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Abstract: Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory
nervous system at peripheral or central level. Peripheral neuropathic pain is more common than
central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve
injury. The animal models of neuropathic pain show extensive functional and structural changes
occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathologi-
cal changes following damage lead to peripheral sensitization development, and subsequently to
central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this nar-
rative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation
and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral
nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-
neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms
of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice.
The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a
strategy for the development of new topical analgesics and their utilization in clinical settings.

Keywords: neuropathic pain; topical; ion channels; peripheral sensitization; pain management

1. Introduction

Neuropathic pain is defined by the International Association for the Study of Pain as
pain caused by a lesion or disease of the somatosensory nervous system [1]. Neuropathic
pain (NP) is not a particular disease, but the clinical condition that is caused by a variety of
different diseases and lesions, injuring the nervous system at peripheral or central level,
resulting in peripheral NP or central NP, respectively. The nerve damage and subsequent
functional and structural neuroplasticity in sensory and autonomic nervous system, may
become pathological and maladaptive in certain percentage of patients, and the risk of
maladaptation depends on biological, genetic, demographic, and psychosocial factors [2].
The nerve damage induces extensive response in immune system as well, resulting in
close interactions between nervous and immune system, and finally neuroinflammation.
The functional and structural neuroplasticity and complex neuro-immune interactions
result in inappropriate signaling from periphery, inappropriate modulation, and disturbed
central processing of pain. In clinical practice, chronic neuropathic pain may be thus
considered as neuro-immunological disorder with multiple neuronal and non-neuronal
mechanism involved, either in periphery or centrally [3–5]. In humans, NP features may
vary according to the location and character of the nervous system lesion, but it has been

Pharmaceuticals 2021, 14, 77. https://doi.org/10.3390/ph14020077 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-0392-2583
https://orcid.org/0000-0003-3511-5169
https://orcid.org/0000-0003-1986-7205
https://orcid.org/0000-0001-9969-6172
https://doi.org/10.3390/ph14020077
https://doi.org/10.3390/ph14020077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14020077
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/1424-8247/14/2/77?type=check_update&version=2


Pharmaceuticals 2021, 14, 77 2 of 22

suggested that a more peripheral lesion induces more localized signs and symptoms of
NP [6]. In 2010, the first definition of localized neuropathic pain was proposed, aiming at
description of a special type of NP, which is caused primarily by the injury of peripheral
nervous system. Localized neuropathic pain (LNP) is a type of neuropathic pain that
is characterized by consistent and circumscribed area(s) of maximum pain, associated
with negative or positive sensory signs and/or spontaneous symptoms characteristic of
neuropathic pain [7], and is felt in superficial tissues [6]. In patients with LNP, complex
peripheral mechanisms following nerve injury are suggested to generate and maintain pain
and sensory abnormalities [8]. Thus, there is a rationale for use of topical analgesics, acting
locally at peripheral level, which is in line with current principles in pain medicine pointing
out at the need of personalized and mechanism-based approach to pain management [9].
Topically applied analgesics are supposed to target the underlying molecular/cellular
mechanisms in the periphery only, without systemic mechanisms and site of action. The
preclinical data support this idea, but, in clinical practice, only a few of peripheral mecha-
nisms of NP are currently addressed [10–14] This review of literature is aimed at presenting
the available evidence from preclinical and clinical studies on the peripheral mechanisms
of NP with special focus on interactions between neuronal and non-neuronal cells, the
molecular targets for topical analgesics, and clinical implications for topical administration
in NP management. The current knowledge on complex mechanism of NP and possible
molecular targets for analgesics administered by topical routes is crucial for health care
professionals dealing with patients suffering from NP.

2. Peripheral Mechanisms of NP
2.1. The Role of Neuronal Cells in Peripheral Mechanisms of NP

Several hypotheses have been proposed to explain the complex processes of gener-
ation, maintenance of NP, and underlying mechanisms, but the pathophysiology of NP
remains unclear, despite the huge progress made to date. It is known that the peripheral
sensory neurons with the cell bodies located in the dorsal root ganglia conduct nociceptive
information, which enters the spinal cord dorsal horn and then from the spinal projection
is conveyed to supraspinal structures (such as the brainstem, thalamus, somatosensory
cortex, insular cortex and anterior cingulate cortex) via ascending pathways [4,15–17].
In humans, peripheral somatosensory nervous system may become injured at several lev-
els. There are multiple routes to its damage, including mechanical, thermal, chemical, and
infectious factors. Peripheral nerve endings of pain-processing unmyelinated C fibres and
thinly myelinated Aδ fibres may become injured by metabolic damage, toxins, medications,
cytokines, and other inflammatory mediators. The axon may be damaged by trauma,
compression, hypoxia, inflammation, overload, and chemical factors, and finally neurons
in the DRG (dorsal root ganglion) may be exposed to several chemical and mechanical
factors as well. Axonal and DRG damage may subsequently induce pathological and
pain-promoting changes in peripheral autonomic nervous system [18,19]. In humans, the
data regarding pathophysiologic mechanisms initiated after nerve injury is scarce. How-
ever, the common features of NP including spontaneous or evoked, burning, shooting
pain, allodynia, hyperalgesia, or sensory loss, suggest likelihood of shared underlying
pathology [17]. The more detailed data on NP pathophysiology comes from experimental
animal models of NP. Peripheral mechanisms have been extensively studied in several
animal models, such as spared nerve injury (SNI), chronic constriction injury (CCI), spinal
nerve ligation (SNL), and specific disease-related neuropathies such as rodent models of
diabetes, chemotherapy, herpes zoster, HIV (human immunodeficiency virus) induced
peripheral neuropathy [20,21]. In animal models of NP after a peripheral nerve injury,
independently of its character, extensive functional, structural, and molecular changes
have been observed, either in damaged or neighbouring undamaged nociceptive neurons
(Aδ, C), or either in peripheral nerve endings, along the axon or in DRG neurons [22]:

• peripheral fibre density changes—partial loss of peripheral innervation due to physical
injury, chemical or metabolic neurotoxicity [23–25];
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• fibre degeneration—axonal loss due to Wallerian degeneration (self-determined pro-
cess leading to cytoskeletal destabilization and fragmentation) [25–28];

