosis in infancy is asso-
ciated with an increased risk for immunological diseases 
such as asthma, allergic rhinitis, type 1 diabetes and celiac 
disease in addition to metabolic diseases, e.g. obesity and 
type 2 diabetes [84, 85].

Pregnancy is shown to alter the maternal gut micro-
biota. In humans, dramatic changes in the gut microbiota 
during pregnancy were described from the first to third tri-
mesters with an overall increase in the relative abundance 
of Proteobacteria and Actinobacteria, and with a reduced 
richness with a decreased abundance of Firmicutes and 
Bacteroidetes [86]. In C57BL/6 mice, pregnancy produced 
significant increases in the relative abundance of genera 
including Akkermansia, Bacteroides, Bifidobacterium, 
and Clostridium, in comparison to non-pregnant females. 
Changes in the microbiota began at the onset of pregnancy 
[87]. Pregnant Balb/c mice showed significant increases 
in the relative abundance of Actinobacteria and Proteo-
bacteria compared with non-pregnant littermates. The 
relative changes in gut microbiota of non-pregnant and 
pregnant mice were strain-specific suggesting that genetic 
background is an important determinant of the microbi-
ome. The physiological changes that occur in pregnancy 
produces significant changes in maternal metabolism 
necessary for supporting a healthy pregnancy [86]. The 
mechanisms resulting in alteration of the microbiota dur-
ing pregnancy are largely unknown, but it seems likely that 
microbiome alterations during pregnancy are also impor-
tant to support changes in maternal immune status and/or 
hormonal changes [86, 88].

It has also been suggested that changes in the maternal 
microbiota during pregnancy are important for fetal health, 
since it has been shown that maternal microbiota can be 
transferred to the fetus [89]. The transfer of microbiota from 
the mother to the fetus can be observed in the meconium, 
which in contrast to the earlier beliefs is not sterile [89]. The 
microbiota of meconium has low diversity represented by 
the Firmicutes (Staphylococcus, Enterococcus, and Bacilli), 
Proteobacteria and Actinobacteria phyla, and low bacterial 
cell numbers [90]. Variation in the microbiota of meconium 
is affected by maternal diabetes status [91] and maternal 
gestational diet, with a high-fat diet producing pronounced 
changes in neonatal meconium which persisted in infant 
faces for up to 6 weeks of age [92].

Also, the human placenta is not sterile. Indeed, the pla-
cental microbiome is unique and is comprised of commensal 
bacteria from the Firmicutes, Proteobacteria, Bacteroidetes, 
Tenericutes, and Fusobacteria phyla, and has some similarity 
to the human oral microbiome [93]. Low diversity of pla-
cental microbiota was significantly associated with low birth 
weight in full-term neonates [94]. Inter-individual placental 
microbiome diversity (beta diversity) was significantly asso-
ciated with prenatal infection or a preterm birth [93].

Direct evidence of transfer of maternal bacteria is derived 
from experiments in mice, in which oral administration of a 
genetically-labelled Enterococcus fecium strain to pregnant 
mice, resulted in a subsequent detection in meconium [89]. 
Furthermore, experiments of microbial colonization of preg-
nant germfree mice demonstrated that maternal microbiota 
affects neonatal immune responses. Gestational coloniza-
tion had effects on the innate intestinal immune response of 
the offspring, with increased numbers of intestinal innate 
lymphoid cells (ILC3), macrophages and dendritic cells, in 
addition to an effect on intestinal gene expression including 
genes involved in pathways for sugar metabolism, epithelial 
cell division and proliferation, and mononuclear cell func-
tion [95].

The development of the neonatal microbiome is depend-
ent on various factors. It is known since long that birth 
mode, feeding mode and antibiotic exposure, all affect the 
development of the neonatal microbiome. Since also treat-
ment with pre- or probiotics may affect the neonatal micro-
biome, such treatments may be effective options to optimize 
development of the neonatal microbiome.

It has become clear that the fetus and placenta are not 
sterile and the transfer of bacteria occurs from mother to the 
fetus during pregnancy. Therefore, the maternal microbiome 
also seems to be important for the development of the neo-
natal microbiome. This implies that pre- or probiotics use 
may open a possibility to modulate the maternal microbi-
ome during pregnancy, to optimize the development of the 
fetal microbiome. Further studies on the role of the maternal 
microbiome in development of the neonatal microbiome are 
necessary.

Microbiome and the gut‑brain axis

The bidirectional signaling between the gut microbiota, the 
gut, and the brain occurs via neuronal pathways involving 
both the central and enteric nervous systems in addition to 
the circulatory system [96, 97]. The latter includes involve-
ment of the hypothalamic–pituitary–adrenal (HPA) axis, 
immune system regulators, hormones, bacterial metabolites 
such as SCFAs, and neurotransmitters [96, 98].

Preclinical studies have shown effects of the gut micro-
biota on nociceptive reflexes [99], feeding, emotional and 
social behavior [99], the stress response [99], and brain neu-
rochemistry [100, 101]. The gut microbiota is essential for 
normal social development in the mouse and is implicated 
in neurodevelopmental disorders including autism spectrum 
disorder [102–104]. Germfree mice have an exaggerated 
stress response compared with control animals. These mice 
also exhibit increased motor activity and lower anxiety-like 
behavior compared with control mice [105]. Administra-
tion of the probiotic L. rhamnosus (JB-1) to mice reduced 
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stress-induced corticosterone levels and anxiety-related 
behavior [101]. These data strongly highlight the importance 
of the microbiome-gut-brain axis for normal neurological 
development and function.

