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Abstract: Knowledge about the mechanisms of transmission and the processing of nociceptive
information, both in healthy and pathological states, has greatly expanded in recent years. This
rapid progress is due to a multidisciplinary approach involving the simultaneous use of different
branches of study, such as systems neurobiology, behavioral analysis, genetics, and cell and molecular
techniques. This narrative review aims to clarify the mechanisms of transmission and the processing
of pain while also taking into account the characteristics and properties of nociceptors and how
the immune system influences pain perception. Moreover, several important aspects of this crucial
theme of human life will be discussed. Nociceptor neurons and the immune system play a key role in
pain and inflammation. The interactions between the immune system and nociceptors occur within
peripheral sites of injury and the central nervous system. The modulation of nociceptor activity or
chemical mediators may provide promising novel approaches to the treatment of pain and chronic
inflammatory disease. The sensory nervous system is fundamental in the modulation of the host’s
protective response, and understanding its interactions is pivotal in the process of revealing new
strategies for the treatment of pain.

Keywords: nociceptive information; pain; neurobiology; neurons; inflammatory diseases

1. Introduction

Knowledge about the transmission and processing mechanisms of nociceptive infor-
mation, both in healthy and pathological states, has greatly expanded in recent years. This
rapid progress is due to a multidisciplinary approach, involving the simultaneous use of
different branches of study, such as systems neurobiology, behavioral analysis, genetics,
and cell and molecular techniques. Pain is necessary for the survival and maintenance of
the integrity of organisms. In fact, pain-induced behavioral changes lead an organism to
avoid harmful stimuli in future encounters. It is clear that the interactions between the
nervous and immune systems are closely linked through molecular and cellular interac-
tions in the process of pain sensation. However, prolonged or chronic pain can result in
secondary symptoms, such as anxiety and depression, and cause a decrease in the overall
quality of life. The transmission of pain is linked to nociceptors, which are a specialized
subset of sensory neurons that mediate pain and densely innervate peripheral tissues.
Various subsets of nociceptors are further divided according to the type of stimuli (mechan-
ical, chemical, thermal, or noxious) they respond to [1]. Nociceptors are predominantly
made up of nerve terminals that express both ligand and voltage-gated ion channels [2].
Nociceptor neuron activity and pain sensitivity can be modulated by immune cells that
release mediators. Immune cells, in turn, can be modulated by the nociceptors that release
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neuropeptides and neurotransmitters that act on innate and adaptive immune cells. In this
way, the immune response is influenced by neural signaling, and consequently, this neural
signaling contributes to the development of local and systemic inflammatory diseases.

2. Characteristics and Properties of Nociceptors
2.1. Structural Characteristics

When interacting with the external environment, living organisms must be able to
clearly recognize harmful stimuli and react to them in an appropriate way. This important
task is carried out by the nociceptors that make up a part of the somatosensory nervous
system. These nociceptors respond to harmful or potentially tissue-damaging stimuli
and transmit stimuli from the skin, muscles, joints, and viscera [3]. Nociceptors are
classified according to the characteristics of their axons, which are generally divided
into two categories: unmyelinated (C fibers) or slightly myelinated (Aδ fibers). The soma
of nociceptors are commonly small in diameter in both the dorsal pathway and in other
sensory ganglia. Neurons with small soma diameter usually have myelinated Aδ fibers
or unmyelinated C fibers, while Aα/β-fibers can be found on cells of larger dimensions.
Soma diameter and axon myelination are not associated with nociceptor functionality [4].
In fact, the soma of non-visceral nociceptors are smaller than those of visceral nociceptors,
but this difference in size has no bearing on their respective degrees of function [4].

2.2. Stimuli

Nociceptor activation is determined by the pain stimulus: this depends on the site
of generation and mode of activation. The site of application of the stimulus is important
because it can influence the intensity of the nociceptor response. An interesting example is
that of corneal nociceptors, which are activated by weaker stimuli than skin nociceptors
are [5]. The nature of the stimulus is also important. Stimuli brought about by cutting or
crushing, for example, activate most skin nociceptors but do not activate those in the joints,
muscles, or viscera, which instead quickly respond to other types of mechanical forces,
such as rotation and distention [5]. In addition to cutting and crushing injuries, harmful
stimuli that are able to activate nociceptors in the skin also include chemical, thermal, and
mechanical damage. The most nociceptor-rich tissue is the skin, which contains several
different types of nociceptors [6].