• peripheral sensitization—hyperexcitability of sensory neurons due to lowered thresh-
old and augmented response to suprathreshold stimuli, caused by peripheral nerve
or tissue injury, inflammation and subsequent release of pro-nociceptive media-
tors from mast cells, macrophages and from neighbouring nerve terminals, such
as prostaglandins, bradykinin, histamine, serotonin, SP (substance P), extracellular
ATP (adenosine triphosphate), protons, cytokines, chemokines, growth factors, pep-
tides, acting on corresponding receptors, ion channels or altering their sensitivity to
stimuli [8,29,30];

• ectopic firing in peripheral nerve endings and in DRG neurons—ectopic discharge
begins in Aδ fibres within hours after injury and within several days or weeks in C
fibres [31–34]; the main generator of ectopic activity are hyperpolarization-activated
and cyclic nucleotide-gated (HCN) channels, belonging to the voltage-gated potassium
(Kv) channels [35]; in human altered firing and ectopic activity in peripheral neurons
was observed in patients holding a mutation in gene coding Nav1.7 [36];

• alterations in channel expression and composition in peripheral nerve endings, along
the axon and in DRG—peripheral input via intracellular second messengers alters gene
expressions, resulting in increase in protein expression of Nav (voltage-gated sodium
channels), VGCC (voltage-gated calcium channels), TLR4 (toll-like receptors 4), TRP
(transient receptor potential channels), α1-AR (α1 adrenergic receptors), ASIC (acid-
sensing ion channels), decrease in protein expression of Kv (voltage-gated potassium
channels) [37–40];

• synapse properties and locations of spinal terminals—sprouting of Aβ fibres in spinal
dorsal horn laminae [41,42];

• involvement of autonomic system—upregulation of α1-AR and enhanced adrenergic
sensitivity at the injury site and in DRG neurons, sympathetic fibres sprouting in the
periphery and in DRG [43–46].

It is worth mentioning that the pathological neuroplasticity after peripheral nerve
injury in preclinical settings is seen not only in nociceptive Aδ and C fibres [8,47–49], but in
the population of Aβ fibres as well. Aβ fibres respond normally to innocuous mechanical
stimuli and in physiology are not involved directly in nociception. In animal models of
NP, Aβ fibres exhibited enhanced excitability, spontaneous activity, differences in action
potential configuration and conduction velocity compared with control animals [50]. The
data shows as well abnormal axonal sprouting of myelinated Aβ axons in the spinal dorsal
horn. The peripheral receptive fields of Aβ neurons are more excitable, which in summary
contributes to the generation and maintenance of the peripheral, central sensitization and
NP [42,51,52]. The pathology in tactile Aβ neurons, resulting in nociceptive responses to
normally innocuous cutaneous stimuli, is observed in humans with NP and clinically refers
to allodynia and spontaneous pain following peripheral nerve injury [8,53,54].

The molecular processes involved in neuroinflammation and peripheral sensitization
are presented on Figure 1 [8,22,29–40].
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Figure 1. Neuronal ion channels, receptors and their ligands involved in peripheral neuroinflammation and sensitization. (−)
Downregulation of Kv and K+ currents, (+) upregulation of Nav, VGCC, and Na+ and Ca2+ currents, respectively [8,22,29–40].
Abbreviations: Nav—voltage-gated sodium channel, TRPV1—transient receptor potential vanilloid 1 channel, VGCC—
voltage-gated calcium channel, Glu—glutamate, H+—hydrogen proton, NMDAR—N-methyl-D-aspartate receptor, ASIC—
acid sensing ion channel, TLR—toll-like receptor, P2X3—P2X purinoceptor 3, PGE2—prostaglandin E2, EP—prostaglandin
E2 receptor, GABA—gamma-aminobutyric acid, GABAAR—gamma-aminobutyric acid receptor A, GABABR—gamma-
aminobutyric acid receptor B, Kv—voltage-gated potassium channel, OR—opioid receptor, CB—cannabinoid, CB1—
cannabinoid receptor type 1, HMBG1—high mobility group box 1 protein, TNFα—tumour necrosis factor α, IL-1β—
interleukin 1β, IL-6—interleukin 6, CCL—CC-chemokine ligand, ATP—adenosine triphosphate, NGF—nerve growth
factor, BDNF—brain-derived neurotrophic factor, GDNF—glial-derived neurotrophic factor, NT 3,4—neurotrophin 3 and 4,
Na+—sodium ion, Ca2+—calcium ion, K+—potassium ion, BK—bradykinin, 5-HT—serotonin, GPCR—G protein-coupled
receptor. Created with BioRender.com.

