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Abstract: Neuropathic pain is a debilitating condition characterized by abnormal signaling within the
nervous system, resulting in persistent and often intense sensations of pain. It can arise from various
causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview
of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets
and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants,
gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging
treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article high-
lights the need for further research in this field to identify new targets and develop more effective
and targeted therapies for neuropathic pain management.

Keywords: neuropathic pain; therapy; tricyclic antidepressants; gabapentinoids; ambroxol; cannabidiol;
N-acetyl-L-cysteine

1. Introduction

When sensory division of the nervous system is damaged or malfunctioning, it can
cause a painful condition known as neuropathic pain [1]. Generally, according to these
mechanisms [2,3], pain is classified into three categories: nociceptive pain, which results
from an acute injury and subsides as the injury heals; neuropathic pain, which is caused
by disease or damage to the sensory structures of the peripheral and/or central nervous
system [4]; and nociplastic pain, which arises from altered nociception, despite there
being no clear evidence of actual or threatened tissue damage causing the activation of
peripheral nociceptors, or of disease or lesion of the somatosensory system causing the
pain [3,5]. In some classifications, there is a fourth pain category: inflammatory pain [3].
Thus, neuropathic pain, in contrast to nociceptive pain, which originates from damaged
tissues and inflammation, is typically the result of aberrant signaling inside neurons [1].

Pro-inflammatory cytokines, such as interleukin-1b (IL-1b), which are released by im-
mune cells, microglia, and astroglia in the spinal cord, play a critical role in the etiology and
mechanisms of neuropathic pain [6]. In addition, inflammation induces cyclo-oxygenase-
2 (COX-2) expression, thus enhancing prostaglandin (PGE) synthesis [7]. The potential
causes of neuropathic pain include nerve compression, trauma to the nervous system,
diabetic neuropathy, and post-herpetic neuralgia [1,4].

Neuropathic pain progresses and typically turns into chronicity near to the very
beginning of the pain process [1]. Most patients with neuropathic pain complain of ongoing
or intermittent spontaneous pain. Tingling, numbness, a perception of burning, and sharp
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pain are most common symptoms [8,9]. Dysesthesia refers to an atypical sensation that can
be severe and/or accompanied by pain. In contrast, paresthesia refers to altered sensations,
such as numbness, tingling, or the sensation of “pins and needles.” Paresthesia is typically
temporary and does not cause pain [8,9]. We can often find various combinations of these
sensory cues. Increased sensitivity or its loss in the affected area may also occur. Sometimes,
movement or touch could increase the pain, though it can also be rather persistent, even
long after the initial injury heals [8,9]. The damaged nerves keep sending signals to
the brain, leading to the continuous sensation of pain, due to peripheral and central
sensitization, which are related to changes in ion channels, the stimulation of immune cells,
substances produced by glial cells, and the modulation of gene expression patterns [1].

Neuropathic pain is clinically characterized by hyperalgesia (increased painfulness) of
the affected body part’s innervated area and allodynia (painful response to non-painful
stimuli). Bedside tests are helpful to identify evoked pain and sensory abnormalities.
Lightly brushing the site of spontaneous pain with a piece of cotton wool may result
in pain or an unpleasant sensation, demonstrating allodynia [10]. Hyperalgesia can be
assessed with sufficiently sharp pin prick testing over the affected site, and if a patient
reports exaggerated pain, this finding would suggest the presence of hyperalgesia. Other
sensory phenomena include hyperpathia (increased reaction to a series of stimuli with
subsequent prolongation of painful aftersensations when the stimulus is removed) and
delocalization (a stimulus in one area produces pain in another area) [10]. Neuropathic pain
questionnaires may be used as screening tools, and these tools include the neuropathic pain
scale, the Leeds assessment of neuropathic symptoms and signs (LANSS), a neuropathic
pain questionnaire, painDETECT, ID-pain, and the Douleur neuropathique (DN4) [10].

Neuropathic pain mechanisms can be partly effectively inhibited and modulated by
substances possessing anti-inflammatory, immune response-regulating, and anti-oxidant
properties. Also, it is possible to alleviate pain by modulating nerve signals with medica-
tions, such as antidepressants, anticonvulsants, and opioids [8,9]. Physical therapy with a
special focus on mechanical nerve movements and conditions and vibration stimulus, as
well as nerve blocks and transcutaneous electrical nerve stimulation (TENS), show promise
as novel approaches in the treatment of neuropathic pain [8,9].

2. Drug Targets in Neuropathic Pain

Neuropathic pain is also characterized by the dysregulation of certain ion channels,
receptors, and processes [11] (Figure 1).

NMDA receptors are a subtype of glutamate receptors that play a critical role in
synaptic plasticity, learning, and memory [12,13]. In the context of neuropathic pain,
NMDA receptors are known to contribute to the phenomenon of central sensitization [12,13].
Following nerve injury, the activation of NMDA receptors in the spinal cord and brain
becomes enhanced, leading to an increased influx of calcium ions and the amplification of
pain signals [12,13]. This heightened NMDA receptor activity promotes the establishment
and maintenance of chronic pain states. Modulating NMDA receptor activity is, thus, a
target for pharmacological interventions in neuropathic pain management [12,13].

Opioid receptors, including mu, delta, and kappa receptors, are distributed throughout
the nervous system and are involved in pain modulation [14–17]. Endogenous opioids, such
as endorphins and enkephalins, bind to opioid receptors to inhibit pain transmission. In
neuropathic pain, alterations in opioid receptor expression and function can occur, resulting
in reduced endogenous opioid effectiveness and diminished response to exogenous opioids,
leading, in turn, to decreased pain relief [14–17]. Opioid receptor desensitization and
downregulation contribute to the development of opioid tolerance and may limit the
long-term efficacy of opioid-based therapies in treating neuropathic pain [14–17].

The endocannabinoid system, which consists of the cannabinoid receptors CB1 and
CB2, along with endogenous ligands (endocannabinoids), plays a modulatory role in pain
perception [18–21]. CB1 receptors are predominantly found in the central nervous system,
while CB2 receptors are primarily located in peripheral immune cells [18–21]. Activation of



Pharmaceutics 2023, 15, 1799 3 of 28

cannabinoid receptors can have analgesic effects through various mechanisms, including
modulation of neuronal excitability, inhibition of neurotransmitter release, and attenuation
of neuroinflammation [18–21]. The endocannabinoid system has emerged as a potential
target for developing cannabinoid-based medications to alleviate neuropathic pain.
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Transient Receptor Potential (TRP) channels are a diverse family of ion channels in-
volved in detecting and transmitting pain signals. Several TRP channels, such as TRPV1
(vanilloid receptor), TRPA1 (ankyrin receptor), and TRPM8 (menthol receptor), are impli-
cated in neuropathic pain [22–25]. TRPV1 channels are activated by heat, inflammatory
mediators, and capsaicin, and contribute to hypersensitivity and thermal pain in neuro-
pathic conditions [23]. TRPA1 channels are involved in nociceptive responses to cold and
chemical irritants, and their activation can enhance pain sensitivity. TRPM8 channels,
which are predominantly expressed in sensory neurons, are activated by cold temperatures
and play a role in cold allodynia and hyperalgesia [23]. Modulating TRP channel activity
holds promise for developing novel therapeutics that target neuropathic pain [22–25].

Gamma–aminobutyric acid (GABA) receptors mediate inhibitory neurotransmission
in the central nervous system [26]. GABAergic inhibition is crucial to maintaining a balance
between excitation and inhibition in pain processing. Alterations in GABA receptor func-
tion, including changes in receptor subunit composition, can disrupt inhibitory signaling
in neuropathic pain [26]. Decreased GABAergic inhibition and impaired GABA receptor-
mediated synaptic transmission can contribute to the development and maintenance of
hyperexcitability and increased pain sensitivity [26]. Enhancing GABAergic transmission
or targeting specific GABA receptor subtypes may have therapeutic potential for alleviating
neuropathic pain.