2.3. Nociceptor Population

The most expressed nociceptor in the skin is the polymodal nociceptor. It is capable
of responding to several kinds of stimuli, but it is not the only type of nociceptor found
there. In fact, the skin contains a wide variety of nociceptors that differ in selective
modality (such as C-heat nociceptors and C-mechano-cold nociceptors) [7]. In other tissues,
however, the two main types of harmful stimuli that are detected are chemical (changes
in pH or inflammation) and mechanical (torque or distention) changes. Several studies
on the nociceptors found in joints use mechanical stimuli and demonstrate that there
are sub-populations of mechanical nociceptors that are sensitive to both low- and high-
intensity stimuli. Many of these nociceptors, both low-threshold and generally all high-
threshold joint and visceral mechanoreceptors, are polymodal. They transduce the harmful
stimuli and then sensitize the organism [8], which leads to the understanding that low-
threshold afferents contribute to the onset of pain during tissue inflammation. Most
nociceptors are activated by mechanical stimuli, but various subpopulations with different
sensitivities to other and additional noxious stimuli have been described in other species.
Mechanonociceptors are only activated by mechanical stimuli. If they also respond to
other stimuli, such as thermal stimuli, they are then called polymodal nociceptors but can
be further subclassified according to their specific sensitivity to noxious thermal stimuli,
for example, to heat and/or cold [9,10]. Various nociceptor subpopulations and acute
pain sensitivity have been thoroughly studied and are now understood. However, the
most studied receptor involved in nociception is the large family of transient receptor
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potential (TRP) channels, which is comprised of six subfamilies: TRP vanilloid (TRPV),
ankyrin (TRPA), mucolipin (TRPML), polycystin (TRPP), canonical (TRPC), and melastatin
(TRPM) [11].

The TRPV1 receptors are expressed on C-fiber nociceptors and detect pain stimuli
associated with noxious heat and the development of heat hyperalgesia [12,13]. TRPV1
receptors are also involved in the detection of noxious pinch stimuli. They are activated
by capsaicin, camphor, allicin, low pH, and hypertonicity [11,13]. Many factors, including
physiological processes and natural ligands, such as reactive oxygen species (ROS), low
pH, allyl isothiocyanate, tetrahydrocannabinol, allicin, gingerol, and methyl salicylate can
activate TRPA1 receptors [12]. TRPA1 receptors are activated by calcium [14] and are acti-
vated and sensitized by inflammatory factors (such as bradykinin) in dorsal root ganglion
neurons [12]. The transient receptor potential cation channel subfamily melastatin member
8 (TRPM8) is also associated with the detection of noxious cold stimuli and contains a
C-fiber that expresses both cold- and menthol-sensitive ion channels [15]. Moreover, C-fiber
nociceptors that express the Mas-related G-protein-coupled receptor D transduce noxious
mechanical stimuli applied with a blunt probe, such as von Frey hair [16], whereas A-fiber
mechanonociceptors detect sharp and potentially tissue-damaging mechanical stimuli,
such as a pinprick. These fibers are characterized by the expression of the neuropeptide Y
receptor type 2 [17].

Another receptor involved in nociception is the anoctamin 1 (ANO1) receptor, a
calcium-activated chloride channel. It can be activated by noxious heat stimuli, which, in
turn, induce a burning pain sensation through the release of inflammatory factors such as
bradykinin from dorsal root ganglia neurons [11]. Communication and cohesive action
between ANO1 receptors and TRP channels in the generation of strong pain and the
regulation of neuronal excitability has been suggested [18].

Piezo channels are mechanosensitive receptors that are made up of two cationic
channels, Piezo1 and Piezo2, that are relatively homologous in structure [19]. Piezo channels
are expressed in various tissues and can be activated by several types of mechanical stimuli,
such as stretching, pushing, pulling and exposure to hypo-/hyper-osmotic solutions [20].
Piezo2 channels show faster kinetic properties than Piezo1 channels and mediate a rapid
membrane response. These channels seem to be more specific for the detection of transient
mechanical forces. Piezo1 channels have slower kinetic characteristics and react to more
persistent activation. Both types of channels, however, mediate somatic and visceral
pain [21].

2.4. Sensitization

One of the characteristic properties of nociceptors is their ability to cause sensitization,
which is the capability to increase neuronal excitability. Sensitization is a process that
consists of a reduction in the threshold of activation, as well as an increase in the response
rate to harmful stimulation. It usually results from tissue insult and inflammation [22].
Moreover, stimuli that do not generate an effect before the process of sensitization takes
place may subsequently become effective and develop spontaneous activity after sensitiza-
tion occurs [23]. The adaptive response can be reduced by nociceptor sensitization, which
can be observed when the stimulus application is prolonged [24]. Sensitization is a central
property for nociceptor neurons, but it is not a process that is specific to them. Sensitization
may be associated with afferents that encode other sensory modalities as well [25].