Central control of the gut is mediated through the HPA 
axis and the autonomic nervous system. Preclinical studies 
on the stress response illustrate the effect of the CNS on the 
gut microbiome [97]. In primates, prenatal and postnatal 
stress affected the composition of the intestinal microbiota 
[106]. In addition to changes in the microbiome, postnatal 
stress was associated with stress-indicative behavior [106]. 
In rats, postnatal stress altered the fecal microbiome, with 
notable changes in behavior and immune status [107].

The mechanisms by which the gut microbiota exert their 
effects on the brain are beginning to be understood [97]. 
Circulating SCFAs produced by gut microbiota influence 
the integrity of the blood–brain barrier (BBB) by increas-
ing production of the tight junction proteins claudin-5 and 
occludin. This increased BBB integrity limits entry of unde-
sirable metabolites into brain tissue [98]. Compounds col-
lectively known as microbe-associated molecular patterns 
(e.g. lipopolysaccharide, bacterial lipoprotein, flagellin and 
CpG islands of unmethylated DNA) produced by the gut 
microbiota influence neuroimmune function by stimulating 
the release of cytokines such as TNFα, IL-6 and IL-1β from 
innate immune cells such as dendritic cells, macrophages 
and neutrophils. These cytokines can cross the BBB and 
activate microglia and neurons resulting in altered neuro-
logical function which can result in a change in mood and 
behavior [98].

A growing number of placebo-controlled RCTs have 
investigated the effect of probiotics on mood, cognition 
and brain function in humans. In healthy women, inges-
tion of a fermented milk product supplemented with pro-
biotics containing Bifidobacterium animalis, subsp. lactis, 
Streptococcus thermophiles, and two Lactobacillus spp. 
produced significant changes in brain activity assessed by 
functional magnetic resonance imaging (fMRI), in response 
to an emotional faces attention task. Reduced fMRI reactiv-
ity was found in interceptive and somatosensory regions of 
the brain which control central processing of emotion and 
sensation [108]. Probiotics containing Lactobacillus helveti-
cus and Bifidobacterium longum showed beneficial psycho-
logical effects in healthy human volunteers, with significant 
improvements in several global tests including the reduction 
of global psychological symptoms, depression and anxiety 
[109]. A probiotic milk drink containing Lactobacillus casei 
Shirota ingested by healthy volunteers had no effect on the 
mood of the group overall, but improved mood in subjects 
with low baseline mood, although an unexpected finding 
was somewhat impaired performance on two memory recall 
tests [110]. Consumption of a multispecies probiotic con-
taining two Bifidobacterium spp and five Lactobacillus spp. 

by healthy participants produced a significant reduction in 
overall cognitive reactivity (negative thoughts) to sad mood 
[111].

A link between the gut and brain function is supported by 
additional human studies involving diseased or normal sub-
jects. Many alcohol-dependent subjects have alterations in 
their intestinal permeability and gut microbiome. Increased 
intestinal permeability in these subjects was significantly 
associated with higher scores of depression, anxiety, and 
alcohol craving following 3 weeks of abstinence [112]. A 
placebo-controlled RCT of patients with major depressive 
disorder showed that a probiotic containing two Lactobacil-
lus spp. plus Bifidobacterium bifidum produced a significant 
decrease in Beck Depression Inventory total scores, sig-
nificant decreases in serum insulin levels and serum high-
sensitivity C-reactive protein (hs-CRP) concentrations in 
addition to a significant increase in plasma total glutathione 
concentrations [113]. A RCT of patients with Alzheimer’s 
disease found that ingestion of a probiotic containing three 
Lactobacillus spp. plus Bifidobacterium bifidum signifi-
cantly improved the mini-mental state examination scores, 
and produced significant changes in a range of metabolic 
parameters including plasma malondialdehyde, serum hs-
CRP and serum triglycerides [114]. Consumption of the 
prebiotic B-GOS, but not the prebiotic FOS, by healthy vol-
unteers significantly reduced the salivary cortisol awakening 
response when compared to placebo [115].

Thus, these and similar studies provide the evidence that 
the gut microbiota can modulate the stress response and is 
also implicated in anxiety, depression and cognition. There-
fore, the introduction of probiotic or symbiotic nutritional 
approaches are put forward by researches to prevent, delay, 
or ease neurological disorders in the future (see: [97]). How-
ever, the underlying mechanisms of these interactions are 
largely unclear and, at the present time, it is not possible to 
differentiate between the microbes involved.

Conclusions

The role of the human gut microbiota in health and disease 
is beginning to be understood. The composition of the gut 
microbiota is influenced by intrinsic mechanisms such as 
stress, and extraneous factors such as diet, prebiotics, probi-
otics, and drugs including PPIs and antibiotics. The dysbio-
sis of gut microbiota has been shown to be associated with 
IBD, IBS and depression.

It is clear that the gut microbiota is active, not passive, in 
its relationship with its host. Microbial metabolites (such as 
SCFAs) affect gut-brain signaling. The gut microbiota has a 
regulatory role on anxiety, mood, cognition and pain which 
is exerted via the gut-brain axis. In pregnancy dramatical 
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changes of the maternal microbiota affects neonatal immune 
responses and maturation.

Ingestion of prebiotics or probiotics has been used to treat 
a range of conditions including constipation, allergic reac-
tions and infections in infancy, and in patients with IBS. 
FMT is highly effective for treating recurrent Clostridium 
difficile infections and may be used more widely in the future 
for conditions such as metabolic syndrome.

Taken together, the effects of gut microbiome on health 
are multifaceted and researchers and health professionals try 
to educate consumers by including new scientific informa-
tion into their practice, especially for benefits beyond diges-
tive health. It is, therefore, expected that pre/probiotics will 
be combined with other nutritional compounds to achieve a 
more robust health effect. Moreover, it is expected that com-
bining different research disciplines and utilization of new 
technological methodologies in the microbiome research 
may pave the way for developing evidence-based clinical 
interventions for health concerns of modern life.
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