Serotonin (5-hydroxytryptamine, 5-HT) receptors, particularly the 5-HT3 and 5-HT1A
subtypes, play a role in pain modulation [27,28]. The 5-HT3 receptor is involved in the
transmission of pain signals in the spinal cord [29–31]. The 5HT1A heteroreceptors are
found on neurons distinct from those that release serotonin (5-HT). These heteroreceptors
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play a crucial role in modulating pain transmission by regulating the activity of other
neurotransmitter systems. When activated, the 5HT1A heteroreceptors inhibit the release of
various neurotransmitters involved in pain processing, such as substance P and glutamate.
By reducing the release of these pain-related neurotransmitters, the 5HT1A heteroreceptors
contribute to the alleviation of pain [29–31]. In contrast, the 5HT1A autoreceptors are
located on serotonin-releasing neurons [32–34]. Their primary function is to regulate the
synthesis and release of serotonin. When serotonin is released, it binds to the autoreceptors,
leading to a negative feedback inhibition. Activation of the 5HT1A autoreceptors results in
a decrease in further serotonin release, helping to maintain optimal serotonin levels in the
synaptic cleft [32–34]. Since serotonin is involved in inhibiting pain signals, the modulation
of serotonin availability through the activation of 5HT1A autoreceptors indirectly influences
pain transmission [32–34]. Thus, the 5HT1A heteroreceptors directly participate in pain
modulation by inhibiting the release of pain-related neurotransmitters [32–34]. On the
other hand, the 5HT1A autoreceptors regulate the synthesis and release of serotonin,
indirectly affecting pain transmission by modulating serotonin availability [32–34]. Thus,
both receptor types contribute to the overall regulation of pain perception, albeit through
different mechanisms. Dysregulation of serotonin signaling was in neuropathic pain
conditions, and medications targeting serotonin receptors show efficacy in managing
neuropathic pain symptoms [29,35]. Selective serotonin re-uptake inhibitors (SSRIs) and
serotonin–norepinephrine re-uptake inhibitors (SNRIs) are commonly used medications
that modulate serotonin levels and could provide pain relief [27,28].

The noradrenergic system plays a vital role in modulating neuropathic pain, and its
dysregulation can contribute to the development and persistence of this condition [36,37].
Noradrenergic neurons release noradrenaline as a neurotransmitter, which originates
from the locus coeruleus in the brainstem and projects to various regions, including the
spinal cord [36,38,39]. Following nerve injury, changes in noradrenergic neuron activity
and function occur, leading to alterations in noradrenaline release [36–39]. In the spinal
cord, noradrenaline can modulate pain signaling by acting on adrenergic receptors [37,40].
Alpha–adrenergic receptors inhibit pain neurotransmitter release and reduce the excitability
of pain-sensing neurons, resulting in analgesic effects [37,40]. Beta–adrenergic receptors,
with different subtypes having varied effects, can either enhance pain transmission or exert
analgesic effects by modulating pain neuron activity [37,40]. Additionally, the noradrener-
gic system interacts with other neurotransmitter systems involved in pain processing, such
as serotonin and opioids [36,39,40]. These interactions contribute to the overall modula-
tion of pain perception and influence the development and maintenance of neuropathic
pain [36,39,40]. Understanding the role of the noradrenergic system provides insights into
potential therapeutic targets, such as enhancing noradrenergic signaling through medi-
cations, like norepinephrine re-uptake inhibitors or alpha-2 adrenergic receptor agonists,
which show efficacy in reducing neuropathic pain symptoms [36,37,40].

Purinergic receptors, which encompass both P1 (adenosine) and P2 receptors, respond
to various purine nucleotides, including ATP and adenosine [41,42]. The activation of
purinergic receptors, particularly P2X receptors, can contribute to neuropathic pain by
enhancing pain transmission, promoting neuroinflammation, and modulating neuronal
excitability [41,42]. On the other hand, adenosine receptors specifically bind and respond
to adenosine, which can have analgesic and anti-inflammatory effects [41,43,44]. Activation
of adenosine receptors, particularly the A1 and A2A subtypes, was showed to inhibit
pain transmission and reduce inflammation associated with neuropathic pain [41,44,45].
Therefore, while both purinergic receptors and adenosine receptors are involved in neu-
ropathic pain, their specific mechanisms and effects may differ [42]. Purinergic receptors,
including P2X receptors, are involved in the amplification of pain signals and neuroinflam-
mation, while adenosine receptors, especially A1 and A2A receptors, have analgesic and
anti-inflammatory properties [41–43]. Activation of adenosine receptors inhibits the release of
excitatory neurotransmitters, such as glutamate, and dampens neuronal excitability [41,43].
Adenosine receptor agonists or enhancing adenosine levels in the nervous system demon-
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strated analgesic effects in various neuropathic pain models [41,43]. Targeting purinergic
receptors represent a potential therapeutic strategy for managing neuropathic pain [41,43,46].

Voltage-gated sodium channels, particularly the Nav1.7, Nav1.8, and Nav1.9 subtypes,
play a pivotal role in the generation and propagation of action potentials in pain-sensing
neurons [47,48]. Following nerve injury, there is an upregulation and altered distribution
of sodium channels in both injured and neighboring intact neurons. This issue leads to
enhanced excitability and ectopic firing, contributing to the development of neuropathic
pain [47,48]. Thus, targeting specific sodium channel subtypes emerged as a potential
strategy for alleviating neuropathic pain symptoms.

Voltage-gated calcium channels, including the N-type (Cav2.2), P/Q-type (Cav2.1),
and T-type (Cav3) channels, are involved in neurotransmitter release and neuronal excitabil-
ity [49,50]. Dysregulation of calcium channel activity is implicated in the development
and maintenance of neuropathic pain. Increased calcium influx into nociceptive neurons
can trigger the release of pro-inflammatory mediators, enhance excitatory synaptic trans-
mission, and contribute to neuronal hyperexcitability [49,50]. Modulating specific calcium
channel subtypes shows promise as a therapeutic approach for managing neuropathic pain.

Potassium channels play a crucial role in regulating neuronal excitability [51,52]. In
neuropathic pain, there is a dysregulation of potassium channel function, leading to altered
potassium ion dynamics and impaired hyperpolarization. This issue results in prolonged
action potentials and the increased excitability of pain-sensing neurons. Targeting specific
potassium channel subtypes may help restore the balance of neuronal excitability and
provide therapeutic benefits for neuropathic pain management [51,52].

Acid-sensing ion channels (ASICs) are proton-gated ion channels expressed in sensory
neurons and play a role in pain signaling [53,54]. Following nerve injury, changes in
pH occur in the microenvironment surrounding the damaged nerves. Acidification can
activate ASICs, leading to neuronal excitability, hyperalgesia, and the development of
mechanical and thermal hypersensitivity [53,54]. Inhibiting or modulating ASIC activity
shows potential in attenuating neuropathic pain symptoms.

Neuroinflammatory processes are involved in the development and progression of
neuropathic pain [6,55]. Activated immune cells release pro-inflammatory molecules,
such as cytokines, chemokines, and prostaglandins, which sensitize pain-sensing neurons,
enhance pain transmission, and contribute to the maintenance of neuropathic pain [6,55].
There is growing scientific awareness of the fact that the main molecules responsible for the
development of neuropathic pain are pro-inflammatory cytokines, especially interleukin-1b
(IL-1b) [6]. These cytokines could initiate a series of neuroinflammation-related processes
that can increase and intensify the initial injury, leading to the manifestation of chronic
pain [55]. Furthermore, inflammation upregulates cyclo-oxygenase-2 (COX-2) activity,
thus increasing the synthesis of prostaglandins (PGE) [7] and the release of pain-related
neuropeptides [56]. Metalloproteinases (MMPs), which are primarily associated with tissue
remodeling and inflammation in neurodegenerative disorders [57], also play crucial roles
in nociception and hyperalgesia during the chronic phase of neuropathic pain [58,59].

Epigenetic modifications, including DNA methylation, histone modifications, and
non-coding RNA expression, can influence gene expression patterns and alter pain sensitiv-
ity [60–62]. Epigenetic changes in key pain-related genes can contribute to the development
and persistence of neuropathic pain [60–62].