2.5. Efferent Function

Another property of nociceptor neurons is their efferent function. It is important to
note that only some nociceptors, for example, peptidergic nociceptors, have this function
and are capable of releasing substances from their peripheral terminals. This characteristic
serves to guarantee the maintenance of tissue integrity in the absence of tissue damage.
For instance, nociceptive nerves are required for enforced hematopoietic stem cell (HSC)
mobilization, and they collaborate with sympathetic nerves to maintain HSCs in bone [26].
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Neurogenic inflammation may be generated from an increase in the peripheral release of
afferent transmitters during sterile inflammation such as that associated with migraines [27].
Therefore the release of molecules from nociceptors is not exclusively associated with the
process of inflammation but collaborates in order to lead to the pain associated with tissue
damage [28]. The role of the back-propagation of afferent activity across collateral branches
was initially described as singularly mediating the peripheral release of afferent molecules,
but some studies demonstrate that there may also be a secondary contribution from the
antidromic activity of the spinal cord in this scheme [29,30]. Neurogenic inflammation and
pain caused by tissue damage may be alleviated by the inhibition of voltage-gated Ca2+ and
Na+ channels which are involved in the peripheral release of afferent transmitters [31,32].
Nociceptors cannot be identified by a single criterion, which is why they do not belong to a
homogeneous group of afferents. There are many anatomical, biochemical, physiological,
and functional variations between them. Visceral pain and other discomfort, such as
hypersensitivity to organ filling, acidic or burning pain, and the sensation of bloating, may
be due to subpopulations of visceral nociceptors [4,33]. The possibility of introducing new
therapeutic agents must be inclusive and, therefore, overcome the heterogeneity of the
nociceptor subpopulations. This heterogeneity may be one of the reasons why introducing
new therapeutic agents in the treatment of pain has proven to be so difficult and accounts
for the many failures encountered in the use of new drugs and therapies in this line
of treatment.

3. Clinical and Preclinical Studies on Ion Channel Signaling Modulation

Our understanding of the mechanisms regulating nociceptive processing has not yet
produced an effective alternative to opioids [34] in the treatment of chronic pain. The abuse
of these drugs, however, is a growing phenomenon [35]. The goal of pain treatment is to
develop effective drug therapies with acceptable side effect profiles and minimal risk of
abuse. To date, advances in pain biology have produced remarkable insights, and clinical
and preclinical studies are now focusing primarily on the modulation of ion channel signal-
ing [36]. Ion channels are the targets of most currently available pain medications and were
discovered more than a decade ago [37,38]. Among these medications is carbamazepine,
which acts by blocking sodium, calcium, and GABA channels and produces pain relief
by blocking synaptic transmission. Similarly, lidocaine [39] is commonly employed as
a local anesthetic and is used in surgical procedures to eliminate acute pain or treat chronic
pain [39]. These anesthetics are administered at relatively high doses to block voltage-gated
sodium channels, as well as potassium and calcium channels [40]. Gabapentin, originally
developed for the treatment of epilepsy [41], is also currently used in the treatment of
neuropathic pain. As a lipophilic analog of GABA, it interacts with the α2δ subunit of
voltage-gated calcium channels [42]. Subsequent pharmacological research has resulted in
the development of pregabalin [38], which has become the gold standard for the treatment
of chronic pain associated with diabetic neuropathy.

The safety profile of nonselective agents, however, limit their continued use [43].
Nonselective ion channel blockers have functional consequences, especially if they result
in the additional inhibition of ion channels other than those expressed in nociceptors,
such as those expressed in the heart and central nervous system, for example. A more
recent understanding of the specific sodium channels that are expressed on nociceptors
has prompted the scientific community to search for selective inhibitors. This process
has generated high-quality data on Nav isoforms [43]. It has been shown that congenital
insensitivity to pain (CIP) can be conferred by mutations in Nav1.7 [37]. Subsequently,
compounds capable of acting on these ion channels have entered clinical trials for pain.
These compounds include proline derivative 5, a spiro-oxindole compound [44], and a
series of sulfonamide aminoheterocycles [36]. To date, efficacy in treating pain in patients
with congenital erythromelalgia has been reported, whereas no efficacy was found in a
study of the treatment of pain in post-herpetic neuralgia. In addition, positive data were
found in a study of trigeminal neuralgia and the reduction of pain from lumbosacral
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radiculopathy [36]. In addition to Nav 1.7, great interest has also been aroused by Nav1.8
as a potential target for the management of inflammatory and neuropathic pain [45,46].

TRP channels are cation channels involved in pain perception and thermosensa-
tion [47]. TRPV1 is activated by numerous stimuli, including heat (>42 ◦C), vanilloids,
lipids, and protons/cations. Several highly selective TRPV1 antagonists are currently in
clinical development for the treatment of pain. Although the use of desensitizing TRPV1
agonists reduces pain sensitivity [48,49], recent clinical trials have shown that blocking
TRPV1 also affects body temperature. This unfortunate side effect has halted much of
the drug development activity targeting this channel. Topical application, however, has
been shown to be effective in preventing the initial pain flare-up that occurs with agonist-
induced nociceptor excitation prior to desensitization. TRPM8 is activated in vitro by cold
temperatures (10–23 ◦C) and cooling agents such as icilin and menthol. Researchers have
recently revealed that the TRPM8 antagonist 15 produces an analgesic effect in experimental
models of cold pain in humans without affecting core body temperature [50]. TRPA1 is ac-
tivated by several ligands, such as cinnamaldehyde, endogenous ligand 4-hydroxynonenal
(4-HNE) and the allyl isothiocyanate [41]. It is activated by noxious cold (<17 ◦C), [47] and
has been directly linked to pain by a gain-of-function mutation causing familial episodic
pain syndrome. The TRPA1 antagonist has been shown to be effective for the treatment
of diabetic peripheral neuropathy and inflammatory conditions. TRPV3 is activated by
camphor, 2-Aminoethoxydiphenyl borate (2-APB), and warm temperatures (>32 ◦C). To
date, several patent applications have been filed for TRPV3, including pyridopyrimidine
2131 and benzimidazole [48]. In recent years, several selective TRPV4 antagonists have
been shown to be effective, especially in the treatment of pulmonary edema. TRPV4 is
activated by anandamide, 5,6-epoxyeicosatrienoic acid, GSK1016790A, and heat (27–34 ◦C).
Increasing interest in the treatment of neuropathic pain has been placed on the Cav2.2
N-type subtype [51,52]. Ziconotide, an analgesic peptide derived from Conus magus snail
toxin, requires intrathecal administration in order to be effective and is associated with
significant side effects [53]. However, progress has been made in the development of
N-type inhibitors.

