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Despite the importance of pain as a warning physiological system, chronic neuropathic
pain is frequently caused by damage in the nervous system, followed by persistence
over a long period, even in the absence of dangerous stimuli or after healing of injuries.
Chronic neuropathic pain affects hundreds of millions of adults worldwide, creating
a direct impact on quality of life. This pathology has been extensively characterized
concerning its cellular and molecular mechanisms, and the endocannabinoid system
(eCS) is widely recognized as pivotal in the development of chronic neuropathic pain.
Scientific evidence has supported that phyto-, synthetic and endocannabinoids are
efficient for pain management, while strong data arise from the therapeutic use of
Cannabis-derived products. The use of medicinal Cannabis products is directed toward
not only relieving symptoms of chronic pain, but also improving several aspects of
patients’ welfare. Here, we review the involvement of eCS, along with other cellular and
molecular elements, in chronic neuropathic pain pathology and how this system can be
targeted for pain management.

Keywords: neuropathic pain, endocannabinoid, cannabidiol, THC, cannabis

CHRONIC NEUROPATHIC PAIN

Chronic pain is classified by the International Association for the Study of Pain (IASP) as a pain
that lasts more than 3 months, even after its primary cause is cured (Raja et al., 2020). One of
the main types of chronic ache is neuropathic pain, that occurs when pain is caused by a lesion
or disease of the somatosensory nervous system (Raja et al., 2020). Chronic neuropathic pain

Abbreviations: 2-AG, 2-arachidonoylglycerol; AEA, anandamide; ASR-9, aggregated 9-factor symptom relief; ATP,
adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CB1R, cannabinoid receptor type 1; CB2R, cannabinoid
receptor type 2; CBC, cannabichromene; CBD, cannabidiol; CBDV, cannabidivarin; CBN, cannabinol; CNS, central nervous
system; COX-2, cyclooxygenase-2; CYP, cytochrome p450; DRG, dorsal root ganglia; EAAT2, excitatory amino acid
transporter 2; eCBs, endocannabinoids; eCS, endocannabinoid system; eEPSC, evoked excitatory postsynaptic currents;
FAAH, fatty acid amino hydrolase; GABA, γ-aminobutyric acid; IASP, International Association for the Study of Pain;
IL-17, interleukin 17; IL-1β, interleukin 1β; IL-6, interleukin 6; MAGL, monoacylglycerol lipase; NF-κb, nuclear factor κ

B; P2X4 - P2X purinoceptor 4; p38 MAPK, p38 mitogen-activated protein kinase; PDQ7, Pain Detect Questionnaire 7;
PEA, palmitoylethanolamide; PNS, peripheral nervous system; THCV, 19-tetrahydrocannabivarin; TNF-α, tumor necrosis
factor-α; TRP, transient receptor potential; TRPA1, transient receptor potential subfamily A member 1; TRPM8, transient
receptor potential subfamily M member 8; TRPV1, transient receptor potential subfamily V member 1; 19-THC, 19-
tetrahydrocannabinol.
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has several causes, such as the use of medicines (chemotherapy
drugs, for example), metabolic diseases (such as diabetic
neuropathy), demyelinating diseases (for instance, multiple
sclerosis) and mechanical injuries (Meacham et al., 2017; Alles
and Smith, 2018). The epidemiology of this disease varies
across the globe, but it is estimated that 7–10% of all adults
worldwide suffer from chronic neuropathic pain (van Hecke
et al., 2014; Mücke et al., 2018). The main symptoms consist
of spontaneous burning pain, numbness, and hyperalgesia
(increased pain perception of noxious stimuli) and allodynia
(pain hypersensitivity to normally innocuous stimuli) (Rani Sagar
et al., 2012; Meacham et al., 2017; Alles and Smith, 2018). Patients
may also experience social and economic consequences, since it is
highly uncomfortable to conduct routine tasks while feeling pain.
The physical and social impairment, along with the daily pain,
can occasionally lead to depression (Knaster et al., 2012; Radat
et al., 2013; Pitcher et al., 2019).

Physiological pain pathways include the peripheral and central
nervous system (PNS and CNS, respectively), and the pain matrix
revealed by neuroimaging in the last two decades is formed by
central areas responsible for the process of pain (Legrain et al.,
2011; Figure 1). Here, we focus on the plasticity in the spinal
cord, particularly in the dorsal horn, due to its key role as a central
integrator of afferent sensory information, besides being a region
where significant part of pain processing occurs (Rani Sagar et al.,
2012; West et al., 2015; Alles and Smith, 2018).

ANATOMICAL, CELLULAR, AND
MOLECULAR ELEMENTS OF PAIN
PROCESSING IN THE SPINAL CORD

The spinal cord is protected by the vertebral column and it
is involved in motor and sensory processing, in addition to
integrating the body with the brain through different pathways.
Anatomically, the spinal cord is divided into an external white
matter and an internal gray matter. The latter is subdivided in
10 laminae going from dorsal to ventral spinal cord, which differ
from each other based on inputs received and neuron types
(Rexed, 1952).