These molecular mechanisms interact and influence each other, contributing to the
complex nature of neuropathic pain. Targeting these mechanisms with specific medications
or interventions holds promise for developing novel therapeutic approaches to alleviate
neuropathic pain and improve the quality of life of affected individuals.

3. Current Pharmacotherapies in Neuropathic Pain

There are several popular and commonly used pharmacotherapies related to the
management of neuropathic pain, including anticonvulsants (e.g., gabapentin and prega-
balin); tricyclic antidepressants (TCAs) (e.g., amitriptyline); serotonin and norepinephrine



Pharmaceutics 2023, 15, 1799 6 of 28

re-uptake inhibitors (SNRIs) (e.g., duloxetine); topical agents (e.g., lidocaine patches or
creams, capsaicin creams); non-steroidal anti-inflammatory drugs (NSAIDs) and selective
cyclo-oxygenase-2 (COX-2) inhibitors, in the case of inflammation; N-methyl-D-aspartate
(NMDA) receptor antagonists (e.g., ketamine), in specific cases, including central neuro-
pathic pain and neuropathic pain in cancer; and opioids, such as morphine and oxycodone,
which can be administered under thorough medical supervision for very severe cases [1]
(Figure 2).
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3.1. Gabapentinoids

Gabapentin are first-line treatments used to combat neuropathic pain [26,63]. The
mechanism of action of gabapentinoids gabapentin and pregabalin is related to their ability
to bind to the α2δ subunit of voltage-gated calcium channels, thus reducing the release of
excitatory neurotransmitters [26,63].

Cao et al. performed the systematic review to compare the clinical efficacy of prega-
balin and gabapentin in treating post-herpetic neuralgia and assessed the occurrence of
adverse reactions [64]. In total, 14 randomized controlled trials involving 3545 patients
were included in the study [64]. The findings showed that pregabalin was more effective
than gabapentin in alleviating pain and improving global perception of pain and sleep [64].
However, gabapentin had a lower incidence of adverse events compared to pregabalin [64].
In the systematic review by Gimenez-Campos et al., the effectiveness of pregabalin and
gabapentin in managing pain and disability caused by acute sciatica, as well as the asso-
ciated adverse events, were assessed [65]. The review included 8 randomized controlled
trials involving 747 participants [65]. The results showed that pregabalin and gabapentin
were not effective in managing sciatica pain, as there were no statistically significant im-
provements in leg pain, low back pain, or functional disability compared to placebo or other
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treatments [65]. Shanthanna et al. performed the meta-analysis to assess the effectiveness
and safety of gabapentinoids (pregabalin and gabapentin) in treating chronic low-back
pain [66]. Eight randomized control trials were included in the study, and outcomes were
guided by pain relief and safety as the primary measures. The study found that there was
minimal improvement in pain relief when comparing gabapentin to placebo, as well as
greater improvement in other analgesic groups when comparing pregabalin to other types
of analgesic medication. Additionally, gabapentinoids were associated with adverse effects,
such as dizziness, fatigue, difficulties with mentation, and visual disturbances, without any
demonstrated benefit [66].

Gabapentin and pregabalin are effective in managing neuropathic pain associated
with conditions like diabetic neuropathy and post-herpetic neuralgia [26,63]. The dosage
of gabapentin is 900–3600 mg/day, while the dosage of pregabalin is 150–600 mg/day;
the standard administration route is oral [67]. The side effects of gabapentinoids include
central nervous system effects, e.g., dizziness, sedation, and cognitive impairment; gas-
trointestinal effects, like nausea, vomiting, and—rarely—peripheral edema; weight gain;
fatigue; headache; dry mouth; visual disturbances; muscle pain; and mood changes [26,68].

Bao et al. assessed the analgesic efficacy of combining gabapentin and opioids for
neuropathic cancer pain [69]. Seven relevant studies were included in the meta-analysis,
which demonstrated that the combination of gabapentin and opioids effectively reduced
pain intensity compared to opioids alone [69]. The pooled analysis showed a significant
mean difference in pain intensity, supporting the use of gabapentin as an adjunctive therapy
for neuropathic cancer pain [69].

Thus, gabapentinoids are effective in managing neuropathic pain, though their efficacy
varies depending on the specific conditions. Due to side effects, individual response and
tolerability should be considered when using these medications.

3.2. Tricyclic Antidepressants

Tricyclic antidepressants (TCAs) exert their analgesic effects in neuropathic pain
through multiple mechanisms of action [70,71]. One of the main mechanisms involves the
inhibition of the re-uptake of serotonin and noradrenaline in the pre-synaptic neurons,
thereby increasing their availability in the synapsis [70,71]. This enhanced neurotransmitter
activity modulates the pain signaling pathways, leading to a reduction in pain percep-
tion [70,71]. Moreover, additional mechanisms, such as N-methyl-D-aspartate receptor
modulation and ion channel blockade, likely contribute to their pain-relieving effects [71].

Several studies investigated the effectiveness of TCA amitriptyline in various neuro-
pathic pain conditions. Max et al. conducted a randomized controlled trial assessing the
effectiveness of amitriptyline in post-herpetic neuralgia, revealing that it significantly de-
creased pain intensity and enhanced sleep quality compared to placebo [72]. Amitriptyline
significantly reduced pain intensity and improved sleep and quality of life in patients with
neuropathic pain of various etiologies [73]. In their systematic review and meta-analysis,
Finnerup et al. determined that amitriptyline exhibited effectiveness in reducing pain
intensity and improving sleep- and health-related quality of life among individuals with
neuropathic pain [67].

The best dosage of amitriptyline for neuropathic pain can vary depending on multiple
factors, including the individual’s age, medical condition, and response to treatment [74].
Typically, the initial dose of amitriptyline for neuropathic pain is low and gradually in-
creased over time. The usual starting dose ranges from 10 to 25 mg, being taken orally at
bedtime. The dosage may be increased by 10 to 25 mg per week until an effective dose
is reached, which is often between 50 and 150 mg per day [74]. The most commonly
encountered side effects of amitriptyline include weight gain, gastrointestinal symptoms
like constipation, xerostomia, dizziness, headache, and somnolence [74].

In summary, tricyclic antidepressants (TCA), such as amitriptyline, are drugs with a
moderate-to-high quality of evidence and a strong recommendation for use in the treatment
of neuropathic pain [1,67].
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3.3. Serotonin–Norepinephrine Re-Uptake Inhibitors

Serotonin–norepinephrine re-uptake inhibitors (SNRIs) are a class of medications
that increase the levels of serotonin and norepinephrine by blocking their re-uptake, thus
leading to reduced pain signals [75]. SNRIs are commonly used in the management of
depression and anxiety disorders, though they are also effective in treating neuropathic
pain [75]. SNRIs can be considered when tricyclic antidepressants and anticonvulsants are
ineffective or contraindicated in neuropathic pain treatment [75]. Duloxetine is commonly
used SNRI for neuropathic pain [75]. In randomized, placebo-controlled trials, the efficacy
of duloxetine in diabetic peripheral neuropathic pain was assessed [76]. The study found
that duloxetine at doses of 60 and 120 mg/day significantly reduced pain severity compared
to placebo and improved overall functioning [76]. In study by Goldstein et al., patients with
painful diabetic neuropathy were treated with duloxetine at doses of 60 or 120 mg/day,
resulting in pain relief and increased overall quality of life compared to placebo [77]. Wer-
nicke et al. performed a randomized, double-blind trial to evaluate the efficacy and safety
of duloxetine in patients with chronic low-back pain and a neuropathic component [78].
Duloxetine at doses of 60 and 120 mg/day showed significant reductions in pain severity
compared to placebo [78]. This systematic review found that duloxetine has a beneficial
effect compared to placebo in the management of painful diabetic neuropathy [79]. In total,
23 studies were included, with 8 considered to be of high quality [79]. However, there was
insufficient evidence to determine its superiority over pregabalin and amitriptyline, as only
one trial was available for each comparison [79].