T-type calcium channel blockade has also been shown to be effective in reducing
neuropathic, inflammatory, and visceral pain. Phase 1 and 1b studies have demonstrated
safety and good tolerability. Kv7 ion channels have also been widely investigated, given the
strong genetic association between mutations in Kv7.2 and Kv7.3 channels and neuronal
hyperexcitability [54]. Several preclinical models of pain [55,56] support the role of Kv7
channels in pain signaling. Retigabine was approved for use in partial-onset seizures and
subjected to a Phase 2 proof-of-concept clinical trial for post-herpetic neuralgia pain (how-
ever, it was not shown to be superior to the placebo). Lupirtine (which is structurally similar
to retigabine) has been approved in Europe for the treatment of lower back pain. Ionotropic
glutamate receptor (iGluR) antagonists, particularly the subtype-selective GluN2Bs, have
also attracted the attention of the pharmaceutical research community for the treatment
of central nervous system disorders, including stroke and Parkinson’s disease [57]. These
include ifenprodil [58] and the more selective derivative traxoprodil [59]. While the modu-
lation of ion channel signaling by small molecules has demonstrated the ability to treat pain,
current research is also considering the role of drugs acting on GABA, alpha2 adrenergic
receptors, opioid receptors, and angiotensin 2 and Toll receptor antagonists, as well as
adenosine and purine receptor agonists/antagonists. Additional targets being considered
for study include lipid mediators and anti-inflammatory cytokines.

4. Immune System and Pain

The pain channeled by nociceptive neurons is influenced by the immune system
through the release of molecular mediators which sensitize the nociceptors and are inti-
mately coupled to cause increases in the sensation of pain. During inflammation, molecular
mediators are released and are subsequently detected by nociceptors on peripheral nerve
terminals. Moreover, numerous soluble mediators may also be secreted and can amplify the
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recruitment of immune cells. Edema and hyperemia, for example, are caused by molecules
such as calcitonin gene-related peptide, substance P, bradykinin, and nitric oxide, which
are released during axon damage [60]. The vascular changes caused by the action of these
molecules allow for invasion by circulating immune cells that further release molecular
mediators. After activation, action potentials are transduced to nociceptor cell bodies in
DRG. The stimuli are then relayed to the spinal cord and brain which process the stimuli
as pain. During inflammation, action potentials require lower activation stimuli because
the threshold for nociceptor neurons to fire becomes reduced in this process. This lower re-
quired threshold leads to pain sensitivity or ‘hyperalgesia’ (Figure 1). Central glia respond
to peripheral injury [61–64] through afferent nerve input [65–67], circulating cytokines [68],
and interaction with immune cells [69,70]. Consistent activation of glia has been observed
in studies of deep tissue injury from different districts, such as muscles [65,71], joints [72],
nerve trunks [73], and viscera [74,75], with hyperactivity being directly related to inflamma-
tory injury and pain intensity. In addition, glia selectively promote sensitization following
injury. Not all forms of nociceptive input regulate glial function, however. Glial responses
are selective for different forms of primary afferent input. Among the prototypical proin-
flammatory cytokines, interleukin-6 (IL-6) has been shown to act as a messenger for the
transmission of peripheral immune signals to the central nervous system by inducing
COX-2 activity and PGE2 release from cerebral vascular endothelial cells [76,77]. The
migration of immune cells into the central nervous system is selective. In fact, peripheral
macrophages or monocytes spread into the spinal cord and differentiate into cells with
a microglial phenotype [78]. These cells then directly contribute to glial responses in the
central nervous system. Upon the arrival of a nociceptive nerve impulse, neural and
immune mediators, such as glutamate, ATP, substance P, calcitonin gene-related peptide,
brain-derived neurotrophic factor (BDNF), IL-6, and C-C motif chemokine ligand 2 (CCL2),
are released. These act on receptors present on the postsynaptic nerve terminal and on
microglia and astrocytes, which modulate glial activity [79–85]. Neurons regulate microglia
activity through multiple cellular pathways. A recent study found that a microglia-specific
signaling pathway is mediated by neuregulin-1 (NRG-1) [86], which leads to the activation
of spinal microglia, the release of proinflammatory cytokines (including interleukin-1β),
chemotaxis, and the subsequent development of pain hypersensitivity [86]. Furthermore,
microglia have been shown to be somewhat involved in pain suppression. Astrocyte
activation is also modulated by neuronal activity following peripheral injury [65].
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Figure 1. During axon damage, neuronal factors released from nociceptor sensory neurons directly
drive leukocyte chemotaxis, vascular hemodynamics, and the immune response. Immune cells
release mediators that are detected by receptors of the nociceptor peripheral nerve that transduce the
stimuli to produce pain sensitization.