2.2. Role of Glial Activation in Peripheral Mechanisms of NP

In animal models of NP after a nerve injury, extensive functional, structural, and
molecular changes, parallel to that observed in neurons, have been seen in glial cells as
well. Injury of peripheral nerve leads to significant activation of peripheral glia including
Schwann cells in the nerve, satellite glial cells in DRG, and central glial cells including
microglia and astrocytes in the spinal cord and brain. The involvement of other macroglia
cells such as radial cells and oligodendrocytes in the nociceptive transmission has not
been established to date [55,56]. After peripheral nerve injury, the activation of astrocytes
in CNS (central nervous system) occurs about four days after microglial activation and
persists until 12 weeks after damage, thus suggesting being involved in the persistence of
pain [56]. Therefore, it is so important to silence the escalation of neuroimmune peripheral
changes at an early stage by topical drug administration, which may reduce the risk of the
development of central pain hypersensitivity. The glial activation includes proliferation,
morphological changes, increased or de novo expression of cell membrane markers or
receptors, and the synthesis of numerous mediators. Glial activation is a defensive mech-
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anism; however, it may malfunction after a nerve injury, leading to pain generation and
its maintenance [55,56]. Schwann cells are most abundant glial cells in peripheral nervous
system. They physically support long axons and produce numerous growth factors to
nourish and myelinate axons, such as NGF (nerve growth factor), BDNF (brain-derived
neurotrophic factor), GDNF (glial-derived neurotrophic factor), NT3 (neurotrophin 3) and
NT4 (neurotrophin 4) [57]. Mounting evidence from preclinical studies suggests a key role
of Schwann cells in peripheral NP states. After peripheral nerve injury, Schwann cells
become activated, change their phenotype, proliferate, migrate, and release growth factors
and other molecules promoting nerve regeneration. The role of growth factors in generation
of NP has been confirmed in preclinical model, where the pain hypersensitivity resulted
from release of BDNF from Schwann cells. The role of BDNF in NP has been further
confirmed in BDNF-knockout mice, which displayed reduced pain behaviour compared to
wild-type mice [58]. In NP conditions, multiple receptors and ion channels are expressed
and upregulated on Schwann cells membrane: purinergic receptors, TLR, TRPA1 (transient
receptor potential ankyrin 1), GABABR (gamma-aminobutyric acid receptor B), Ach (acetyl-
choline) receptors just to mention the most important in nociception. Exogenic molecules
released from injured tissue, immune cells and neurons bind to corresponding receptors on
Schwann cell membrane and via intracellular signalling promote release of growth factors,
cytokines, and chemokines. The activation of Schwann cells results in the release of both
proinflammatory cytokines (TNFα—tumour necrosis factor α, interleukin IL-1β, IL-6) and
anti-inflammatory cytokines (IL-10, Epo (erythropoietin)). Moreover, activated Schwann
cells produce chemokines (CCL2—CC-chemokine ligand 2), growth factors (NGF, BDNF,
GDNF, NT3, NT4), and messenger molecules (ATP), which together with cytokines can
modulate nociceptive input [59]. Modulation of NP involve recruitment of immune cells
to the site of injury as well. In model of sciatic nerve injury, axonal damage stimulates
primary Schwann cells via TLR3 activation to release macrophage-recruiting chemokines
(CC-chemokine ligands CCL2, CCL4 and CCL5) and subsequent macrophage recruitment
to injured nerves [60]. Proinflammatory cytokines, mainly TNFα, produced by activated
Schwann cells and macrophages contribute to axonal damage and enhanced nociceptor
activity. TNFα can alter the sensitivity of neurons to neurotransmitters via either increased
activity and overexpression of neuronal ion channels, such as TRPV1 (transient receptor
potential vanilloid type 1), AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor), VGCC, NMDAR (N-methyl-D-aspartate receptor), or down regulation of
neuronal inhibitory GABA receptors [61]. Numerous receptors expressed and mediators
released by Schwann cells in response to nerve injury, and data from preclinical studies
confirmed direct interaction loop between activated neurons, Schwann cells, keratinocytes,
and immune cells in the site of injury. Thereby, Schwann cells play a key role in regulating
neuroinflammation and peripheral sensitization in NP conditions [55,56].

2.3. Role of Immunocompetent Cells in Peripheral Mechanisms of NP

Preclinical models of NP provide evidence for a substantial role of interactions be-
tween the nervous and immune system, resulting in neuroinflammation, altered sen-
sory processing and evoked thermal and tactile hypersensitivity, but at the same time
in damage repair as well [62] Among the immune cells, tissue-resident and recruited
macrophages are supposed to play a key role in regulating neuroinflammation and pe-
ripheral NP [5,63,64]. Macrophages are plastic and may play opposite roles: proinflam-
matory M1 macrophages expressing proinflammatory cytokines (TNFα, IL-1β, IL-6, IL-
18), chemokines (CCL2-5) and toll-like receptors (TLR4), releasing ROS (reactive oxygen
species), and anti-inflammatory M2 macrophages expressing anti-inflammatory cytokine
IL-10 and chemokines CCL18, CCL22 and CCL24. In NP states, prolonged activation of M1
macrophages has been observed, which probably results from activation of TLR4 expressed
on their cell membrane. In experimental animals, treatments directed at M1 macrophages
reduced inflammation, pain behaviour in nerve injury and chemotherapy induced pain
models [65,66].
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Macrophages express α1-AR as well, and in preclinical studies activation of α1-AR
by phenylephrine resulted in increased production of IL-1β in human monocytes and
macrophages. On a cellular level, AR can modify cytokine production by macrophages
by activation of TLR [67]. After injury, damaged neurons, Schwann cells, tissue-resident
macrophages produce various cytokines, chemokines, and other signalling proteins, which
recruit immunocompetent cells (macrophages, neutrophils, lymphocytes) to the injured
site [68]. For example, in a model of a sciatic nerve crush injury, axonal damage stimulates
Schwann cells to release macrophage-recruiting chemokines (CCL2, CCL4 and CCL5),
resulting in macrophage recruitment to injured nerves [60] At the injured site, immune
cells and Schwann cells release numerous proinflammatory cytokines (TNFα, IL-1β, IL-6),
and chemokines (CCL2, CCL3, CCL4), acting on upregulated cytokine and chemokine
receptors in peripheral nerve endings and DRG. The proinflammatory molecules via their
receptors change the excitability, ion currents and second messenger systems of peripheral
neurons, leading to peripheral sensitization and hyperalgesia. The cytokines may sensitize
ion channels responsible for the transduction of stimuli (TRP—TRPA1, TRPV1, TRPV4)
or alter the function of voltage-gated ion channels responsible for the regulation of the
membrane potential (Nav, VGCC, Kv) [5,69–72]. Proinflammatory cytokines released from
immune cells may increase the expression of alfa1-AR in keratinocytes and neurons, lead-
ing to local hyperalgesia in animal model of burn [73,74]. The expression of α1-AR on
monocytes, macrophages, keratinocytes, and neuronal cells confirms that mediators of the
neuroendocrine system (e.g., catecholamines) may modify neuroinflammatory responses.
Further, it confirms the role of sympathetic system in NP generation and maintenance,
suggesting a possible role of treatments addressing upregulated α1-AR in NP manage-
ment [67]. Peripheral nerve injury induces Schwann cells and macrophages to release
arachidonic acid and synthesis of its derivates, mainly prostaglandins (PGs) via COX-2
(cyclooxygenase-2) induction by cytokines. After an injury, PGs may be synthetized not
only in recruited immune cells, but in neuronal cells as well. PGs regulate the function
of peripheral sensory nerves in paracrine and autocrine manners in animal models on
NP [75]. PGE2 (prostaglandin E2) via its EP receptor (prostaglandin E2 receptor), expressed
in neuronal membrane, can modulate the excitability of peripheral nerve endings. PGE2
sensitizes ion channels and receptors (TRPV1, Nav1.7,1.8,1.9, VGCC, P2X3 (P2X purinocep-
tor 3)) and down regulates the Kv, which results in enhanced Na currents and Ca2+ influx,
reduced K+ currents, peripheral hyperexcitability and increased neurotransmitter release at
the spinal level [76]. At the injury site, recruited macrophages interact with tissue-resident
cells such as macrophages, mast cells and dendritic cells by releasing mediators such as
CCL2, TNFα, IL-1α, IL-1β, and PGE, among others. These mediators act on corresponding
receptors, expressed by immune cells and stimulate the release of cascade of pro- and anti-
inflammatory mediators, simultaneously enhancing further infiltration of immune cells to
the site of injury. These interactions elicit long-lasting neuroinflammation and maintain
the NP [5,77]. It is worth mentioning that immune cells express numerous receptors for
ligands with potential inhibitory (anti-inflammatory or immunosuppressive) mechanisms
of action. Macrophages, mast cells, microglia and other immune cells express CB2 (cannabi-
noid receptor type 2) receptor and OR (opioid receptor). In preclinical trials, it has been
observed that agonists of CB2 receptor exert an anti-inflammatory effect, which might be
potentially beneficial in chronic pain states [78]. In turn, in preclinical and clinical settings
OR agonists such as morphine or fentanyl exerts immunosuppressive effect, resulting in
reduction of either macrophage numbers or production of macrophage proinflammatory
cytokines [79] Potentially, immune cells involved in peripheral neurogenic inflammation
and their receptors may be target for topically applied cannabinoids or opioids [80–82].
Immune cells express GABA receptors and GABA as well. GABA agonist i.e., baclofen
exerts an antipruritic mechanism in chronic dermatitis, but the role of interaction GABA
receptor and its agonist in immune cells in NP is not confirmed [83,84]. Taken together,
immunocompetent cells through their complex communication with Schwann cells, neu-
rons and keratinocytes can induce local chronic neuroinflammation, ongoing keratinocyte,
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and peripheral nerve endings stimulation, which results in peripheral sensitization and NP.
Potentially, immunocompetent cells involved in peripheral neuroinflammation and their
receptors may be a target for topical treatments, acting on specific receptors, ion channels
or enzymes (i.e., TLR, α1-AR, COX-2, GABAR, CB, OR).