The dorsal horn consists of laminae I to VI, and receives
information mostly from sensory neurons located in the dorsal
root ganglia (DRG). The DRG neurons transduce mechanical,
thermal or nociceptive information and can be classified as Aδ,
C, or Aβ fibers (Rexed, 1952; Le Pichon and Chesler, 2014; Alles
and Smith, 2018). Lamina I receives noxious, mechanical and
thermal inputs from Aδ and C fibers. Lamina II consists of two
zones: the outer zone, which receives inputs from C fibers, and
the inner zone, receiving information from Aδ and C fibers. Aδ

and Aβ fibers connect with other neurons in Laminae III to V
carrying tactile and pressure information. Lamina VI receives
sensory information from muscle spindles, consisting mostly
of propriospinal neurons (Figure 1). All laminae have a high
number of inhibitory GABAergic and glycinergic interneurons
that help modulate sensory inputs. Also, it is important to
highlight that most of the laminae in the dorsal horn make
connections with neurons from different brain regions through

ascendant and descendant pathways (West et al., 2015; Alles and
Smith, 2018; Figure 1).

The synapses between Aδ, Aβ, and C fibers and spinal cord
neurons are excitatory, having glutamate as neurotransmitter
(West et al., 2015; Alles and Smith, 2018). Glutamate release from
sensory fibres is regulated by inhibitory interneurons present
in all laminae of the dorsal horn through γ-aminobutyric acid
(GABA) or glycine release, modulating noxious transmission
(West et al., 2015). The sensory information travels through
different pathways, such as the spinothalamic tract, to different
brain areas known as pain matrix, which includes the thalamus,
the anterior cingulate cortex, the periaqueductal gray matter,
the amygdala and others (D’Mello and Dickenson, 2008; Cohen
and Mao, 2014; Colloca et al., 2017; Figure 1). Pain modulation
is a top-down process: after information processing in higher
brain centers, neurons that form the descendant pathways make
synapses in the dorsal horn, releasing serotonin, GABA and
glycine (D’Mello and Dickenson, 2008; Ossipov et al., 2010; West
et al., 2015; Colloca et al., 2017; Figure 1).

ENDOCANNABINOID SYSTEM IN
PHYSIOLOGICAL PAIN PROCESSING

The endocannabinoid system (eCS) main components are the
G protein-coupled cannabinoid receptors CB1 (CB1R) and CB2
(CB2R), the endocannabinoids (eCBs) for example anandamide
(AEA) and 2-arachidonoylglycerol (2-AG), and the enzymes
involved in their metabolism, such as fatty acid amino hydrolase
(FAAH) and monoacylglycerol lipase (MAGL), responsible for
the degradation of AEA and 2-AG, respectively (Howlett
et al., 2002; Figure 2). The eCS is an on-demand system and
heterogeneously present in different structures of the CNS and
PNS, including important regions of pain processing, such as the
DRGs, spinal cord, thalamus, amygdala and others (Tsou et al.,
1998; Farquhar-Smith et al., 2000; Katona et al., 2001; Starowicz
and Finn, 2017; Finn et al., 2021; Figure 1).

In relation to pain modulation in the dorsal spinal cord,
the eCS acts as a regulator of the synaptic transmission in
the DRGs. CB1R is expressed in the presynaptic sensory fibers
of trigeminal ganglion and dorsal root ganglion, besides the
nerve endings of primary sensory neurons in dermis, whose
afferent fibers conduct nociception (Salio et al., 2002; Price et al.,
2003; Veress et al., 2013; Zou and Kumar, 2018). Following
the release of neurotransmitters, glutamatergic receptors are
activated in the postsynaptic terminal, inducing Ca2+ influx
and its increased concentration inside the cell. Therefore,
higher levels of intracellular Ca2+ promotes activation of
enzymes responsible for eCBs synthesis, mostly AEA and 2-
AG, which are then released into the synaptic cleft and bind
to CBRs in the presynaptic terminal. CBR activity induces
blockade of voltage-gated Ca2+ channels presynaptically and
inhibits adenylate cyclase, decreasing levels of cAMP and
triggering the signaling cascade involved in synaptic plasticity,
besides modulating sensory transmission through this feedback
mechanism in the dorsal horn (Shen et al., 1996; Mecha et al.,
2015; Figure 2A). This was demonstrated by the development
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FIGURE 1 | Pain anatomical pathways and CB1R expression. Ascending pain pathways (in red) are carried from the body periphery through sensory neurons of
dorsal root ganglia (DRG) that synapse mainly with laminaes I to III in the dorsal spinal cord. Projection neurons make connections with brain areas such as thalamus
and cortex. The descending pathways (in blue), responsible for pain modulation, involve areas such as the periaqueductal gray matter and amygdala, ending in the
dorsal spinal cord. The CB1R distribution is heterogeneous in pain pathway areas, being more concentrated in regions such as cortex and Central Amygdala (CeA).
LA, lateral amygdala; CeA, central amygdala; BlA, basolateral amigdala.

of thermal hyperalgesia and blockage of inhibition of evoked
excitatory postsynaptic currents (eEPSC) in laminae II neurons in
mice after administration of CB1R antagonists (Richardson et al.,
1997; Yang et al., 2016).

Another important component associated with the eCS is
the transient receptor potential family (TRP). The TRP cation
channel subfamily V member 1 (TRPV1) has a relevant role in
nociceptive transduction in the PNS since it is activated, opening
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a Ca2+ channel and increasing this ion concentration inside the
neurons, by heat, acidic substances and capsaicin, besides being
expressed in the soma and nerve terminals of sensory neurons
from DRG (Caterina et al., 1999; Immke and Gavva, 2006; Lauria
et al., 2006). The TRP cation channel subfamily M member
8 (TRPM8) and subfamily A member 1 (TRPA1) also act as
nociceptors and they are activated by menthol/cold temperatures
and noxious cold/pungent compounds, respectively (Storozhuk
and Zholos, 2018). Although TRPV1 and TRPM8 were not
initially considered eCS-related receptors, they are directly
influenced by different endocannabinoids, such as AEA, since this
molecule is an agonist for the former and antagonist for the latter
(Zygmunt et al., 1999; De Petrocellis et al., 2007; Figure 2A).