Both microglia and astrocytes release substances that can influence neuronal activity.
Activated microglia release various mediators that act on neurons and sensitive nocicep-
tors [82,87–89]. Astrocytes, on the other hand, are uniquely positioned to interact with
neurons in order to regulate their synaptic activity. Release of glutamate at nerve terminals
activates metabotropic glutamate receptors on astrocytes, increasing Ca2+ mobilization.
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This leads to the release of a variety of mediators, including glutamate, D-serine, and ATP,
which, in turn, modulate neuronal activity [90]. N-methyl-D-aspartate receptor (NMDA)
receptors play an important role in synaptic plasticity and persistent pain. D-serine, an
NMDA receptor co-agonist, acts on synaptic NMDA receptors, while astrocytic glutamate
binds to extrasynaptic NMDA receptors. The astrocytic glutamate transporter (GLT-1)
buffers the glutamate that is released at synapses in order to prevent excessive activation of
postsynaptic glutamate receptors. However, GLT-1 is downregulated after injury [91], and
glutamine transport between astrocytes and neurons is altered [92,93]. These changes in
synaptic glutamate homeostasis lead to increased dorsal horn excitability and contribute to
the development of persistent pain [94,95]. Among the numerous immune-derived or glia-
derived mediators that are involved in pain hypersensitivity, interleukin-1β (IL-1β) is a key
cytokine that modulates microglia, astrocytes, and neurons [96,97]. Interleukin-1 receptor
activation facilitates the phosphorylation of NMDA receptors, thereby inducing changes in
synaptic strength and causing behavioral hyperalgesia [63,82,95]. Following injury, tumor
necrosis factor alpha (TNF-α) is also upregulated in pain pathways and is secreted by both
immune and glial cells [61,63]. In the rostral ventromedial medulla, which is responsible
for the descending modulation of pain, TNF-α facilitates the phosphorylation of NMDA
receptors and stimulates the phosphorylation of the GluA1 subunit of the AMPA receptor
as well as its trafficking to the membrane in dorsal horn neurons [98]. These results support
the idea that glia-derived pro-inflammatory cytokines interact with excitatory amino acid
receptors. Inflammatory conditions, such as inflammatory bowel disease and rheumatoid
arthritis, are accompanied by chronic pain. The resolution of the tissue immune response
in these conditions leads to the reduction of pain, which demonstrates the importance of
the immune system in neuronal sensitization.

5. Immune Regulation of Pain

Nociceptive neurons express several receptors, including those for immune cell-
derived cytokines, protease growth factor, and lipids. After linking with its ligand, these
receptors activate a signaling cascade that modifies the permeability of ion channels, and
these changes lead to an increase in neuronal firing [99]. The role of immune mediators
in pain sensitivity has come to light in several recent studies. Neutrophils migrate to the
tissue where they support the propagation of pain through the production of cytokines
and prostaglandin E2 (PGE2). This process has been demonstrated in murine models of
both neuropathic pain [100] and carrageenan-induced inflammatory pain [101]. Myeloid
cells are responsible for pain sensitization in incisional injury [102]. Other immune cells,
such as mast cells, play a role in sensitizing receptors. After activation, mast cells release
granules and cytokines (interleukin-5, tumor necrosis factor alpha, IL-6, and IL-1β), sero-
tonin, histamine, and nerve growth factor. These factors induce the sensitivity to pain
on nociceptors [103–105]. Mast cells are involved in inflammation both acutely [106] and
chronically. In fact, mast cells contribute to the chronicity of pain [107]. Macrophages act
as sentinel myeloid cells. They are present everywhere in the body and are recruited to
inflammatory sites during tissue injury. The role of macrophages and monocytes, which
is to produce several cytokines, growth factors, and lipids that influence the nociceptive
neurons in pain sensation in disease conditions characterized by chronic pain, has been
expressed in several studies [108–112]. Nociceptors may also be sensitized by T cells that
release IL-17A and IFN-γ, which act at nerve terminals to increase neuropathic pain [113].
It has been shown, in recent years, that mesenchymal stromal cells (MSCs), which have
the ability to differentiate into distinct mesenchymal cell lineages, including chondrogenic,
adipogenic, and osteogenic lineages, [114,115], are able to modulate the inflammatory re-
sponse through interleukin-10 (IL-10). During inflammation, different regulatory immune
cells are induced, and their population is expanded. IL-10, which induces these regulatory
immune cells, plays a critical role in immunomodulation by MSCs. In this scenario, an
understanding of the effects that MSCs have on regulatory immune cells, as well as a deep
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comprehension of their potential manipulation in order to induce tolerance, could serve as
a novel therapeutic approach to pain management [116].