Duloxetine is typically prescribed for neuropathic pain at a starting dose of 30 mg
once daily, which may be increased to 60 mg once daily based on individual response and
tolerability [75]. Common side effects include nausea, dry mouth, constipation, dizziness,
somnolence (excessive sleepiness), and sweating [75].

Like tricyclic antidepressants (TCAs), serotonin–norepinephrine re-uptake inhibitors,
such as duloxetine, are drugs with a moderate-to-high quality of evidence and a strong
recommendation for use in the treatment of neuropathic pain [1,67].

3.4. Lidocaine

Lidocaine is a widely used local anesthetic that gained attention as an alternative
therapeutic option for neuropathic pain [80–82]. Lidocaine belongs to the class of amide-
type local anesthetics and works by blocking sodium channels, thereby inhibiting the
transmission of pain signals [80–82]. Lidocaine also modulates NMDA receptors, which
play a role in chronic pain [80–82]. By inhibiting NMDA receptors, lidocaine interferes with
pain-signal transmission and can reduce central sensitization [80–82]. This modulation
contributes to lidocaine’s efficacy in treating conditions like neuropathic pain [80–82].

In addition to its local anesthetic properties, lidocaine demonstrated analgesic effects
when administered systemically, making it suitable for the treatment of neuropathic pain
in various clinical settings [80–82]. The use of lidocaine for neuropathic pain involves
different formulations and routes of administration. Lidocaine patches or topical creams
are commonly applied directly to the affected area, providing localized pain relief [83].
Additionally, lidocaine can be administered intravenously [84,85] or orally in the form
of sustained-release formulations [86], allowing for systemic distribution and prolonged
analgesic effects.

Numerous studies and clinical trials explored the efficacy and safety of lidocaine in
neuropathic pain conditions, such as post-herpetic neuralgia, diabetic neuropathy, and
neuropathic pain associated with spinal cord injury. These investigations focused on
evaluating the analgesic efficacy, duration of pain relief, functional improvements, and
overall patient satisfaction with lidocaine treatment. The analgesic efficacy of intravenous
lidocaine (5 mg/kg i.v. over 30 min) was evaluated in patients with neuropathic pain
in a randomized, controlled, and double-blind crossover trial, leading to a significant
reduction in pain intensity compared to placebo, suggesting its potential as a treatment
option for neuropathic pain [87]. However, in a single site randomized double-blind
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crossover trial, IV lidocaine infusion’s (5 mg/kg effectiveness was compared to active
placebo infusion containing diphenhydramine (50 mg) in patients with chronic peripheral
neuropathic pain, resulting in no significant long-term pain relief or improvement in quality
of life [85]. Nevertheless, in a comprehensive literature review, the use of intravenous
lidocaine infusion as a treatment for peripheral neuropathy was investigated, showing its
effectiveness as a treatment option with minimal side effects [84]. Lidocaine can also be used
in the form of sustained-release capsules, transmucosal patches, or oral gels/suspensions
to exert longer lasting pain relief in cases of chronic or neuropathic pain [88–92].

The efficacy and safety of a topical 5% lidocaine medicated plaster was tested in
patients with painful diabetic peripheral neuropathy in a randomized, double-blind, and
placebo-controlled trial, providing significant pain relief compared to placebo, as well as a
favorable safety profile [93]. In a literature review, topical lidocaine alone or in combination
with other treatments, e.g., gabapentinoids, TCA, NSAIDs or, in severe cases, opioids,
showed efficacy and safety for effective pain management in post-herpetic neuralgia, post-
surgical pain, diabetic peripheral neuropathy, carpal tunnel syndrome, chronic lower back
pain, and osteoarthritis [82].

Thus, lidocaine can provide significant pain relief in neuropathic pain conditions
when administered intravenously. Topical lidocaine offers a localized analgesic option with
minimal systemic adverse events. Lidocaine is generally safe when used in therapeutic
doses for local anesthesia or pain management [94]. The toxic effects of lidocaine can occur
in a dose-dependent manner. Excessive doses of lidocaine can lead to lidocaine toxicity,
a condition that manifests through central nervous system (CNS) and cardiovascular
symptoms [94]. Some possible side effects may include local skin reactions (with topical
use), dizziness, drowsiness, headache, nausea, vomiting, metallic taste, and numbness or
tingling at the site of application or infusion [94].

3.5. Capsaicin

Capsaicin is a naturally occurring compound found in chili peppers (Capsicum an-
nuum L.) that is utilized for its analgesic properties in the management of neuropathic
pain [95]. It is commonly available as a topical medication and is applied directly to the
skin at the site of pain [96]. The mechanism of action of capsaicin involves the desensitiza-
tion of nociceptive nerve fibers, which are responsible for transmitting pain signals to the
brain. When capsaicin is applied topically, it binds to transient receptor potential vanilloid
1 (TRPV1) channels, causing a burning or stinging sensation, followed by a reduction in
pain sensitivity due to the depletion of substance P, which is a neurotransmitter involved
in the transmission of pain signals [96].

Capsaicin 8% dermal patches showed effectiveness comparable to centrally acting
agents, like pregabalin, with potentially fewer systemic side effects, faster onset of action,
and higher treatment satisfaction [97]. A review of 14 selected studies that reviewed the
capsaicin 8% patch (Qutenza) witnessed significantly reduced average pain intensity in
chronic post-surgical pain patients, showing only mild adverse effects [98].

The capsaicin 8% patch provided effective pain relief with reduced application fre-
quency and minimal systemic side effects compared to oral medications, like gabapenti-
noids or TCAs, in patients with painful diabetic peripheral neuropathy [99]. In a random-
ized controlled trial, the application of the capsaicin 8% patch for neuropathic pain in
individuals with spinal cord injury was investigated, showing significant pain reduction,
with improvements observed for pain outcome and mobility, but not in quality of life,
measures [100]. In a systematic review of 5 studies including 95 patients, the efficacy and
tolerability of 8% capsaicin patch was evaluated for its effectivess in mitigating the effects
of chemotherapy-induced peripheral neuropathy, providing significant pain relief [101].

Capsaicin is primarily used in the management of conditions such as post-herpetic
neuralgia, diabetic neuropathy, and other forms of peripheral neuropathic pain [96]. It is
considered a second-line treatment option when first-line treatments, such as oral medica-
tions, fail to provide adequate relief or are associated with significant side effects [102]. The
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concentration and frequency of application may vary depending on the specific product
and the condition being treated [102]. While capsaicin is generally well-tolerated, mild and
transient local skin reactions, such as redness, burning, or itching at the application site,
could be observed [102]. Precautions should be taken to avoid contact with eyes, mucous
membranes, and other sensitive areas [102].

3.6. Second Line Choices for Neuropathic Pain Treatment

When first-line treatments, such as antidepressants, anticonvulsants, and other med-
ications, do not provide sufficient relief or are not well-tolerated, NMDA antagonists
may be considered as an alternative option [74]. In neuropathic pain conditions, NMDA
receptors can become overactive, leading to increased pain sensitivity and the develop-
ment of central sensitization [103–105]. NMDA antagonists work through blocking the
activity of NMDA receptors, thereby reducing the excitatory transmission of pain signals
in the central nervous system [103–105]. By inhibiting NMDA receptor activation, these
medications can help alleviate neuropathic pain and prevent the establishment of chronic
pain states [103–105]. Ketamine is an anesthetic medication that, at lower doses, acts as a
NMDA receptor antagonist [106]. It was shown to have analgesic properties, particularly
in cases of refractory or severe neuropathic pain [106]. Ketamine can be administered
intravenously, topically, or as an oral medication under careful medical supervision [106].
Other NMDA antagonists, such as memantine, dextromethorphan, and magnesium sulfate,
were also studied for their potential efficacy in neuropathic pain management [107]. These
medications work through different mechanisms to modulate NMDA receptor activity and
reduce pain transmission [107]. Overall, NMDA antagonists show promise in managing
neuropathic pain by targeting the underlying mechanisms of central sensitization [103–105].
However, their use for the management of neuropathic pain is generally reserved for cases
where other treatments were ineffective due to several factors, including the potential for
side effects, the need for careful dosing and monitoring, and the specialized administration
requirements [103–105].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used for pain relief
and inflammation management when treating various conditions, including neuropathic
pain [108,109]. While NSAIDs primarily work by inhibiting the activity of cyclo-oxygenase
(COX) enzymes and reducing the production of inflammatory prostaglandins, their role
in neuropathic pain management is somewhat limited [108,109]. Neuropathic pain is
typically caused by damage or dysfunction of the nervous system, resulting in abnormal
pain signaling [110,111]. Unlike inflammatory pain, neuropathic pain involves complex
mechanisms that extend beyond inflammation and may not respond as effectively to
NSAIDs. However, NSAIDs can still have some benefits in managing neuropathic pain
in certain situations [74]. They may be helpful when neuropathic pain is accompanied by
inflammation or there is an inflammatory component contributing to the pain. In such
cases, NSAIDs can help to reduce inflammation and alleviate associated symptoms, leading
to some pain relief.