Clinical evidence for the role of the eCS in pain management
was reported based on a serendipitous case of a Scottish patient
(Habib et al., 2019). Authors described the clinical data from a
woman submitted to orthopedic surgery, a procedure recognized
for being associated with severe pain, with no need for analgesics.
The same patient also had a long clinical history of cuts and burns
without any sensation of pain. Genetic investigation revealed a
deletion in the gene responsible for FAAH transcription, which
led to reduced degradation and higher levels of AEA in peripheral
blood and probably other organs.

The major eCS components are also present in glial cells,
such as astrocytes and microglia, even though CB2R is more
expressed than CB1R in microglia, as also shown in other
immunological cells, such as lymphocytes and neutrophils (Hegyi
et al., 2009; Greineisen and Turner, 2010; Maccarrone et al.,
2015). In astrocytes, CB1R-mediated signaling promotes increase
of intracellular Ca2+ levels, while activation of microglial CB2R
maintains the resting state or anti-inflammatory polarity of this
cell type (Greineisen and Turner, 2010; Mecha et al., 2015;
Figure 2A).

CELLULAR AND MOLECULAR
CHANGES IN THE SPINAL CORD
ASSOCIATED WITH CHRONIC
NEUROPATHIC PAIN

The nervous system is plastic, with the ability to change and
readapt in response to environmental stimuli. In this context,
maladaptive plasticity processes can result in malfunction of the
nervous system physiology (Kuner and Flor, 2017; Meacham
et al., 2017). For instance, hyperalgesia is related to neuronal
hyperexcitability triggered by cytokines and inflammatory
mediators released in the periphery or in the spinal cord (Colloca
et al., 2017; Kuner and Flor, 2017; Meacham et al., 2017).
This is followed by a decrease of GABA- and glycine-mediated
neurotransmission, caused not only by the reduction of their
release, but also because of inhibitory interneurons apoptosis
(Moore et al., 2002; Janssen et al., 2011; Foster et al., 2015).
The decrease of GABA-mediated signaling reduces presynaptic
inhibition, especially in Lamina II, which allows Aβ fibers to
communicate with neurons in Lamina I, therefore contributing
for allodynia (Alles and Smith, 2018).

The central sensitization of the spinal cord, which is the
increased responsiveness of nociceptive neurons in the CNS
when compared to normal threshold, may occur for several
reasons, one of them being the dysfunction of glutamate signaling
(Meacham et al., 2017). The expression of glutamate transporters
is downregulated after PNS injury, increasing the availability
of glutamate to their receptors and decreasing neuron-firing
threshold (Sung et al., 2003). Changes in the expression of
voltage-gated calcium channels, such as the upregulation of α2δ-1
subunit, also contribute to neuron hyperexcitability by increasing
Ca2+ permeability to the intracellular medium (Li et al., 2004;
D’Arco et al., 2015).

The unbalanced synaptic communication in the dorsal horn
of the spinal cord is one of the main causes for chronic
neuropathic pain consolidation. However, synapses not only
contain pre- and postsynaptic elements, but also the participation
of glial cells, such as astrocytes and microglia, which have their
physiological state shifted and contribute to this pathology,
similarly to neurons. After PNS injury, it is well-known that
astrocytes and microglial cells in the spinal cord show increased
reactivity, identifiable by changes in their morphology and
secreted molecules (Burgos et al., 2012; Alles and Smith,
2018). After an aversive stimulus, these cells produce pro-
inflammatory mediators, such as interleukins -17, -1β, -6 (IL-
17, IL-1β, and IL-6), and Tumor Necrosis Factor-α (TNF-α),
which establish an inflammatory environment involved in the
maintenance of chronic neuropathic pain (Wieseler-Frank et al.,
2005; Stemkowski et al., 2017). Part of these molecules are
chemoattractant for immune cells, which explains the infiltration
of T cells (Choi et al., 2015; Sun et al., 2017). Indeed, several
studies describe the correlation between lymphocyte invasion in
the spinal cord and the development of chronic pain, also by
the production and release of cytokines as IL-17 by this cell type
(Kleinschnitz et al., 2006; Davoli-Ferreira et al., 2020).

Glial cells are also involved in hyperalgesia and allodynia
generation. Astrocytes potentiate glutamatergic signaling by
reducing the expression of excitatory amino acid transporter
2 (EAAT2) in these cells, which promotes increased glutamate
concentration externally to the neuron (Cata et al., 2006). In
addition, the contents of purinergic receptors are increased in
the microglial cytoplasmic membrane. The continuous adenosine
triphosphate (ATP) release from injured and stressed cells in
the microenvironment induces constant stimulation of microglia
reactivity, proliferation and pro-inflammatory polarity (Tsuda
et al., 2013; Peng et al., 2016; Alles and Smith, 2018). In fact,
P2X purinoceptor 4 (P2X4) stimulation in the spinal cord of non-
injured adult rats is sufficient to induce allodynia (Tsuda et al.,
2003; Niu et al., 2017).