6. Cytokines Involved in Pain

Cytokines derived from immune cells during inflammatory states play a key role in
nociceptor activity and pain sensitization. The role of cytokines has been well described in
previous studies [117] (Table 1).

Table 1. Mediator and receptors associated with immune cells.

Immune Cell Mediator Receptor

Mast cell

IL-5 IL-5R
5-HT 5-HT2
IL-6 Gp130
IL-1β IL-1R1
TNF/α TNFR1
Histamine H1/2
NGF TrkA

T cell
IL-17A IL-17AR
IFN-γ IFN-γR

IL-1β is the first cytokine described [118] as having hyperalgesic activity [119]. This
is a crucial point of neuroimmunology because it demonstrates that a molecule secreted
by the immune system can induce neuronal sensitization and consequently proves that an
antagonist of the receptor can inhibit the hyperalgesic effect [120]. The role of cytokines
in pain modulation has been demonstrated in the treatment of several diseases, including
arthritis, neuropathic pain, and cancer-related pain [121,122]. The role of IL-1β, IL-6, tumor
necrosis factor alpha, IL-17A, and interleukin-5, which act directly on nociceptor neurons,
has been demonstrated. The sensitization of nociceptors from IL-1β is carried out through
the phosphorylation of p38 mitogen-activated protein kinases (MAPK) on Nav1.8 sodium
channels. This translates to an increase in action potential generation and results in mechan-
ical and thermal hyperalgesia [123]. The role of IL-1β in pain sensitivity to thermal stimuli
is due to the activation of interleukin 1 receptor type 1 (IL-1R1) on nociceptor neurons,
which, in turn, increases TRPV1 expression [124]. Inflammatory pain is increased by IL-6,
which induces prostaglandin production [118] and increases TRPV1 and transient receptor
potential ankyrin 1 (TRPA1) expression by binding to its receptor gp130, which is expressed
on nociceptors [125,126]. The inflammatory pain induced by TNF/α in vivo is linked to
both tumor necrosis factor receptor 1 and prostaglandins [127,128]. Moreover, nocicep-
tor sensitivity is influenced by TNF/α because TNF/α is also active in the p38 MAPK
phosphorylation of Nav1.8 and Nav1.9 sodium channels and, therefore, alters neuron ex-
citability [129,130]. These studies affirm that IL-1β, IL-6, and TNF/α induce prostaglandin
synthesis and/or improve the activation of TRP and Nav channels and that this activation
leads to the sensitization of nociceptor neurons. The role interleukin-17A (IL-17A) plays
in autoimmune disease is interesting as this cytokine is richly expressed in nociceptive
neurons. The pain linked with autoimmune diseases, such as arthritis and psoriasis, is as-
sociated with IL-17A, which induces a fast increase in neuronal excitability, and implicates
the involvement of this molecule in the evolution of these disease processes [124]. More-
over, IL-17A induces a hyperalgesia which is dependent on the amplification of TNF/α,
IL-1β, chemokine (C-X-C motif) ligand 1 (CXCL1), endothelin-1, and prostaglandins in
antigen-induced arthritis [131].

7. Lipids Involved in Pain

The most widely used drugs to inhibit the process of inflammatory pain are nons-
teroidal anti-inflammatory drugs (NSAIDs). Their mechanism of action is based on the
inhibition of cyclooxygenases (COX), which are involved in the production of prostanoids
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(prostaglandins, prostacyclins, and thromboxane). PGE2 plays a key role in inflammatory
pain. The action of PGE2 is mediated by rhodopsin-type receptors, which are characteristic
of PGs. There are various receptors for PGE2: EP1, EP2, EP3, and EP4. They are codified by
different genes and are expressed differently in different tissues [132]. After activation, the
receptors transduce intracellular signals through various mechanisms. EP1 is linked to the
mobilization of Ca2+. EP2 and EP4 stimulate adenylate cyclase, while EP3 inhibits adenylate
cyclase [133]. PGE2 allows the nociceptor neurons to become sensitive to pain and other
stimuli. The action of PGE2 occurs mainly on proximal ion channels and acts as a sensitizer
for nociceptor activity, instead of as a direct activator of nociceptive neurons. This process
is the key to understanding the analgesic effect and the analgesic power of NSAIDs [134].
PGE2 may induce persistent hyperalgesia via the PKA and PKC-mediated activation of
NF-κB in DRG neurons if it is present over a long period of time [135]. Prostaglandins
are not the only class of lipids involved in inflammation. There are several classes of
lipid molecules with both pro- and anti-inflammatory properties that are, respectively,
involved in the activation or silencing of nociceptor activity. Some molecules, such as
lysophosphatidic acid and sphingosine-1-phosphate, have a direct effect on nociceptor
neurons during inflammation and increase TRPV1 activity [136,137]. Another example is
leukotriene B4 (LTB4), which induces hyperalgesia in humans if injected [138] through its
activity in the modulation of C-fibers and Ad-fibers [139]. BLT1, the receptor for LTB4, is
expressed by a subset of TRPV1+ DRG neurons. Its role consists of mediating calcium flux
after ligand activation [140]. Several studies demonstrate that some anti-inflammatory and
pro-resolving lipids may silence pain through their activity. Pain can be blocked by the
anti-inflammatory prostaglandin J2 (PGJ2), which activates PPARγ, and, as a consequence,
indirectly activates K + ATP channels in nociceptors [141]. Lipoxins, resolvins, protectins,
and maresins are classified as pro-resolving lipids and have been demonstrated to have
analgesic effects [142,143]. One example is the lipoxin receptor ALXR/FPR2, which is ex-
pressed by spinal cord astrocytes. In this case, lipoxin A4 inhibits ERK and JNK activation
in astrocytes and is transduced as a decrease in inflammatory pain. Receptor (ChemR23) of
resolvin E1 (RvE1) is expressed by TRPV1-positive neurons [144]. The activity of RvE1 is
due to the inhibition of ERK, which is induced by TNF/α and capsaicin in these DRG and
spinal cord neurons [145].