2.4. The Role of Skin Cells in Peripheral Mechanisms of NP

The idea of the neuro-immuno-cutaneous system (NICS), including peripheral sen-
sory neurons, immune cells, and cutaneous cells, is becoming more recognized in clinical
practice. The skin, besides being homeostatic and immunological barrier, acts as a sensory
organ as well, since NICS is responsible for cutaneous sensations, such as touch, pressure,
temperature, and pain. Sensory neurons are located in all layers of the skin: in the epider-
mis, dermis, and hypodermis. In the epidermis, the outermost layer of the skin, sensory
nerve endings interact with other skin cells (keratinocytes and immune cells) in several
ways, either via neurotransmitters, neuropeptides, and cytokines, or via membrane associ-
ations. The anatomical and functional interactions between neuronal and non-neuronal
cells in the skin are contributing to nociception, neuronal hyperexcitability and periph-
eral sensitization [85,86]. The keratinocytes, which constitute 90% of epidermis cells, are
one of the main targets of topically applied analgesics. The preclinical studies showed
stimulation of keratinocytes alone to be sufficient to induce neuronal hyperexcitability
and pain behaviour in animals [87,88]. According to preclinical data, keratinocytes ex-
press several receptors and ion channels, playing role in nociception, such as Nav (Nav
1.1,1.2, 1.5,1.6,1.7,1.8), TRP (TRPV1-4), neurokinin 1 receptor (NK1-receptor, NK1R), TLR,
interleukin receptors, α1-AR, endothelin1 receptors (ET1), calcitonin receptor-like receptor
(CRLR), CB receptors, OR, NOP (nociceptin-orphanin opioid peptide) receptors (NOP-R),
VGCC, NMDAR, and GABAR to mention a few [89–96]. The role of keratinocyte receptors
and their overexpression in nociception has been confirmed in clinical observations. In
patients with small fibre neuropathy a statistically significant increase of TRPV1 expression
on epidermal keratinocytes was reported [97] The skin biopsies from patients with complex
regional pain syndrome (CRPS) or postherpetic neuralgia (PHN) were analysed, and the
samples exhibited Nav1.1, Nav1.2, Nav1.5, Nav1.6, and Nav1.7 and Nav1.8 immunolabel-
ing, which was not present in normal skin [91]. Besides expressing numerous receptors
and ion channels, in physiological conditions, keratinocytes can synthesize several neu-
ropeptides, neurotransmitters, such as SP, calcitonin gene-related peptide (CGRP), ATP,
Ach, glutamate, various growth factors, cytokines, chemokines, and many other autacoids,
which modulate via corresponding receptors the function of neighbouring neuronal and
immune cells [85,94]. After peripheral nerve injury, the synthesis and release of excitatory
factors by keratinocytes may be enhanced via Nav activation. Stimulated keratinocytes
produce factors, such as SP, CGRP, ATP, and PG that in turn bind to or sensitize recep-
tors on peripheral nerve endings, resulting in depolarization [11,91]. The keratinocytes
may express the modulatory analgesic properties as well. For instance, CB2 activation
by cannabinoid and noncannabinoid cannabis compounds, such as β-caryophyllene and
tetracyclic triterpene euphol, leads to the local release of endogenous opioid β-endorphin
from keratinocytes [98–100]. The data from clinical and preclinical data confirm the role of
keratinocytes in nociception, either in transduction or peripheral modulation of nocicep-
tive input. Theoretically, the receptors and ion channels expressed by keratinocytes and
involved in nociception may be targeted by topically administered analgesics, to reduce
hyperactivity and release of pronociceptive molecules from skin cells [11–14,101].