ENDOCANNABINOID SYSTEM AS
TARGET FOR CHRONIC NEUROPATHIC
PAIN TREATMENT

As previously mentioned, the unbalance of eCS physiological
signaling can induce chronic neuropathic pain symptoms
(Richardson et al., 1997; Yang et al., 2016). The eCS components
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FIGURE 2 | The role of the endocannabinoid system (eCS) in the quadripartite synapse, its modulation by phytocannabinoids and alterations due to Neuropathic
Pain. (A) Neurons, astrocytes, and microglial cells have the eCS components, and the endocannabinoid signaling through CB1R and CB2R leads to different
outcomes in each cell. The presynaptic neuron expresses CB1R, TRPV1, TRPM8, and the endocannabinoid membrane transporter (EMT). Receptors are targeted
by endocannabinoids (AEA and 2-AG). CB1R modulation activates signaling cascades that inhibit Ca2+ intracellular influx, which decreases the fusion of intracellular
vesicles with the neuron membrane, changing the neurotransmitter release flow. The postsynaptic neuron also presents, besides the receptors, all the elements
of the ECS, such as the AEA and 2-AG synthesis enzymes, respectively NAPE-PLD and DAGL, and the degradation enzymes, FAAH, MAGL, and other enzymes such

(Continued)
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FIGURE 2 | as COX2. In green: Astrocyte takes part in the synapse and expresses different elements of the eCS such as endocannabinoids’ synthesis and
degradation enzymes and cannabinoid receptors, where the activation of CB1R may favor the influx of Ca2+ ions. Microglia expresses components of the eCS; the
CB2R expression is higher than CB1R, and its modulation is linked to the production and secretion of different cytokines. Phytocannabinoids modulate the eCS
through many targets. THC and THCV are CB1R agonists, while CBD, CBDV, CBG, and THCV are TRPV1 agonists. The EMT transporter is the pharmacological
target of the phytocannabinoids CBD, CBDV, CBG, and THCV. The phytocannabinoids also act over enzyme activity - CBD inhibits FAAH, CBDA inhibits COX-2 and
CBDV, CBDA, THCVA and CBDVA inhibit DAGL. (B) In the Neuropathic Pain scenario, there is glial reactivity, leading to the increase of astrocyte and microglia next
to neurons, especially in the dorsal spinal cord. The eCS is modulated and the levels of expression of your components change. There is a higher expression of
CB1R and CB2R in neurons and glial cells. Enzymes such as FAAH, COX-2, and 5-LOX also increase their expression, and in result, there is a decrease of AEA
levels and increase of pro-inflammatory mediators. CBD, cannabidiol; THC, tetrahydrocannabinol; CBDV; cannabidivarin; CBDA, cannabidiolic acid; THCVA,
tetrahydrocannabivarinic acid; CBDVA, cannabidivarinic acid; THCV, tetrahydrocannabivarin; CBG, cannabigerol.

are highly susceptible to molecular alterations, and such events
are observed in chronic neuropathic pain pathogenesis, both in
the CNS and PNS (Rani Sagar et al., 2012; Starowicz and Finn,
2017). Indeed, it has been described that the expression of CB1R
and CB2R, the eCB synthesis machinery and the expression of
FAAH are increased in the spinal cord of animals submitted to
murine models of chronic neuropathic pain (Zhang et al., 2003,
2010; Guindon et al., 2013; Davis, 2014; Malek et al., 2014).
Although there is elevation in eCBs synthesis, activation of FAAH
and alternative catabolic pathways, involving cytochrome p450
(CYP), cyclooxygenase-2 (COX-2) and lipoxygenases, increase
AEA degradation and generates inflammatory mediators, such as
prostaglandins, which influence neuron excitability (Kozak et al.,
2002; Snider et al., 2009; Chouinard et al., 2011; Rani Sagar et al.,
2012; Mecca et al., 2021). The reduction of AEA and CB1R-
mediated negative feedback in excitatory synapses contribute to
the hyperalgesia mechanism (Figure 2B).

The fact that the eCS is involved in the pathophysiological
state of pain makes this system a valid target for chronic
neuropathic pain treatment. Nowadays, treatments for chronic
neuropathic pain consist of four lines of therapies that are chosen
according to the patient’s condition (Table 1), with opioids being
the most used (Attal et al., 2010; Rani Sagar et al., 2012; Moulin
et al., 2014; Finnerup et al., 2015).

Despite the variety of treatments, there are no effective
pharmacotherapeutic strategies for mitigating chronic
neuropathic pain, in addition to patients that do not respond
properly to treatments and are resistant to current medicines
available (Dworkin et al., 2010; Yekkirala et al., 2017). Moreover,
there is a huge opioid crisis with severe consequences centered
on drug addiction, respiratory depression and death by overdose
(Moore and McQuay, 2005; Fornasari, 2017; CDC, 2021;
WHO, 2021). The lack of a solid treatment with few or no side
effects makes the pharmaceutical industry avid to pursue new
alternatives for these patients, and the modulation of eCS has
been considered a promising tool.

CB1R/CB2R agonists and antagonists have been described
as a valuable option to successfully modulate the eCS in
chronic neuropathic pain animal models, bringing an alternative
of treatment for patients that do not respond well to other
pharmacological therapies. In addition, an indicative that
modulating cannabinoid receptors could be a good alternative
instead of opioids is the increased density of cannabinoids
receptors in the spinal cord, compared to opioid receptors
(Hohmann et al., 1999), and high/moderate expression of
cannabinoid receptors in brain areas responsible for pain

modulation, such as cortex, amygdala and periaqueductal gray
matter, at least in rodents (Befort, 2015; Figure 1).