Opioids, including morphine and oxycodone, are generally reserved for severe or
refractory cases of neuropathic pain [103,112]. They may provide short-term relief, though
their long-term efficacy in treating neuropathic pain is uncertain, and they can be associated
with significant side effects and risks, including sedation, respiratory depression, constipa-
tion, nausea, itching, hormonal effects, and potential dependence and addiction [103,112].
Due to these considerations, opioids are typically prescribed at the lowest effective dose for
the shortest duration possible [103,112]. They are often used as part of a comprehensive
pain management plan that includes other non-opioid medications, physical therapy, be-
havioral interventions, and lifestyle modifications [103,112]. The traditional administration
route of opioids for chronic pain management is oral, while the dosage varies depend-
ing on several factors, including the specific opioid being used, the severity of pain, the
individual’s tolerance, and the presence of any underlying health conditions.
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Tramadol and tapentadol are both centrally acting analgesics that are used for the man-
agement of moderate-to-severe pain, including neuropathic pain [74,113,114]. Tramadol
acts as a weak mu-opioid receptor agonist and inhibits the re-uptake of norepinephrine and
serotonin, and its analgesic effects are attributed to these combined actions [114,115]. Tapen-
tadol, on the other hand, is a dual-action medication with mu-opioid receptor agonism
and norepinephrine re-uptake inhibition [113]. It has a stronger affinity for the mu-opioid
receptor compared to tramadol [113,115]. Tapentadol is considered to be more potent than
tramadol, as it has a greater analgesic efficacy and a faster onset of action [113,115]. Both
tramadol and tapentadol can cause similar side effects, such as nausea, dizziness, constipa-
tion, and drowsiness. However, tapentadol is generally associated with a lower incidence
of gastrointestinal side effects than tramadol [113,115]. Tramadol has a lower potential
for abuse compared to traditional opioids; however, it can still cause dependence and
addiction in susceptible individuals [114]. Tapentadol has a lower risk of abuse compared
to other opioids due to its dual mechanism of action and its reduced affinity for serotonin
re-uptake inhibition, which is associated with the euphoric effects experienced via the use
of some opioids [113,115].

Thus, the management of neuropathic pain requires a comprehensive approach that
involves different treatment options. NMDA antagonists, such as ketamine and memantine,
which target central sensitization mechanisms, are beneficial when inflammation accompa-
nies neuropathic pain. Opioids, like morphine and oxycodone, are reserved for severe cases,
but some carry risks [103,112]. Tramadol and tapentadol are centrally acting analgesics
that are used for moderate-to-severe neuropathic pain, with tapentadol offering greater
potency and fewer gastrointestinal side effects [115]. Each of these treatment choices has its
advantages and considerations, and individual patient factors should guide the selection
of second-line options for neuropathic pain management.

4. New Pharmacotherapies in Neuropathic Pain

Neuropathic pain, which is characterized by abnormal sensory processing due to
nerve damage or dysfunction, often poses challenges in finding effective and well-tolerated
therapies [110,111]. Traditional analgesics, such as opioids and NSAIDs, may provide
limited relief or be associated with significant side effects [102]. The investigation into
new drug targets and emerging pharmacotherapies in neuropathic pain could be of great
interest in enhancing pain management and improving patient outcomes. In the context
of neuropathic pain, repurposing drugs gained attention as a promising strategy for dis-
covering novel treatment options [116]. Repurposing drugs for neuropathic pain offers
several advantages in the drug development process. Firstly, utilizing drugs with estab-
lished safety profiles and pharmacokinetic data allows for faster progress in pre-clinical
and early clinical testing, thus saving time and resources. Secondly, the wide range of
approved drugs across therapeutic classes provides numerous candidates for repurposing,
increasing the likelihood of finding effective treatments. Thirdly, this approach opens the
possibility of discovering novel targets and mechanisms for pain management, shedding
light on previously unexplored pathways. Lastly, repurposed drugs can be translated to
clinical use more quickly, benefiting patients in urgent need of effective neuropathic pain
treatments [116]. The main new pharmacotherapies for neuropathic pain are summarized
in Figure 3.

4.1. Ambroxol

Ambroxol, which is an active metabolite of bromhexine, was safely utilized for many
years in the management of acute respiratory conditions, like bronchitis and chronic
respiratory diseases, as it acts as an expectorant and mucolytic agent [117,118]. Furthermore,
ambroxol recently showed potential in the management of neuropathic pain due to its
multiple mechanisms of action [119]. Ambroxol modulates the activity of voltage-gated
sodium channels, specifically Nav1.8, which are involved in the generation and propagation
of pain signals [120]. By inhibiting Nav1.8 channels, ambroxol may reduce the excitability
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of nociceptive neurons and dampen neuropathic pain transmission [120]. Several pre-
clinical studies investigated the analgesic properties of ambroxol in various animal models
of neuropathic pain. In animal models of chronic, neuropathic, and inflammatory pain,
ambroxol was tested using the formalin paw model and two mononeuropathy models, as
well as a monoarthritis model in rats [121]. At a dosage of 1 g/kg, which is equivalent to
clinical use, ambroxol effectively reduced pain symptoms and even reversed pain behavior.
Its efficacy surpassed that of gabapentin (at 100 mg/kg), suggesting that a Nav1.8-preferring
Na+ channel blocker, like ambroxol, can suppress chronic, neuropathic, and inflammatory
pain at clinically achievable plasma levels [121]. The effectiveness of pregabalin and
ambroxol, either alone or in combination, in alleviating oxaliplatin-induced cold allodynia
was evaluated using the mouse cold plate test [122]. The combination of ambroxol and
pregabalin demonstrated an antiallodynic effect, whereas ambroxol preferentially bound to
mouse Na(v)1.6 and Na(v)1.9 channels [122]. Additionally, ambroxol demonstrated efficacy
in alleviating neuropathic spinal cord injury pain in rats by reducing hypersensitivity
below the injury level, possibly through inhibiting peripheral sodium channels [123]. Thus,
in vivo data suggest that ambroxol might be useful as a therapeutic alternative for the
treatment of neuropathic pain.
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While there is limited clinical data available on the alternative uses of ambroxol,
some studies explored its analgesic effects. Topical ambroxol cream (20%) was used
for the treatment of severe neuropathic pain in seven patients unresponsive to standard
therapies, e.g., lidocaine or capsaicin patches, in the retrospective study [124], providing
individual pain reductions within a period lasting for several hours. The cream effectively
reduced pain attacks and was well tolerated without any reported side effects or skin



Pharmaceutics 2023, 15, 1799 13 of 28

changes [124]. In a study involving eight patients with complex regional pain syndrome
symptoms lasting for less than 12 months, topical 20% ambroxol cream was used in
addition to standard therapy, i.e., lidocaine or capsaicin patches [125]. The results showed
a reduction in spontaneous pain, pain on movement, edema, allodynia, hyperalgesia, and
skin reddening, as well as improvement in motor dysfunction and skin temperature [125].
In a study involving patients with trigeminal neuralgia, topical ambroxol 20% cream was
used in addition to standard treatment [126]. All patients experienced pain reduction, with
attacks being reduced and pain intensity decreasing; the pain relief was observed within
15–30 min and lasted for 4–6 h [126]. No side effects or skin changes were reported, and
oral medication was reduced in some cases [126].