2.5. Peripheral NP as the Result of Neuronal and Non-Neuronal Mechanisms

The functional, structural, and molecular changes induced by peripheral nerve injury
occur not only in neurons (both sensory and autonomic) and glial cells, but in non-neuronal
cells (keratinocytes; immunocompetent cells—macrophages, mast cells, neutrophils), partic-
ipating in modulating sensory transduction in the periphery, which have been characterized
in several preclinical models [28,56,59,62,64,86,87,101–103]. Upon physiological conditions,
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neuronal and non-neuronal cells in the periphery create a complex interplay on Figure 2,
interacting by each other by released neuropeptides, cytokines, and neurotransmitters,
acting on corresponding ion channels and receptors. Upon NP conditions, the loop of
interactions become overactive and leads to inappropriate sensitivity and functioning
of neuronal and non-neuronal cells, resulting finally in hyperexcitability of nociceptors
and disturbed signalling from periphery to second-order neurons at spinal level, with
several faults either in transduction or transmission. Inappropriate signalling and pain
processing result in pain and sensory abnormalities, characteristic for NP such as allodynia
and hyperalgesia, which may arise from three neuronal mechanisms [8]:

• peripheral sensitization—hypersensitivity of primary afferent nociceptors;
• central sensitization—increased responsiveness of nociceptive neurons in the CNS to

their normal or subthreshold afferent input;
• a switch in the messaging of Aβ fibers from tactile to nociceptive input.

Figure 2. Complex interplay of peripheral neurons, keratinocytes, and immune cells; expressing excitatory (in red) or
inhibitory (in green) ion channels or receptors, involved in pain generation, modulation, and maintenance, which potentially
may be a target for topical treatments. Abbreviations: Nav—voltage-gated sodium channel, TRP—transient receptor
potential channel, VGCC—voltage-gated calcium channel, NMDAR—N-methyl-D-aspartate receptor, ASIC—acid-sensing
ion channel, TLR—toll-like receptor, α1-AR-α1 adreno receptor, α2-AR—α2 adreno receptor, EP—prostaglandin E2 receptor,
GABAAR—gamma-aminobutyric acid receptor A, GABABR—gamma-aminobutyric acid receptor B, Kv—voltage-gated
potassium channel, OR—opioid receptor, CB1, CB2—cannabinoid receptor type 1 or 2, NOP-R—nociceptin receptor, CCL-
R—chemokine receptor, IL-R—interleukin receptor, TrkA—Tropomyosin receptor kinase A, NK1R—neurokinin 1 receptor.
Created with BioRender.com.

Clinical studies suggest that mechanisms like that observed in preclinical models may
also be involved in humans with NP [8]. However, the fundamental question is whether
NP, following peripheral nerve injury, is maintained by pathological input from periphery
or by central (spinal and supraspinal) generators (centralized pain). It has been confirmed
in preclinical trials that hyperexcitable primary afferent neurons (“irritable nociceptors”)
and their pathological functioning may induce similar hyperexcitability within the CNS,
leading to amplification of incoming peripheral pathological input, maintenance, and
aggravation of central sensitization [8,17,104].

BioRender.com
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Preclinical studies have provided evidence that the early response to peripheral nerve
injury in the DRG is driven by macrophages, lymphocytes, and satellite cells, and this
is followed by activation of spinal neuronal and glial cells [56]. During the last decade
scientists began to formulate new ideas on activated glial cells involvement in synaptic
plasticity and signal transduction. This idea is supported by the fact, that neurons and glial
cells express on their membranes similar receptors, ion channels, transporters, as well as
share similar second messenger systems of intracellular signals. Therefore, pharmacological
inhibition of peripheral sensitization can, as consequence, prevent, diminish, and/or cure
the central sensitization. The confirmation comes from clinical observations, published by
Haroutounian et al. [19] and Gracely et al. [105], who reported reduction in spontaneous
pain and allodynia after a peripheral nerve block with lidocaine in patients with NP.
Therefore, the data suggests that central sensitization after peripheral nerve injury may
be partially maintained by peripheral hyperexcitation and ongoing electrical discharge in
sensory neurons. It is reasonable to argue that pathological activity in primary afferent
fibres is crucial for NP development [8,19,32,50].

3. Topical Administration of Analgesics in LNP

The concept of topical administration of analgesics in LNP emerged from preclinical
and clinical trials, where it has been confirmed that:

• input from hyperexcitable primary afferent fibres plays significant role in development
and maintenance of NP at the spinal and supraspinal level [8,19,50];

• peripheral neurons exert complex interactions with glial cells, immunocompetent
cells, and keratinocytes, contributing to peripheral sensitization and neuronal hyper-
excitability on Figure 2 [8,59,86];

• inhibition of peripheral sensitization can diminish and/or eliminate the signs and
symptoms of central sensitization [19,105].

Preclinical studies confirmed the role of several ion channels, receptors, enzymes,
neurotransmitters, neuropeptides, cytokines and other signalling molecules in peripheral
sensitization, inappropriate signalling from periphery and NP behaviour. Evidence for the
peripheral mechanisms and their role in NP comes from clinical trials and observations as
well, however only a few mechanisms have been directly confirmed in humans:

• role of Nav:

◦ in humans with primary erythromelalgia altered firing and ectopic activ-
ity in peripheral neurons was observed due to the mutation in gene coding
Nav1.7 [36];

◦ gain-of-function mutation in Nav1.7, Nav1.8 or Nav1.9 coding genes was asso-
ciated with small fibre neuropathy and other neuropathic and non-neuropathic
pain syndromes [106];

◦ loss-of-function mutation in gene coding Nav1.7 or Nav1.9 results in congenital
insensitivity to pain [106];

◦ increased Nav1.1, Nav1.2, Nav1.5, Nav1.6, Nav1.7 and Nav1.8 expression in the
skin of patients with complex regional pain syndrome (CRPS) or postherpetic
neuralgia (PHN) [91];