In animal models of chronic neuropathic pain, the
administration of the synthetic cannabinoid CP 55,940, a
CB1R agonist, terminated thermal hyperalgesia and decreased
mechanical allodynia, evaluated by hot plate test and von Frey
test, respectively (De Vry et al., 2004; Scott et al., 2004; Romero-
Sandoval and Eisenach, 2007). A single administration of WIN55,
212-2, a mixed CB1R/CB2R-receptor agonist, 7 days after nerve
ligation (a murine model of chronic neuropathic pain), reduced
cold allodynia and thermal hyperalgesia symptoms, evaluated
by acetone and hot plate test, respectively (Bridges et al., 2001;
Rahn et al., 2007). The use of WIN55, 212-2 also improved
mechanical allodynia at von Frey test in chemotherapy-induced
chronic neuropathic pain, when animals presented behavior
similar to those treated with opioids (Rahn et al., 2007; Burgos
et al., 2012). At the cellular level, this agonist reduced glial
reactivity and expression of inflammatory mediators, such as
IL-6 and TNF-α (Burgos et al., 2012). It is important to notice
that the combination of WIN55, 212-2 with selective CB1R
and CB2R antagonists, SR141716 and SR144528, respectively,
reversed the allodynia improvement, evaluated by von Frey
test, demonstrating that both cannabinoid receptors are directly
involved in these mechanisms and can be targeted for treatment
purposes (Rahn et al., 2007). In addition, injection of JWH133
or JWH015, CB2R agonists, decreases mechanical allodynia
after partial nerve ligation (Romero-Sandoval and Eisenach,
2007; Romero-Sandoval et al., 2008; Yamamoto et al., 2008). As
described, CB2R is mostly expressed by microglial cells, which
have their migration, proliferation and polarity modulated by
cannabinoid receptor activation (Hegyi et al., 2009; Stella, 2009;
Greineisen and Turner, 2010). Alternatively, CB2R activation
by AM1241 decreases the expression of purinergic receptors
P2Y, which is upregulated in microglia of chronic neuropathic
animals, and decreases nuclear factor κ B (NF-κB) and p38
mitogen-activated protein kinase (p38 MAPK) phosphorylation,
both involved in microglial activation and inflammatory
response (Niu et al., 2017). The addition of 2-AG and AEA
in primary microglial cell cultures increased the expression of
both cannabinoid receptors and arginase-1, a marker for M2
microglia polarity, which is associated with pro-healing and
anti-inflammatory responses (Mecha et al., 2015). The direct
administration of AEA also led to better sensorial behavior in
neuropathic murine animals, increasing mechanical and thermal
threshold, evaluated by von Frey and hot plate tests (Guindon
and Beaulieu, 2006; Desroches et al., 2008).
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TABLE 1 | The four lines of treatment for chronic neuropathic pain.

Treatment Mechanism of action Line of treatment References

Gabapentinoids α2δ2-1 subunit of voltage-gated Ca2+ channels
ligant

First-line treatment Attal et al., 2010; Moulin et al., 2014; Hennemann-Krause and
Sredni, 2016; Colloca et al., 2017

Tricyclic
antidepressants

Inhibitors of Noradrenaline/Serotonin uptake
systems

First-line treatment Attal et al., 2010; Moulin et al., 2014; Hennemann-Krause and
Sredni, 2016; Colloca et al., 2017

Noradrenaline/serotonin
reuptake inhibitors

Inhibitors of noradrenaline/serotonin reuptake
systems

First-line treatment Attal et al., 2010; Moulin et al., 2014; Hennemann-Krause and
Sredni, 2016; Colloca et al., 2017

Weak opioids Opioid receptors agonists Second-line treatment Attal et al., 2010; Moulin et al., 2014; Hennemann-Krause and
Sredni, 2016; Colloca et al., 2017

Strong opioids Opioid receptors agonists Second-line treatment Attal et al., 2010; Moulin et al., 2014; Hennemann-Krause and
Sredni, 2016; Colloca et al., 2017

Cannabinoids Endocannabinoid system modulators Third-line treatment Attal et al., 2010; Moulin et al., 2014; Colloca et al., 2017

Selective serotonin
reuptake inhibitors
(SSRI)

Inhibitors of selective serotonin reuptake system Fourth-line treatment Moulin et al., 2014

Botulinum toxin Inhibitors of acetylcholine release Fourth-line treatment Moulin et al., 2014

Methadone Opioid and NMDA receptors Fourth-line treatment Moulin et al., 2014

Lamotrigine Inhibitors of voltage-gated Na+ and Ca2+

channels
Fourth-line treatment Moulin et al., 2014

Lacosamide Slow inactivation of voltage-gated Na+

channels
Fourth-line treatment Moulin et al., 2014

Tapentadol Opioid receptors agonist and inhibitor of
noradrenaline uptake system

Fourth-line treatment Moulin et al., 2014

Topical lidocaine Sodium channel blocker Fourth-line treatment Moulin et al., 2014

Topical capsaicin TRPV1 receptor desensitization Fourth-line treatment Moulin et al., 2014

Moreover, some studies referred to the catabolic enzyme
FAAH as an alternative target to modulate eCB levels.
Intraperitoneal administration of the FAAH blocker URB597
and MAGL blocker JZL184 led to an increase in the mechanical
threshold and a reduction of cold allodynia, in von Frey and
acetone tests, in chronic neuropathic rats, respectively (Clapper
et al., 2010; Guindon et al., 2013). The oral administration
of another FAAH blocker, ST4070, also produced the same
improvement in several animal models of chronic neuropathic
pain, such as those induced by chemotherapy drugs and diabetes
(Caprioli et al., 2012). Changes in animal behavior due to pain is
probably correlated to the increased availability of eCB and other
bioactive lipids, for instance AEA and palmitoylethanolamide
(PEA), respectively (Caprioli et al., 2012).