Capsaicin is a natural product present in hot chili peppers and is the active compound
found in many spicy foods. The exposure of nociceptor terminals to capsaicin leads to an
excitation of neurons with a perception of pain and local release of inflammatory mediators.
If the exposure is prolonged, nociceptor terminals become insensitive to capsaicin and other
stimuli [146]. Capsaicin-sensitive peptidergic sensory nerves mediate pain (classical afferent
function) but, moreover, play an important role in inflammation via sensory neuropeptide
release (efferent function). TRPV1 is located on these nerves and is a non-selective cation
channel that is activated and sensitized by several irritants, including capsaicin, resinifera-
toxin (RTX), and endogenous molecules such as protons, bradykinin, prostanoids, TNF/α,
nerve growth factor, gasotransmitters, and lipid peroxidase products [147] (Figure 2).

With the activation of capsaicin-sensitive nerve terminals, several sensory neuropep-
tides, such as substance P, neurokinin A, and calcitonin gene-related peptide that lead
to vasodilation and inflammatory cell recruitment (neurogenic inflammation) [148–152]
and have a potent anti-inflammatory and antinociceptive action, are released. The long
exposure to capsaicin and subsequent desensitization of the receptor may be explained
by the death of the nociceptor or the destruction of its peripheral terminals [148–151].
Capsaicin can provoke the perception of pain through its action on nociceptors, which may
mimic the action of a physiological stimulus or an endogenous ligand produced during
tissue injury [153].
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The effect of these processes is a reduction in the release of excitatory glutamate,
which leads to a reduction in pain sensitivity [143]. The role of protectin D1 is to in-
hibit the neuronal plasticity caused by TRVP1 activation and TNF/α [145]. Furthermore,
TRPV1 currents in DRG are inhibited by maresin 1, which reduces inflammatory pain [143].
Neither protectin D1 nor maresin 1 influence nociceptive mechanisms downstream of
TRPA1 [115,145]. These results, when considered together, may open a new viewpoint
towards the role of pro-inflammatory lipids, such as PGE2 and LTB4, in the activation of
pain. According to the results of these studies, lipid mediators play an important role in
silencing nociceptor neuron sensitization and activation. The future possibility of pain
being treated with the induction or administration of PGJ2 and pro-resolving lipids cannot
be excluded.

8. Nerve Injury and Neuropathic Pain

Trauma, metabolic imbalance, viral infection, and chemotherapeutic agents all cause
injury to the nervous system. The pain associated with these types of injury is termed
neuropathic pain. All forms of neuropathic pain share a common mechanism, even if the
injury causing it is different in nature or modality [154]. For instance, after nerve injury
caused by trauma, there is a loss of trophic factors that leads to a change in neurotrans-
mission because of the modified expression of ion channels which change in density and
distribution. This is transduced as an increased excitation in injured afferents [154]. This
injured nerve does not work properly, however, and there is, therefore, a loss of competition
with other afferents for trophic factors released from peripheral targets. This leads to a
greater availability of trophic factors for uninjured neighbors instead of for the injured
afferents [155]. A phenotypic change may be induced by the presence of greater quantities
of available trophic factors, which is transduced as an increase in excitability [155]. There
is still an open debate about the actual contribution of injured and uninjured afferents in
the pain associated with traumatic nerve injury. As previously mentioned, neuropathic
pain may have different causes, as well as several common characteristics, such as ongoing
pain [156]. Unlike inflammatory pain, in this type of pain, the elimination, if possible, of
the stimuli that affect the inflamed tissue does not alleviate the pain. Further investigation
of neuropathic pain is required to better understand the basis of the mechanisms and path-
ways of the ongoing pain in the absence of stimuli. For this type of pain, the area of study
concentrates primarily on the afferent aspect as it has been shown that the administration of
some pharmaceuticals, such as local anesthetics, are able to alleviate ongoing neuropathic
pain [157]. The ongoing afferent activity may act in different ways in order to induce
changes in transduction. The mechanisms can vary and may include the expression of
transducers in neurons that normally do not express this type of transducer, the increase in
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expression of excitatory receptors [158], and/or the decrease of inhibitory transducers [159].
Another mechanism may be the expression of thermal or mechanical transducers near the
extremity of the cut, damaged axon [159], or inside the ganglia [160]. It is plausible to
hypothesize that the various processes occur and collaborate simultaneously to contribute
to the ongoing activity in the afferents affected during nerve injury. The origins of the
activity may include, as previously mentioned, the ectopic expression of transducers [161].
One example is the anomalous activation of nociceptors by norepinephrine which results
from the sympathetic post-ganglionic terminals that are expressed on ganglia [162] and
the alteration in expression and density of ion channels that leads to instability and spon-
taneous activity on the membrane [163]. These mechanisms of activity are not only a
consequence of the damage but are likely to be a result of the various changes that occur
over time. For these reasons, neuropathic pain is difficult to manage.