Ambroxol is generally considered safe and well tolerated when used within the
recommended dosage range [118]. Common side effects may include gastrointestinal
disturbances, such as nausea and vomiting, though side effects are typically mild and
transient [118]. The use of ambroxol in neuropathic pain management is an emerging area
of research; therefore, further clinical studies are required to evaluate its efficacy, optimal
dosing regimens, and long-term safety profile, as well as the effects of combining ambroxol
with other analgesic agents [120].

4.2. Cannabidiol

Cannabidiol (CBD) is a naturally occurring non-psychoactive cannabinoid compound
that is found in the cannabis plant (Cannabis sativa L.). CBD was previously explored
for various medical conditions and gained significant attention in recent years for its
potential analgesic [127,128], anti-inflammatory [129–131], neuroprotective [132], anticon-
vulsant [129], antiemetic [133], and spasmolytic [134] properties.

CBD emerged as a prospective candidate for the treatment of neuropathic pain due
to its potential analgesic and anti-inflammatory effects [127–131]. CBD interacts with
the endocannabinoid system (ECS) in the body, which plays a role in regulating various
physiological processes, including pain perception [18,135,136]. CBD acts on cannabinoid
receptors, particularly the CB1 and CB2 receptors, to modulate pain signaling and reduce
inflammation [18,135,136]. The G protein-coupled receptors CB1 and CB2, which belong
to the cannabinoid receptor family, play a crucial role in regulating various intracellular
signaling pathways [18]. These pathways involve the activation of mitogen-activated
protein kinases (MAPK), phosphorylation, and the modulation of potassium and calcium
channels [18]. CB1 receptor activation leads to a decrease in neuronal excitability and the
release of neurotransmitters, such as gamma-aminobutyric acid and glutamate, in regions
of the brain involved in nociception [19]. On the other hand, CB2 receptors are primarily
found in immune tissues (e.g., spleen and tonsils) and immune cells (e.g., monocytes,
B and T cells), with some presence in the brain. Activation of peripheral CB2 receptors
produces anti-inflammatory and immunomodulatory effects, contributing to the alleviation
of inflammatory and neuropathic pain [20,21].

CBD could also interact with other receptors and ion channels involved in pain trans-
mission, such as transient receptor potential (TRP) channels [18,137–139]. CBD mechanisms
of action involved in the treatment of neuropathic pain are summarized in Figure 4.

Multiple pre-clinical and clinical studies demonstrated CBD’s potential to alleviate
neuropathic pain symptoms [140,141]. CBD could reduce pain, improve sleep quality,
and enhance overall quality of life in individuals with multiple sclerosis (MS), diabetic
neuropathy, and post-herpetic neuralgia [83,140].

In in vivo studies, the antinociceptive effect of cannabidiol (CBD) (from 2.5 to 20 mg/kg
i.p.) as an acute treatment for neuropathic pain induced by spinal cord injury was investi-
gated in female Wistar rats [142]. The results demonstrated a dose-dependent reduction in
nociceptive behaviors, decreased lipid peroxidation levels, and increased GSH concentra-
tion, indicating the antioxidant effects of CBD [142]. The effects of cannabidiol (CBD) on
neuropathic pain induced by paclitaxel were investigated using male C57BL6 mice [143].
CBD treatment effectively prevented paclitaxel-induced neuropathic pain and was asso-
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ciated with inhibition of type 4 Toll-like receptors (TLR4) and microglia activation [143].
CBD also increased the levels of endocannabinoids and reduced pro-inflammatory cytokine
levels in the spinal cord [143]. The findings suggest that CBD’s effects on neuropathic
pain may involve modulation of the TLR4 pathway and activation of the endocannabinoid
system [143]. CBD and β-caryophyllene, which are two cannabis constituents, when acting
individually and in combination, showed analgesic effects in a rat model of chronic spinal
cord injury pain [144]. The combination produced enhanced pain reduction with mini-
mal side effects, implying that the co-administration of CBD and β-caryophyllene could
offer a promising treatment option for chronic spinal cord injury pain [144]. The interac-
tion between these compounds involved CB1 receptors, highlighting a novel mechanism
of action [144].
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In comprehensive literature review, 30 randomized controlled trials and other studies
were analyzed, revealing the promising effects of cannabis in refractory multiple sclerosis,
cancer pain (especially in advanced stages), and chronic rheumatic pain [145]. Cannabis-
based medications were found to be more effective than herbal strains containing tetrahy-
drocannabinol, though further research is required to fully understand their benefits and
risks [145]. In another review, the effectiveness of cannabis-based medications for chronic
neuropathic pain was assessed [146]. In total, 17 randomized placebo-controlled trials
were analyzed, which involved 861 patients with neuropathic pain. Meta-analysis revealed
that THC/CBD, THC, and dronabinol significantly reduced pain intensity compared to
placebo [146]. Patients taking THC/CBD were more likely to achieve a 30% reduction in
pain [146]. The review of 25 randomized controlled trials involving adults with multiple
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sclerosis (MS) revealed that nabiximols, i.e., a combination of THC and CBD, likely re-
duced muscle-tightening severity in the short term; however, the effects of cannabinoids
on chronic neuropathic pain and quality of life were uncertain [147]. Cannabinoids were
associated with a slight increase in treatment discontinuation and the risk of nervous
system and psychiatric disorders [147]. In the double-blind, placebo-controlled study,
the analgesic effects of acute CBD were examined in healthy non-cannabis users [148].
The study found that CBD did not consistently improve pain threshold or tolerance [148].
CBD also had modest dose-dependent effects on mood and subjective drug effects related
to abuse liability; however, oral CBD was deemed safe and well tolerated, with minor
decreases in blood pressure [148].

CBD is usually administered orally at a dosage range of 2–25 mg/kg/day, depending
on the individual patient’s response and tolerability. CBD is well tolerated and has relatively
few serious adverse effects [149]; however, drug–drug interactions, diarrhea, fatigue,
vomiting, somnolence and hepatic abnormalities were reported in several studies [150,151].
Due to adverse reactions, cannabinoid therapy should not be used for the patients with
severe psychiatric, cardiac, renal, or hepatic disorders [152,153]

Despite CBD’s potential for neuropathic pain management, additional research is
necessary to better understand its mechanisms of action, optimal dosage, long-term safety,
and possible drug–drug interactions. Additionally, regulatory frameworks that regulate
the use of CBD can vary between countries and regions; therefore, it is important to be
aware of the legal considerations.

4.3. Bromelain

Bromelain is an enzyme derived from the pineapple plant (Ananas comosus L. Merr.)
and is primarily known for its therapeutic applications in the field of digestive health.
Bromelain is commonly recognized for its proteolytic properties. It contains a mixture of
enzymes, including proteases; therefore, it is widely used as a digestive aid, particularly
to improve protein digestion and reduce digestive discomfort, especially in individuals
experiencing pancreatic insufficiency or other digestive disorders. Bromelain is a safe-to-use
nutraceutical that lacks side effects.

While the main application of bromelain is related to digestion, there is limited sci-
entific evidence supporting its direct use for neuropathic pain management. Bromelain’s
potential anti-inflammatory properties and ability to modulate certain biological processes
led to discussion about its potential use in neuropathic pain management.

In a rat model of neuropathic pain induced via sciatic nerve ligation, treatment with
bromelain resulted in significant reductions in thermal hyperalgesia and mechanical allo-
dynia [154]. It also facilitated the recovery of sciatic function and structural integrity [154].
Additionally, bromelain administration in another rat model of neuropathic pain showed a
decrease in characteristic signs of neuropathic pain [155].

Bromelain was found to alleviate neuropathic pain and anxiety-like behaviors in a
rat model of peripheral neuropathy [156]. It reduced pro-inflammatory cytokines, nitrate
levels, and iNOS expression in the sciatic nerve, suggesting that bromelain’s antinociceptive
and anxiolytic effects are linked to its ability to reduce inflammation [156].