• role of α1-AR—in patients with CRPS α1-AR are upregulated in the epidermis and
on dermal nerve fibres [107], activation of α1-AR on human macrophages results in
enhanced synthesis of IL-1β [67];

• role of TRPV1—in patients with small fibre neuropathy a statistically significant
increase of TRPV1 expression on epidermal keratinocytes was reported [97];

• SNAP-25 (synaptosome-associated protein 25)—plasma membrane protein forming
the SNARE (SNAP-receptor), involved in synaptic vesicle fusions, exocytosis, and
neurotransmission. SNAP-25 modulates VGCC protein expressed on plasma mem-
brane. Abnormal expression or function of SNAP-25 are observed in chronic pain
conditions, including neuropathic pain and fibromyalgia [108].
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Although only a few molecular/cellular mechanisms of NP in humans have been
directly confirmed, the preclinical and clinical data support the idea of topical administra-
tion of analgesics with different mechanisms of action. Active molecules from topically
applied treatments diffuse across the stratum corneum and then penetrate to some ex-
tent into the deeper skin layers, where their effect is expected. The molecules of topical
drugs act on several distinct ion channels, receptors, or enzymes expressed by either neu-
ronal or non-neuronal cells (Figure 2). The result of this process is the interruption of
mutually intensifying stimulation loops, reduction of peripheral sensitization, peripheral
input, hyperalgesia, allodynia, and finally reduction of pain intensity in patients with LNP
(Figure 3).

Figure 3. Topical treatments utilized in clinical practice in patients suffering from neuropathic and/or inflammatory pain,
and their suggested molecular/cellular targets. Abbreviations: Nav—voltage-gated sodium channels, TRPV1—transient
receptor potential vanilloid 1, VGCC—voltage-gated calcium channels, NMDAR—N-methyl-D-aspartate receptors, α1-
AR—α1 adreno receptors, α2-AR—α2 adreno receptors, GABAR—gamma-aminobutyric acid receptors, OR—opioid
receptors, CB- cannabinoid receptors, COX-2—cyclooxygenase 2, SNAP-25—synaptosome-associated protein 25. Created
with BioRender.com.

The concept of topical treatments is in line with current theory of mechanism-oriented
pain treatment; therefore, they might improve the quality of pain management and pa-
tients’ satisfaction with the treatment [9]. According to clinical data, most studied topical
treatments (i.e., 5% lidocaine patch, 8% capsaicin patch, BTX-A (botulinum toxin A) in
subcutaneous injection) have comparable analgesic efficacy in patients with NP, but rela-
tively few systemic side effects and drug–drug interactions compared to systemic drugs.
However, according to systematic reviews, topical drugs still have a weak recommenda-
tion for use in patients with LNP [109,110]. In clinical practice, numerous other agents
have been used topically in patients with LNP, such as capsaicin at low concentration,
antidepressants (amitriptyline, doxepin), antiepileptics (phenytoin, baclofen, gabapentin),
ketamine, ambroxol, prazosin, clonidine, opioids (loperamide, morphine), cannabinoids
(palmitoylethanolamide, cannabidiol), NSAIDs (nonsteroidal anti-inflammatory drugs)
(diclofenac, ibuprofen, ketoprofen), blockers of Nav 1.7 (TV-45070). However, evidence
on their efficacy in LNP is inconsistent or inconclusive, therefore they are not included in
clinical recommendations [109,110]. In the literature there are numerous preclinical trials
pointing out at antinociceptive effect of substances administered topically in animal models
of inflammatory and NP. They are not utilized in clinical practice yet and therefore not
included in this review [111,112]. Tables 1 and 2 present the most studied and suggested
mechanisms of action of topical treatments, being used in clinical practice.

Topical drugs utilized in subjects with LNP exert multiple mechanisms of action, but
which ones are most crucial and responsible for analgesic effect observed in humans has
not been fully elucidated. Given that interactions between neuronal and non-neuronal
cells involve multiple mediators and broad spectrum of receptors, single agents targeting
multiple mechanisms or combination of agents targeting single mechanisms might be
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particularly useful in clinical settings [11–14]. In the subsequent sections, a brief discussion
regarding data covered in Tables 1 and 2 is provided.

3.1. Treatments Acting on Voltage-Gated Sodium Channels

The role of Nav in physiological nociception and different pain states has been con-
firmed in numerous preclinical studies [37,38,71] and several clinical observations [36,91,106],
therefore substances blocking Nav receive special attention in pain medicine in humans [113].

Table 1. Receptors, ion channels, enzymes with excitatory mode of action, involved in generation and
maintenance of NP, potentially targeted by topically administered treatments. Possible site of action
of topical agents, addressing given molecular target. Abbreviations: Nav—voltage-gated sodium
channels, TRPV1—transient receptor potential vanilloid 1, VGCC—voltage-gated calcium channels,
NMDAR—N-methyl-D-aspartate receptors, α1-AR—α1adreno receptors, COX-2—cyclooxygenase-2,
NSAID—nonsteroidal anti-inflammatory drug, SNAP-25—synaptosome-associated protein 25.

Receptor
Ion Channel

Enzyme

Topical Agent
Utilized in

Clinical Practice

Possible Site of
Action Reference

EXCITATORY

Nav

Lidocaine
Antidepressants:
-Amitriptyline

-Doxepin
Phenytoin
Ambroxol
TV-45070
Opioids
NSAIDs

Clonidine

Neurons
Keratinocytes

[36–
38,91,106,114–

123]

TRPV1 Capsaicin
NSAIDs

Neurons
Keratinocytes
Immune cells

[69,70,76,93,94,
97,124–128]

VGCC Gabapentin
Lidocaine

Neurons
Keratinocytes

[39,61,76,91,94,
96,129–133]

NMDAR

Ketamine
Antidepressants:

-amitriptyline
NSAID-

Diclofenac

Neurons
Keratinocytes
Immune cells

[95,134–
136,136,137,137–

142]

α1-AR Prazosin
Antidepressants

Neurons
Keratinocytes
Immune cells

[31,33,43–
46,67,73,143–

145]

COX-2 NSAIDs
Neurons

Immune cells
Schwann cells

[75,146,147]

SNAP-25 Botulinum toxin
A

Neurons
Immune cells

Glial cells
[148–151]
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Table 2. Receptors, ion channels with inhibitory mode of action, involved in modulation of NP,
potentially targeted by topically administered treatments. Possible site of action of topical agents,
addressing given molecular target. Abbreviations: GABAR—gamma-aminobutyric acid receptors,
GABAAR—gamma-aminobutyric acid receptors A, GABABR—gamma-aminobutyric acid receptors
B, α2-AR—α2 adreno receptors, OR—opioid receptors, CB—cannabinoid receptors.