9. Neuronal Regulation of Vasculature

Neuronal regulation of vasculature and inflammation is demonstrated with experi-
ments that show redness, heat, and swelling independent of the sensory nerve supply [144].
Neurogenic inflammation is a process based on direct electrical nerve stimulation which
produces vasodilation and permeability [164]. This process is a possible mechanism for the
mediation of axon–axon reflexes that transduce the signal in neighboring axons through
calcium influx and antidromic signaling and causes the release of mediators stored in
vesicles located at the axon terminals in the periphery. Several nociceptor mediators are
recognized, including the neuropeptides calcitonin gene-related peptide and substance P,
which are potent mediators of vasodilation and tissue edema [150,165,166].

Substance P plays a key role in several brain disorders and the pain response following
different types of inflammation [167]. Several experiments have been conducted on the
modulation and transmission of pain caused by substance P [168–171]. Substance P is a
peptide that is made up of 11 amino acids and along with others, such as neurokinin A,
neurokinin B, neuropeptide-γ (NPγ), and hemokinin 1, makes up a part of the tachykinin
family. Substance P can be found in different fiber types and districts, including in un-
myelinated C fibers, primary afferent fibers in both the peripheral and central nervous
system, primary sensory afferent fibers, the dorsal horn of the spinal cord, and dorsal root
ganglia, and is released from non-neuronal cells, such as inflammatory and endothelial
cells [172,173]. Substance P is also located in neurons that are sensitive to capsaicin [152],
where it is released following various chemical, thermal, and mechanical stimuli and can
be activated by ligand binding [174]. Substance P and other tachykinin neuropeptides are
able to bind NK1, NK2, and NK3 G-protein-coupled receptors. NK1 is generally expressed
at elevated concentrations in both the brain and peripheral tissues. Substance P has the
highest affinity for the NK1 receptor [175], which is strongly expressed in the brain render-
ing substance P of particular interest in the study of pain in the central nervous system.
Substance P and calcitonin gene-related peptide have a direct action on smooth muscle
cells and vascular endothelial cells in the mediation of neurogenic inflammation.

The release of substance P and calcitonin gene-related peptide is also associated with
migraines. It is hypothesized [176] that a massive release of serotonin from the median
raphe is correlated with the activation of serotonergic receptors located on the walls of large
cerebral vessels. This may lead to an increase in the transmural pressure of these vessels
and increases vasodilatation. The increase in transmural pressure leads to the activation
of the trigeminal nerve with consequent antidromic stimulation of the sensory nerves
that is translated into the consequent release of pro-inflammatory peptides (substance P
and calcitonin gene-related peptide) at the level of hard vessels in the meninges [177,178].
Substance P also acts on lymphatic vessel contractility, thereby increasing pump efficiency
stimulating its receptors TACR1 and TACR3, which are expressed on lymphatic smooth
muscle cells [179–181]. RAMP1 is the receptor for calcitonin gene-related peptide. It
is involved in angiogenesis and lymphangiogenesis during skin injury healing and is
necessary for the regulation of VEGF production [105]. Although there is evidence of
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interaction between the nociceptive system and blood or lymphatic vessels, it remains
to be seen whether or not this exchange of interactions regulates antigen drainage and
adaptive immunity.

10. Conclusions

It is clear that nociceptive neurons and the immune system play a central role in
pain and inflammation. The function of the immune and nociceptive systems is based
on recognizing damaging and/or harmful stimuli. Their response plays an important
role in preventing tissue damage and restoring homeostasis. The dysregulation of these
interactions may underlie the pathogenesis of several inflammatory diseases. The interac-
tions between the immune system and nociceptive neurons occur within both peripheral
sites of injury as well as in the central nervous system. The modulation of nociceptive
neuron activity and its mediators may provide new approaches to the treatment of pain
and chronic inflammatory disease. The role of the sensory nervous system is key to the
modulation of the host’s protective response. Understanding its interactions is crucial to
revealing new strategies for the treatment of pain. To date, current therapies often lack the
desired level of efficacy or tolerability necessary to provide optimal pain management. The
goal of future research will be to obtain a greater understanding of ion channel modulation
so that it can be exploited as a fundamental resource in the quest for the development of
the next generation of pain modulation drugs.
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