After the enlightenment of eCS participation in pain
modulation in physiological and pathological states, researchers
started to investigate if classical analgesics mechanisms could
involve the eCS. Regarding the effects of dipyrone, a common
non-steroidal anti-inflammatory drug widely used primarily as
an analgesic and antipyretic, the exact action mechanisms remain
controversial. Studies on mice suggest that dipyrone-induced
suppression of thermal antinociceptive, hypothermic and
locomotor activity is mediated by a CB1R/CB2R-independent
mechanism (Schlosburg et al., 2012). On the other hand, AM251,
a CB1 antagonist, reversed the effects of dipyrone on locomotor
activity, cataleptic response and thermal analgesia (Crunfli et al.,
2015). Both AM251 and capsazepine, a TRPV1 antagonist,
favored the decrease in body temperature caused by dipyrone.
However, the CB2 receptor antagonist AM630 did not alter the
hypothermic response to dipyrone (Crunfli et al., 2015). These

results suggest that the eCS role, especially CB1R-mediated, in
the analgesic effect of dipyrone is still a matter of debate.

Although the evidence in animal models is promising and
suggests that inhibitors of catabolic enzymes might be a way of
treating chronic neuropathic pain, clinical trials did not show
the same outcome. In January 2016, it came to public attention
that a drug named BIA10-2474, a FAAH inhibitor, led to severe
adverse events in some volunteers in the clinical trial, in which
five people had to be hospitalized, two had brain damage and
one died (Mallet et al., 2016). Nowadays, in clinical practice,
the synthetic cannabinoids used to treat neuropathic chronic
pain are Dronabinol (Marinol R© – Solvay Pharmaceuticals) and
Nabilone (Cesamet R© – Meda Pharmaceuticals), both having
a chemical formula based on 19-tetrahydrocannabinol (19-
THC) (Stasiulewicz et al., 2020). Although these compounds
may improve symptoms related to chronic neuropathic pain,
some side effects such as euphoria, dysphoria, sleep disturbance
and disorientation may occur. Diversely, the use of medicinal
cannabis shows better results and less adverse events (Cannabis-
In-Cachexia-Study-Group et al., 2006; Frank et al., 2008; Narang
et al., 2008; Aviram and Samuelly-Leichtag, 2017).

MEDICINAL CANNABIS IN ANIMAL
MODELS AND CLINICAL EVIDENCE

Cannabis sp. has been used to treat several pathologies, including
pain episodes, since ancient China (Bonini et al., 2018). The
main components in Cannabis sp. are the phytocannabinoids,
and more than 100 of these compounds have been described
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thus far. Even though the most investigated phytocannabinoids
are cannabidiol (CBD) and 19-THC, the latter known for
its psychoactive effect, several other phytocannabinoids such
as cannabidivarin (CBDV), 19-tetrahydrocannabivarin (THCV)
and their acidic forms are also being considered for therapeutic
purposes (Di Marzo and Piscitelli, 2015; Cristino et al., 2020).

Phytocannabinoids act over several targets to modulate the
eCS. For instance, while THC acts as CB1R and CB2R agonist,
and THCV is a CB1R antagonist and TRPV1 agonist, CBD
and CBDV inhibit eCB-degradation enzymes FAAH and MAGL
(Di Marzo and Piscitelli, 2015; Cristino et al., 2020). Some
phytocannabinoids also act in other neurochemical systems. For
example, CBD can act over the serotoninergic and glycinergic
receptors present in neurons, which are involved in pain
processing, besides acting as TRPV1 and TRPM8 antagonist
(Russo et al., 2005; De Petrocellis et al., 2008; Ahrens et al., 2009;
García-Gutiérrez et al., 2020; Figure 2A).

Despite the recent statement from the IASP not encouraging
the use of cannabinoids for pain treatment based on lack
of quality researches reinforcing its safety and efficacy (IASP
Presidential Task Force on Cannabis and Cannabinoid Analgesia,
2021), the positive outcomes and advantages over other
pharmacological tools are compelling in animal research and
clinical trials. For instance, Abraham et al. (2020) demonstrated
in animals a phenomenon similar to what happens with patients.
Neuropathic rats had a good response to morphine treatment,
but the effect did not last up to 22 days after induction of
pain, followed by drug-resistance. However, this effect was not
observed in THC- and CBD-treated rats.

Tetrahydrocannabinol is known as the main analgesic
compound from Cannabis sp. (Russo, 2008; Maayah et al.,
2020). Several studies described a reduction of allodynic and
hypersensitive behavior in animals, based on von Frey and
hot plate tests results, after THC administration (Harris et al.,
2016, 2019; Abraham et al., 2020). In addition to the fact that
THC is a CB1R and CB2R agonist, reducing neurotransmitters
release by neurons, especially glutamate, it also acts as TRPM8
antagonist and TRPA1 agonist (De Petrocellis et al., 2008;
Storozhuk and Zholos, 2018). Another mechanism of action is
inhibiting COX-2, which leads to increased levels of AEA and
decreased levels of prostaglandins, whose therapeutic properties
in chronic neuropathic pain pathology are the reduction of pro-
inflammatory signaling, and probably, the decrease in glial and
immunological cells response (Burstein et al., 1973; Ruhaak et al.,
2011; Figure 2A).