Receptor
Ion Channel

Topical Agent
Utilized in

Clinical Practice

Possible Site of
Action Reference

INHIBITORY

GABAR Antidepressants:
Amitriptyline Neurons

Keratinocytes
Immune cells

[83,84,152,153,
157]

GABAAR Ketamine
Phenytoin [158,159]

GABABR Baclofen [154–156]

α2-AR Clonidine Neurons [160–164]

OR Opioids
Neurons

Keratinocytes
Immune cells

[79,80,82,165–
170]

CB Cannabinoids
Neurons

Keratinocytes
Immune cells

[78,81,98–
100,171–174]

Topically applied lidocaine, phenytoin, antidepressants (amitriptyline, doxepin) and
ambroxol are thought to exert their antinociceptive effect in patients with LNP mainly via
Nav inhibition [114–121]. In clinical practice, topical treatments acting on Nav provide
beneficial analgesic effect; however, 5% lidocaine patches only have scientific evidence suffi-
cient to position this treatment in clinical recommendations for NP management [109,110].

In clinical studies conducted in patients with PHN specific blocker of Nav1.7 (TV-
45070) has been assessed as well, but no statistical difference was observed between active
treatment and placebo for the change in mean daily pain scores from baseline compared
with the last week [122].

Other substances being suggested to exert their antinociceptive effect via Nav blockade
in vitro in peripheral nerves include NSAIDs, opioids, α2-AR agonists, and plant-derived
compounds, which has been extensively reviewed by Kumamoto [123].

3.2. Treatments Acting on Transient Receptor Potential Vanilloid 1 Channels

Some members of the TRP family deserve special attention in pain medicine, as they
are expressed in nociceptors, play crucial role in physiological nociception (TRPV1-4,
TRPM8, and TRPA1), and are also involved in the generation and maintenance of chronic
pain [69,70,76,93,94,124]. The available data suggest that, in particular, TRPV1 expressed by
C-fibers nociceptors may play an important role in nociception and in pathomechanism of
neuropathic and inflammatory pain [69,70,76,93,94,97,125]. Moreover, TRPV1 channels are
widely distributed in peripheral and central nervous systems, and in other non-neuronal
cells involved in peripheral nociception such as keratinocytes and immune cells [125].

Capsaicin is a highly selective agonist of the TRPV1 channels utilized in clinical setting
either in low (<0.1%) or in high (8% patches) concentration [126]. Clinical evidence supports
only 8% capsaicin patches in patients with LNP [109,110,127], whereas the evidence for
the low concentration capsaicin is inconclusive [109,110]. Although capsaicin is the potent
agonist of TRPV1, its long term analgesic effect relies on the massive intracellular influx of
ions (Ca2+, Cl−) following activation of TRPV1 and subsequent damage of the cytoskeleton
and mitochondria. This leads to the defunctionalisation of hyperexcitable nociceptive
receptors, or a temporary destruction of peripheral nerve endings [125].
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Other drugs acting via TRPV1 include NSAIDs such as diclofenac, ketorolac, xefocam,
which, applied topically in rats inhibited pain behaviour, most probably by inhibition of
TRPV1 and TRPA1 channels [128].

3.3. Treatments Acting on Voltage-Gated Calcium Channels

VGCCs are widely distributed in neuronal and non-neuronal cells. Studies confirmed
expression of L-type calcium channel in excitable cells [129] and in epidermal keratinocytes,
where they play role in skin barrier homeostasis [96]. In turn the activity of T-type calcium
channels is increased in NP states, such as traumatic nerve injury, peripheral diabetic neu-
ropathy or CIPN (chemotherapy-induced peripheral neuropathy) [39,61,76,91,94,130,131].

In clinical settings, VGCC blocker gabapentin administered orally is commonly used
and recommended as the first line treatment in patients with NP [109,110]. Single observa-
tional studies and case reports report beneficial analgesic effect in patients with LNP states
after topical administration of cream containing gabapentin, but the scientific evidence is
inconclusive [132].

Other drugs possibly acting via VGCC blockade include lidocaine, however in vitro
the VGCC blockade has been observed in lidocaine concentrations 100-fold higher than
needed for Nav blockade [133].

3.4. Treatments Acting on N-Methyl-D-aspartate Receptors

The role of neuronal NMDAR in generation of peripheral neuroinflammation and
central sensitization has been confirmed in several preclinical and clinical studies [134–136].
Moreover, the experimental studies confirmed the expression of functionally active NM-
DAR in keratinocytes in human normal and inflamed skin, where they play a role in
epidermal homeostasis and nociception [95,137].

Ketamine, an anaesthetic drug, is suggested to act topically by blockade of NMDAR
and subsequent inhibition of glutamate release [136,138]. In clinical trials topical ketamine
is more commonly used in combination with other drugs, showing beneficial analgesic
effect in patients with different NP syndromes [139], however human studies on topical
ketamine as a single agent are inconsistent [140].

Other drugs with possible antinociceptive effect via NMDAR blockade include an-
tidepressants (i.e., amitriptyline)—but this effect has been observed in cultured rat brain
neurons only [141]—and diclofenac, providing antinociceptive effect after topical adminis-
tration in rats [142].

3.5. Treatments Acting on α1 Adrenergic Receptors

The role of autonomic system and adrenergic receptors in generation and maintenance
of NP has been confirmed [31,33,43–46,67,73]. Upregulated α1-AR in peripheral neurons,
keratinocytes, and immune cells may be targeted by prazosin, an antagonist of α1-AR [143].
Topically administered prazosin has been studied in one study in healthy volunteers and
patients with CRPS to date, showing analgesic effect [144].