The efficacy and safety of OPERA®, which is a dietary supplement containing α-lipoic
acid, Boswellia Serrata, methylsulfonylmethane, and bromelain, was evaluated in patients
with chemotherapy-induced peripheral neuropathy (CIPN) [157]. In total, 25 patients with
CIPN were enrolled, and their neuropathy symptoms were evaluated over a 12-week period.
The primary endpoint was the change in measured scores after 12 weeks of OPERA®

therapy compared to the baseline. Secondary endpoints included the reduction in neu-
ropathy symptoms after 12 weeks of treatment. The results showed a reduction in pain
perceived by patients and improvement in sensor and motor neuropathic impairment.
The OPERA® supplement was well tolerated, with no significant increase in toxicity or
interactions with other therapies. Further research, including randomized controlled trials,
is needed to confirm its potential benefits in a larger patient population [157]. Bromelain is
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administered orally, while the ideal dosage is not yet established and may vary depending
on the specific product and its concentration, as well as the severity of neuropathic pain
and the individual’s response to treatment. In animal studies, dosages of 30–50 mg/kg per
os were used [154].

Bromelain may help to reduce pain and inflammation by inhibiting inflammatory
mediators, promoting tissue healing, and modulating immune responses. However, more
research is needed to establish the efficacy and safety of bromelain specifically for neuro-
pathic pain.

4.4. Melatonin

The endogenous hormone melatonin, also known as N-acetyl-5-methoxytryptamine,
is primarily synthesized from the amino acid tryptophan. Tryptophan is converted into
5-hydroxytryptophan (5-HTP) by the enzyme tryptophan hydroxylase. Next, 5-HTP
is further transformed into serotonin (5-hydroxytryptamine) by the enzyme aromatic
L-amino acid decarboxylase. Serotonin serves as the precursor to melatonin synthe-
sis. In the pineal gland, serotonin is converted into N-acetyl serotonin by the enzyme
serotonin N-acetyltransferase, and is then methylated by the enzyme acetyl serotonin O-
methyltransferase to form melatonin. However, it can also be produced in various organs
and cells, including the brain, bone marrow, retina, skin, lens, and lymphocytes [158,159].
In adults, a constant secretion of approximately 30 µg/day of melatonin occurs, though
its synthesis increases in the evening, reaching a peak concentration in the middle of
the dark period [158,159]. Melatonin plays a crucial role in the regulation of circadian
rhythms [158,159] and exhibits antioxidant properties, protecting against lipid peroxi-
dation, inflammation, and tumor growth and promoting apoptosis and mitochondrial
function [159,160]. Aging is associated with a decline in melatonin synthesis, leading to
conditions such as insomnia, particularly in cases of Alzheimer’s disease; cardiovascular
disorders; and cancer [161].

The cellular effects of melatonin are mediated through interactions with specific
receptors and intracellular targets, including transporters, ion binding proteins, enzymes,
cytoskeletal components, and mitochondria [162–165]. Melatonin is capable of freely
crossing cell membranes and the blood–brain barrier, allowing it to exert its actions in
various tissues and organs [166]. These interactions enable melatonin to modulate the
diverse cellular processes and signaling pathways involved in its beneficial effects.

Melatonin exhibits various mechanisms of action that contribute to its potential thera-
peutic effects in neuropathic pain [167,168], which are summarized in Figure 5.

Firstly, it can modulate pain signaling pathways through interaction with receptors in-
volved in pain regulation, such as opioid, adrenergic, and cannabinoid receptors [169,170].
The effects of melatonin also result from activation of MT1 and MT2 melatonin receptors,
which leads to reduced cyclic AMP formation and reduced nociception [171]. Through
these interactions, melatonin can effectively modulate pain perception and reduce pain
transmission [171]. Secondly, melatonin possesses anti-inflammatory properties, suppress-
ing the production of pro-inflammatory cytokines and molecules, like IL-1β, TNF-α, and
NOS [171], which are associated with the inflammatory response observed in neuropathic
pain. Additionally, melatonin acts as a powerful antioxidant, protecting cells from oxidative
stress and minimizing neuronal damage and inflammation [171]. Melatonin is generally
considered safe and non-toxic, with only mild side effects, such as dizziness, headache,
nausea, and sleepiness, reported even at high doses [172].

In the context of neuropathic pain, melatonin demonstrated therapeutic effects in
clinical and pre-clinical studies [167,173,174]. It could effectively reduce pain intensity
and frequency; improve sleep quality and duration; alleviate neuropathic symptoms, like
allodynia and hyperalgesia; and modulate central sensitization, which is a key mecha-
nism underlying neuropathic pain [168,174]. Furthermore, when used in combination
with conventional analgesic medications, melatonin showed the potential to enhance
their efficacy [167].
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The effects of melatonin in a mononeuropathy pain model on Sprague–Dawley rats
were assessed in an in vivo study [175]. Administration of melatonin (5–10 mg/kg) on
the 14th day after surgery reduced thermal hyperalgesia and modulated the nitroxidergic
system in the dorsal root ganglia and skin [175]. Melatonin (37.5, 75, or 150 mg/kg once
per day p.o. 30 min before lysophosphatidylcholine treatment for 3 days) also reduced
neuropathic pain, behavior, and glial activation through MT2 melatonin receptor modula-
tion in a rat model of lysophosphatidylcholine-induced demyelination neuropathy [176].
Intrathecal administration of melatonin ameliorated the neuroinflammation- mediated
sensory and motor dysfunction in a rat model with compression spinal cord injury [177].
Exogenous melatonin (10 mg/kg) alleviated neuropathic pain-induced affective disorders
in rats by suppressing NF-κB/ NLRP3 pathway and apoptosis [178].

While preliminary studies suggested potential benefits of melatonin in neuropathic
pain, it is important to note that further research is necessary to fully comprehend the
precise mechanisms of action of melatonin and determine the optimal approach for its
application as a pain reliever.

4.5. N-acetyl-L-cysteine

N-acetyl-L-cysteine (NAC) is a modified form of the amino acid cysteine. It is primarily
recognized for its role as an antidote in cases of acetaminophen overdose [179,180]. It helps
to replenish cellular levels of glutathione, which is a crucial antioxidant that protects
the liver from the toxic effects of acetaminophen metabolites [179,180]. Additionally,
NAC is used as a mucolytic agent to help break down and thin mucus in respiratory
conditions, such as chronic bronchitis, cystic fibrosis, and chronic obstructive pulmonary
disease [179,180].

N-acetyl-L-cysteine (NAC) was studied for its possible therapeutic effects in neuro-
pathic pain in recent years [179,180]. The antioxidant and anti-inflammatory effects of NAC



Pharmaceutics 2023, 15, 1799 18 of 28

are hypothesized to play a role in its analgesic effects [179,180]. Oxidative stress and in-
flammation are known to contribute to nerve damage and the development of neuropathic
pain. NAC, as a precursor of glutathione, can enhance the body’s antioxidant defenses
and help to reduce oxidative stress [180,181]. Moreover, it may modulate inflammatory
responses and inhibit the release of pro-inflammatory molecules [182]. NAC could act
as a neuroprotective agent by modulating the activity of various neurotransmitters and
receptors involved in pain transmission [183,184]. It interacts with glutamatergic and
GABAergic systems, influencing excitatory and inhibitory signaling in the central nervous
system [183,184]. NAC can regulate the release and re-uptake of neurotransmitters, includ-
ing glutamate, which plays a crucial role in neuropathic pain [183]. Additionally, NAC was
found to modulate the activity of ion channels, such as voltage-gated sodium channels,
which are involved in pain signaling [184].