CBD also contributes to decreased chronic neuropathic pain
symptoms. Studies that investigated acute and chronic treatments
of chronic neuropathic pain-induced rats with isolated CBD
showed significantly increased mechanical and thermal threshold
when compared to animals that received vehicle, evaluated by
von Frey and hot plate tests (Xiong et al., 2012; Harris et al.,
2016; King et al., 2017; Abraham et al., 2020; Silva-Cardoso
et al., 2021). A plausible hypothesis that might explain how
CBD improves the pathologic pain sensation is related to an
increase in AEA levels due to FAAH inhibition and their agonist
activity on TRPV1 agonist (Bisogno et al., 2001; Massi et al.,
2008; Silva-Cardoso et al., 2021; Figure 2A). Silva-Cardoso et al.

(2021) also demonstrated that CBD treatment decreased CB1R
expression in pain matrix regions, which was up-regulated in
animals submitted to chronic neuropathic pain models.

Furthermore, the combination of CBD and THC synergizes
their positive effects and reduces THC side effects (Carlini
et al., 1974; McPartland and Russo, 2001). In fact, the co-
administration of CBD and THC decreases dysphoria, anxiety,
panic attacks, and other psychoactive effects that THC may cause
(Grinspoon and Bakalar, 1993; King et al., 2017). Authors also
described that CBD competes with THC for the binding site of
CYP2C19 enzyme in the liver and inhibits THC hydroxylation,
which prolongs THC bioavailability, and therefore its effects
(Jones and Pertwee, 1972; Benowitz et al., 1980).

The involvement of other compounds from Cannabis sp.
in pain improvement have also been reported, for example,
cannabinol (CBN) and cannabichromene (CBC), acting as
CB2R agonist and inhibitor of cyclooxygenase, respectively
(Burstein et al., 1973; Showalter et al., 1996; Figure 2A).
Terpenes are another class of secondary metabolites present
in Cannabis sp. with biological relevance and they may
play a role in pain treatment, such as the terpenoid β-
caryophyllene, which directly modulates the eCS as a CB2R
agonist (Gertsch et al., 2008). In the chronic neuropathic pain
animal model, the daily gavage of β-caryophyllene decreased
nociceptive hyperalgesia and mechanical allodynia in a dose-
dependent manner, as demonstrated by hot plate and von
Frey tests. The treatment also reduced microglial reactivity and
inflammatory response at spinal dorsal horn, probably due to β-
caryophyllene-mediated increased expression of CB2R (Klauke
et al., 2014; Segat et al., 2017). Other terpenoids participate
in pain modulation through anti-inflammatory response. For
instance, administration of β-myrcene increased thermal and
nociceptive threshold either in healthy mice (Rao et al.,
1990) or under inflammatory pain (Lorenzetti et al., 1991).
Additionally, α-pinene also seems to control pain through anti-
inflammatory pathways, decreasing cyclooxygenase-2 expression
in an animal model of inflammatory pain (Li et al., 2016).
Lastly, flavonoids, a group of chemical compounds present
not only in Cannabis sp., but also in other plants, have anti-
inflammatory properties and can decrease the release of pro-
inflammatory cytokines from astrocytes and microglia (Gui et al.,
2018; Nadipelly et al., 2018).

Several compounds present in the Cannabis sp. extract
synergize with each other and might modulate their effects
when compared to isolated phytocannabinoids (Carlini et al.,
1974; Russo, 2008). The synergistic action of phytocannabinoids
producing a potentiated pharmacological effect is called
entourage effect (King et al., 2017). This property was described
in several studies that reported higher efficacy of Cannabis
sp. extract compared to administration of isolated CBD
and THC in decreasing allodynia and hyperalgesia in rats,
evaluated by hot plate and von Frey tests (Comelli et al.,
2008; Casey et al., 2017; Harris et al., 2019). Indeed, Comelli
et al. (2008) described that the improvement in hyperalgesia
through the use of Cannabis sp. extract was not affected
by the use of cannabinoid receptor antagonists, reinforcing
the fact that phytocannabinoids and other compounds in
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the extract act synergistically modulating several receptors
and pathways. Additionally, the administration of a 1:1
CBD:THC extract has been described to positively modulate
CD4+ lymphocytes in the spleen and thymus of female rats
submitted to a nerve cuffed model for chronic neuropathic pain,
which suggests that Cannabis sp. extract may also modulate
immune response in the CNS related to chronic neuropathic
pain development (Linher-Melville et al., 2020).