Other drugs with possible antinociceptive effect related to α1-AR blockade are an-
tidepressants such as nortriptyline, imipramine, maprotiline, and milnacipran. Their
antinociceptive effect via AR blockade has been observed after systemic administration
in formalin test only [145]. However, whether amitriptyline acts via α1-AR blockade
is unclear.

3.6. Treatments Acting on Cyclooxygenase 2

After peripheral nerve injury, PGs may be synthetized not only in invaded immune
cells, but in neuronal and glial cells as well. PGs regulates the function of peripheral
sensory nerves in paracrine and autocrine manners in several models of NP [75]. Topically
administered NSAIDs may interfere with the proinflammatory and pronociceptive effects
of PGs by their ability to inhibit the cyclooxygenase COX-2.
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In clinical studies, gel containing 1.5% diclofenac gave satisfactory pain relief in
patients with NP syndromes, however the evidence was medium [146]. Topical NSAIDs
are not widely used in patients with NP, rather recommended and commonly used in pain
syndromes with predominant inflammatory mechanism [147].

3.7. Treatments Acting on Synaptosome-Associated Protein 25

Among the topical analgesics in NP, BTX-A deserves special attention, because when
given topically in the periphery, it can directly modulate both central and peripheral
sensitization. Recent animal studies proved that topical BTX-A administration is possibly
followed by the retrograde transport and transcytosis, which are responsible for pain
relief [148–151].

In clinical practice, local injections of BTX-A are recommended as the third-line
treatment in patients with LNP, but scientific evidence for its use is weak [109,110].

3.8. Treatments Acting on Gamma-Aminobutyric Acid Receptors

GABA is the major inhibitory neurotransmitter in the adult mammalian central ner-
vous system and exerts inhibitory action via specific receptors named GABAAR and
GABABR. GABAAR are ion channels located in postsynaptic membranes, whereas GABABR
are GPCR located both in pre- and postsynaptic membranes [152]. Moreover, GABAR are
expressed in immune and skin cells, where they are involved in skin barrier homeostasis
and skin inflammatory diseases [83,84,153]. In preclinical studies, the role of peripheral
GABABR in nociception has been confirmed in animal model of allodynia [154].

In clinical settings, baclofen, a specific agonist of GABABR, is utilized topically in
patients with NP syndromes in a mono- or add-on therapy, but the evidence of its efficacy
is inconclusive [155,156].

Other drugs possibly acting by GABA receptors include:

• antidepressants (amitriptylline, fluoxetine), but their antinociceptive effect has been
observed after intraperitoneal administration in rats [157];

• ketamine—the agonist to GABAAR, which has been confirmed in an anesthetic model
in mice [158];

• phenytoin, which potentiated GABA-induced currents in cultured rat cortical neurons
through modulation of the GABAAR [159].

3.9. Treatments Acting on α2 Adreno Receptors

The α2-AR are inhibitory G-protein coupled receptors involved in nociception and
expressed in peripheral and central nervous system [160–162]. Activation of these receptors
induces antinociception in animal models of NP [160] and reduced production of TNFα,
IL-6, IL-8 in in vitro studies [163].

Clonidine, an agonist for α2-AR receptors, is an extremely potent antinociceptive
agent when given systemically. However, topical clonidine exerts an analgesic effect in
patients with LNP with medium level of evidence [164].

3.10. Treatments Acting on Opioid Receptors

The peripheral inflammation increases de novo synthesis of OR in DRG and their
density in the peripheral nerve endings, whereas nerve injury decreases MOR (µ opioid
receptor) expression in peripheral nerves [165]. However, peripheral nerve injury via
cytokines, especially chemokines and other factors recruits immune cells to the site of
injury. Moreover, recruited immune cells release endogenous opioids and express all types
of OR [79,166]. Besides, OR are expressed as well by keratinocytes, which can produce
β-endorphins [167]. Taken together, following peripheral injury, OR expressed by neuronal
and non-neuronal cells and their endogenous agonists form a complex system, modulating
nociception at the peripheral level [82]. Therefore, there is a rationale for topical use of
opioids, without involvement of central mechanism of action, which has been confirmed in
NP models [80,168].
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In clinical practice, loperamide has been used in patients with NP, however evidence
is limited to single case report only [169]. To date, morphine in topical formulation showed
beneficial effect in patients with painful mucosal or skin lesions due to cancer [170], but
the data on topical morphine in NP is lacking.

3.11. Treatments Acting on Cannabinoid Receptors

Numerous studies indicate a modulatory effect of the endocannabinoid system in
NP [171]. In the periphery, CB1 receptors are expressed on nociceptive nerve endings and
the DRG, whereas CB2 receptors are located in immune cells and keratinocytes [78,172].
Either CB1 or CB2 receptors may be targeted by cannabinoids administered topically,
evoking analgesic effect in both inflammatory and neuropathic pain [78,81,98–100,172].

Clinical observations indicate that topical administration of CBD (cannabidiol), mixed
with other well-known anti-inflammatory phytoderived products, exert analgesic and
anti-inflammatory effect, but evidence is weak and comes from single studies on inflamma-
tory pain only [173]. In patients with vulvodynia, beneficial analgesic effect of topically
administered 1% PAE (palmitoylethanolamide), an endocannabinoid anti-inflammatory
compound, with 5% baclofen has been observed [174]. The clinical observations support
the topical application of cannabinoids, but data and evidence on their efficacy in LNP
syndromes are lacking.

4. Conclusions

The progress made in identification of peripheral mechanisms of NP, peripheral
neuronal and non-neuronal cells interplay, and the role of peripheral sensitization in
modulation of central hypersensitivity has given a stronger rational basis for topical
treatments in clinical practice and experimental research on novel agents. It is accepted
that primary sensory afferent neurons, immune cells, and keratinocytes express numerous
ion channels and receptors, release signaling molecules in a response of injury, and can be
activated or suppressed by a wide range of pro- or antinociceptive mediators, respectively.
Modulation of their complex interactions in the periphery represents a strategy for the
development of new topical analgesics and their utilization in clinical settings.
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