NAC modulated Ca2+ influx through a TRPM2 channel in intracellular GSH-depleted
rat dorsal root ganglions [184] or in the diabetic rat dorsal root ganglions in vitro [185].
NAC (100 mg/kg, i.p.) caused analgesia by reinforcing the endogenous activation of type-
2 metabotropic glutamate receptors in mice in vivo [183]. Moreover, NAC (100 mg/kg,
i.p., either single injection or daily injections for seven days) induced analgesia in a mouse
model of painful diabetic neuropathy [186]. NAC (100 mg/kg/day, i.p. for 3 or 10 days) had
no effect on the spinal cord glutathione system, but reduced nitric-oxide metabolites in rats
with neuropathic pain [182]. Both the in vitro (0.1 mM) and in vivo (50, 100, and 200 mg/kg
p.o.) applications of NAC significantly suppressed the activity of matrix metalloproteinases,
thus alleviating the neuropathic pain in the chronic constrictive injury model in rats [187].
Furthermore, NAC (150 mg/kg/day i.p. for 1, 3, or 7 days) decreased spinal cord oxidative
stress biomarkers in rats with neuropathic pain [181]. In the study on the role of astrocyte–
neuron interactions in diabetic neuropathic pain, increased expression of chemokine CXC
receptor 4 (CXCR4) and connexin 43 (CX43) were observed in the spinal cord dorsal horn
of rats with diabetic neuropathic pain, whereas the CXCR4 antagonist AMD3100 and the
antioxidant NAC reversed nociceptive behavior [188].

Heidari et al. investigated the effects of oral N-acetylcysteine (NAC) as an adjunct ther-
apy for painful diabetic neuropathy (PDN) [189]. A total of 113 patients with type 2 diabetes
and PDN were randomly assigned to receive pregabalin and placebo or pregabalin and
NAC for 8 weeks (pregabalin at a dose of 150 mg per day, compared to NAC and matched
placebo at doses of 600 mg twice a day). Patients receiving pregabalin and NAC showed
greater reductions in pain scores and sleep interference compared to those receiving pre-
gabalin and placebo. More responders and improvements in global impression of change
were observed in the pregabalin and NAC group. NAC also reduced oxidative stress
biomarkers and increased antioxidant levels [189]. The systematic review was performed to
evaluate the efficacy and safety of NAC in the treatment of chronic pain [190]. Nine studies
involving different chronic pain conditions were included. The pooled analysis of three
randomized controlled trials did not show a significant reduction in pain intensity or
improvement in functional outcomes or quality of life with NAC. However, sensitivity
analysis suggested a potential effect on pain intensity and function [190].

While pre-clinical studies and some clinical trials showed promising results regard-
ing the analgesic effects of NAC in neuropathic pain [180], further research is needed
to establish its efficacy, optimal dosing, and long-term safety profile. Furthermore, the
mechanisms through which NAC exerts its analgesic effects in neuropathic pain require
additional investigation.

It is important to note that NAC is generally considered safe when used within
recommended dosages (from 600 mg to 2400 mg per day) [180]. However, it may cause side
effects, such as gastrointestinal symptoms (nausea, vomiting, diarrhea), allergic reactions,
and potential interactions with certain medications [180].
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4.6. Other Experimental Therapies

There are several non-traditional compounds that show potential for the management
of neuropathic pain [110,111,191] (Figure 2). Acetyl-L-carnitine was investigated for its
potential role in managing neuropathic pain [192,193]. It exerts its effects through multiple
mechanisms, including modulation of neurotransmitters such as glutamate and GABA; pro-
motion of nerve regeneration, antioxidant activity, and anti-inflammatory effects; and mod-
ulation of synaptic plasticity [193–195]. By influencing these processes, acetyl-L-carnitine
may help to regulate pain signaling, repair damaged nerves, reduce oxidative stress and
inflammation, and modulate abnormal neuronal activity associated with neuropathic
pain [193,195]. Alpha–lipoic acid is an antioxidant that was previously studied for its neu-
roprotective and analgesic effects in suppressing neuropathic pain [196]. It is supposed to
reduce oxidative stress and inflammation, thereby alleviating pain symptoms [196]. Palmi-
toylethanolamide is an endogenous fatty acid that acts as a modulator of inflammation and
pain [197]. It was previously shown to exert analgesic effects by targeting various pathways
involved in neuropathic pain, including the activation of cannabinoid receptors and the
inhibition of inflammatory mediators [197]. Spermidine is a naturally occurring polyamine
that plays essential roles in various cellular processes, including cell growth, differentiation,
and neuronal function [198]. Studies indicate that spermidine may alleviate pain hypersen-
sitivity, modulate neurotransmitter systems, and promote neuroprotection [198]. With its
favorable safety profile, spermidine supplementation could offer a viable option for manag-
ing neuropathic pain, although further research is needed to determine its mechanisms of
action and optimal usage in human subjects [198]. Resveratrol is a natural compound found
in grapes, berries, and other plants [199,200]. Resveratrol demonstrated anti-inflammatory
and analgesic properties in pre-clinical studies of neuropathic pain, modulating multiple
signaling pathways associated with pain and inflammation [199,200]. Curcumin, which is a
polyphenolic compound derived from turmeric [201,202], was previously investigated for
its potential in neuropathic pain management due to its anti-inflammatory and anti-oxidant
properties. Curcumin may modulate pain signaling pathways and inhibit the production
of pro-inflammatory molecules [201,202]. While further research is needed to establish
their efficacy and safety, these compounds hold promise as alternative approaches for
alleviating neuropathic pain and improving the quality of life for individuals suffering
from this challenging condition.

Non-coding RNA molecules play a significant role in the development and regulation
of neuropathic pain [203]. These RNA molecules, including microRNAs (miRNAs) and long
non-coding RNAs (lncRNAs), were found to be involved in various aspects of neuropathic
pain, such as neuronal plasticity, inflammation, and immune responses [203]. MiRNAs
are small RNA molecules that regulate gene expression by binding to messenger RNAs
(mRNAs) and inhibiting their translation or promoting their degradation [203]. In neuro-
pathic pain, specific miRNAs were identified as key regulators of pain-related pathways.
They can modulate the expression of genes involved in neuronal sensitization, synaptic
plasticity, and inflammatory responses. By targeting these genes, miRNAs can influence
the development and maintenance of neuropathic pain [203]. LncRNAs, on the other hand,
are longer RNA molecules that do not encode proteins, but have important regulatory
functions in cellular processes. Several lncRNAs are implicated in neuropathic pain by
influencing gene expression, chromatin remodeling, and epigenetic modifications [203].
They can act as scaffolds, decoys, or guides to interact with proteins and other regulatory
molecules, ultimately affecting the expression of pain-related genes [203]. Research into
non-coding RNAs in neuropathic pain is still ongoing, and the specific mechanisms through
which they contribute to pain pathology are being elucidated [203]. Understanding their
roles may lead to the development of novel diagnostic markers and therapeutic targets for
neuropathic pain management [203].
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5. Further Perspectives in Neuropathic Pain Management

The management of neuropathic pain requires a multi-faceted approach, and several
non-traditional compounds show promise in providing relief [110,111]. Natural remedies,
such as capsaicin, alpha-lipoic acid, and botanical extracts, demonstrate analgesic effects
and have the potential to alleviate neuropathic pain symptoms [111]. Additionally, neu-
rotrophic factors like nerve growth factor (NGF) showed promising results in pre-clinical
studies [204]. Moreover, complementary therapies, such as acupuncture and mind–body
interventions, may offer alternative strategies for pain relief [28].

Although non-traditional compounds show promise in relieving neuropathic pain,
additional research is required to evaluate their efficacy, safety, and appropriate dosage
protocols. Comprehensive long-term studies are necessary to investigate the sustained
therapeutic effects and the potential for disease progression prevention. Furthermore,
conducting further clinical trials will enable the comparative assessment of various non-
traditional compounds and combination therapies in terms of their effectiveness. An
improved understanding of the underlying mechanisms of action associated with these
compounds will also facilitate the development of targeted treatment approaches.

Furthermore, there is a need for studies investigating the potential synergistic effects
of non-traditional compounds with conventional medications used for neuropathic pain.
Combination therapies may enhance analgesic outcomes and reduce reliance on high
doses of single agents, thereby minimizing side effects. Additionally, research focusing
on personalized medicine approaches, which consider individual patient characteristics,
including different and mixed pain mechanisms and sensory and genetic profiles, may
help identify subgroups of patients who are more likely to benefit from specific non-
traditional remedies.
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