Patients consume medical Cannabis sp. products through
different administration routes, such as smoked, vaporized,
oromucosal aerosol, oily extract and capsules, although some
studies describe that inhaling procedures can present health
risks for patients (Aviram and Samuelly-Leichtag, 2017; Maayah
et al., 2020). As described in animal studies, tests showed
that Cannabis sp. full extract, such as Sativex R©, an oromucosal
spray of 1:1 CBD:THC, was more effective for treating chronic
neuropathic pain than synthetic THC, such as Dronabinol
(Cannabis-In-Cachexia-Study-Group et al., 2006; Langford et al.,
2013; Ferrè et al., 2016; Schimrigk et al., 2017). Nurmikko
et al. (2007) coordinated a randomized, double-blind, placebo-
controlled study to evaluate the analgesic properties of a
THC:CBD (1:1) extract in 125 patients that had peripheral
neuropathic pain symptoms. During the treatment with the
extract, individuals continued with other analgesic medication
previously prescribed. Sixty-three patients were in the placebo
group, while 62 made use of the extract and were able to
determine their own dose, although none of them had more
than 48 spray doses per day. The group that was treated
with the extract showed better results in pain scores, dynamic
allodynia, punctual allodynia when compared to patients from
the other group. An appendix of the study evaluated the
same patients for 52 weeks and continued to observe the
analgesic effect of the extract without dose adjustment or
toxicity symptoms.

A more complete and recent study from the Germain Pain
e-registry digital platform collected anonymous information
related to the therapeutic approaches used for pain management
(Ueberall et al., 2019). Using the answers from a Pain
Detect Questionnaire 7 (PDQ7), patients were grouped with
nociceptive, mixed and chronic neuropathic pain. Individuals
used 1:1 CBD:THC Sativex R© oromucosal spray, 8–12 times/day,
for 12 weeks. After 3 months of Cannabis sp. spray use,
the pain intensity decreased at least half in 67.5% of the
patients, having a better effect in neuropathic and mixed
pain patients. Another important information from this study
consists in improved patient’s welfare after Cannabis sp.
treatment. This was measured by the Aggregated 9-Factor
Symptom Relief (ASR-9) questionnaire. Fifteen percent of
the individuals in the study improved at least 50% of all
9 factors and 56% of the patients improved at least 5
factors, such as stress, depression, well-being and anxiety,
and again, the improvement was higher in neuropathic and
mixed pain patients.

Another advantage to the use of Cannabis-derived products is
the significant decrease or even elimination of other drugs, such
as opioids, from the therapy scheme, known for having severe
adverse effects. As described by Ueberall et al. (2019), a significant

number of patients stopped using strong opioids as analgesic
strategy 12 weeks after using Cannabis sp. extracts. Other clinical
and animal researches describe similar results in opioid-based
therapies after the use of Cannabis sp. extracts (Williams et al.,
2008; Okusanya et al., 2020; Takakuwa and Sulak, 2020).

Together with the relief of symptoms, adverse effects are
often described by patients under use of medicinal cannabis.
The most common are gastrointestinal disorders, metabolism
and nutrition disorders, increased appetite, sedation, fatigue, dry
mouth, dizziness, and nausea (Nurmikko et al., 2007; Lynch
et al., 2014; Ueberall et al., 2019). Few patients described adverse
effects related to the psychoactive properties of THC. One patient
described anxiety, panic attack, and confusion in the Lynch study
(Lynch et al., 2014) and only 3.6% of patients described anxiety,
confusion, and disorientation in the Germain Pain e-registry
based study (Ueberall et al., 2019), while, in Nurmikko et al.
(2007), no psychoactive symptoms were listed by the participants.
In general, most of the adverse effects are mild to moderate and
are directly related to the dosage of THC in the product used in
these researchers, besides the modulation of eCS in other organs
and systems. However, it is important to highlight that in all
clinical studies cited, patients with a history of psychotic disorder
were excluded from the study.

DISCUSSION

Chronic neuropathic pain is a pathology that affects not
only many individuals worldwide, but also their caregivers
(Ojeda et al., 2014). Even though opioids are the main
pharmacotherapeutic approach to reduce symptoms associated
with chronic neuropathic pain, several reports describe its
potential of inducing addiction and, as consequence, increasing
mortality (Hser et al., 2015). In order to avoid side effects
similar to those induced by opioids and have increased success
in managing pain, new molecular targets are being continuously
investigated for treatment of neuropathic chronic pain.

In this review, we describe how the eCS modulates the
pathophysiological processing of pain, focusing mostly on
animal models of chronic neuropathic pain and clinical trials.
Several strategies have been developed to assess eCS role
in chronic neuropathic pain management, such as the use
of synthetic cannabinoid receptors agonists and degradation
enzyme inhibitors, which have shown promising results in animal
models. Unfortunately, it is not always possible to translate pre-
clinical data into successful clinical application. As an example,
the use of FAAH inhibitors, which showed positive results in
many animal models, led to severe adverse effects and even death
of a volunteer in a clinical trial (Mallet et al., 2016).

The use of Cannabis-based products is recommended
as extracts, for instance Sativex R©. Although some synthetic
cannabinoids may also be indicated for pain treatment, such
as Dronabinol and Nabilone, the use of medicinal Cannabis sp.
has recently increased substantially, improving pain management
and inducing fewer side effects (Mücke et al., 2018). Despite this
evidence, the IASP states that it lacks reliable clinical studies
about the use of phytocannabinoids and medicinal Cannabis sp.
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to treat chronic pain (IASP Presidential Task Force on Cannabis
and Cannabinoid Analgesia, 2021). Besides, there is little pre-
clinical research that investigates the effect of Cannabis sp.
extracts, the latter more commonly used by patients.

The role of eCS as a pharmacological target and the advantages
of using medicinal Cannabis sp. to treat pain is remarkable, as
described in this review. However, further investigation must
be performed using animal models and in clinical practice to
understand more efficient ways to modulate the eCS in humans
and to identify how the entourage effect may contribute to the
potential of Cannabis-based treatments in pain management.
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