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Abstract: Musculoskeletal pain and inflammation can vary from localised pain like pain in the shoul-
ders and neck to widespread pain like fibromyalgia, and as per estimates, around 90% of humans
have experienced such pain. Oral non-steroidal anti-inflammatory drugs (NSAIDs) are frequently pre-
scribed for such conditions but are associated with concerns like gastric irritation and bleeding. In the
present study, a microemulsion-based gel comprising β-caryophyllene, isopropyl myristate, Tween
80, and normal saline was prepared as a topical option for managing topical pain and inflammation.
The globules of the microemulsion were below 100 nm with a zetapotential of around −10 mV.
The drug entrapment was >87% with a drug loading of >23%. The permeation studies established
better skin permeation (20.11 ± 0.96 µg cm−2 h−1) and retention of the drug (4.96 ± 0.02%) from
the developed system vis-à-vis the conventional product (9.73 ± 0.35 µg cm−2 h−1; 1.03 ± 0.01%).
The dermatokinetic studies established the better pharmacokinetic profile of the bioactive in the
epidermis and dermis layers of the skin. The anti-inflammatory potential in carrageenan-induced rat
paw oedema was more pronounced than the conventional product (~91% vis-à-vis ~77%), indicating
a better pharmacodynamic outcome from the developed system. The nanotechnology-based natural
bioactive product with improved efficacy and drug loading can provide a better alternative for the
management of musculoskeletal pain.

Keywords: analgesia; nanocarrier; skin permeation; safety; bioavailability; microemulsion;
dermatokinetics

1. Introduction

Microemulsions are emulsions produced in nanometer sizes to enhance the delivery
of pharmacologically active substances. These are the thermodynamically stable isotropic
systems in which an emulsifying agent, like surfactant and co-surfactant, combines two
immiscible liquids into a single dispersed phase. Microemulsions typically have droplet
sizes generally less than 200 nm. The size and shape of the particles scattered in the
continuous phase is the primary distinction between an emulsion and a microemulsion.
These carriers are solid spheres with an amorphous, lipophilic, negative-charged surface.
Oil, emulsifying agents, and aqueous phases are the three primary elements of such
systems [1–3].

With the advent of nanotechnology, especially the concepts of drug delivery, numerous
formulations are available in the market with better safety and efficacy than conventional
products. Using novel methods and materials has resulted in promising supramolecular
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structures that create a conducive environment for better delivery, especially by the topical
route [4–7]. Though most of the marketed formulations are liposomal, a number of products
based on microemulsions are also available for the benefit of humanity. Examples of such
marketed products are the emulsified products of propofol, dexamethasone, flurbiprofen,
and fat-soluble vitamins [8].

The natural bicyclic sesquiterpene β-caryophyllene (trans-(1,9)-8-methylene-4,11,11-
trimethylbicycloundec-4-ene) is present in many plants and essential oils, including the
oil from Copaifera langsdorffii (Leguminosae). Owing to its analgesic, antioxidant, antibacte-
rial, and anti-inflammatory properties, β-caryophyllene is being explored as a bioactive
molecule and in the form of novel drug delivery systems. Though β-caryophyllene is
a promising molecule, challenges like volatility, poor aqueous solubility, and poor oral
bioavailability provide scope for further nanotechnological research. The therapeutic ability
of C. langsdorffii oil resin in concentration ranges of 1–10% has been employed by various re-
searchers. To examine the potential by the topical route 1%, β-caryophyllene has also been
explored. In the recent past, multiple nanointerventions like self-emulsifying systems and
hydrogels for the delivery of this bioactive have been explored, though phospholipid-based
microemulsions have not been prepared for topical delivery [9–11].

Microemulsions have proved their safety and efficacy in improving the performance of
various drugs and bioactives. Being thermodynamically stable sub-micron emulsions, the
drug-loaded globules find easy access to the biological membranes. Some researchers also
use the term microemulsion for nano-range emulsions, though these are thermodynamically
stable [12,13]. If phospholipid is one of the components, then biocompatibility and bio-
integration are the added benefits [5,14]. Henceforth, in an attempt to explore the effect of
the nanocarrier on the overall performance of the drug, without the use of ethanol, it was
envisioned to formulate a microemulsion-based β-caryophyllene-loaded novel formulation.
The approach of this research work is to provide targeted delivery of β-caryophyllene as
well as modulation of the drug release rate to the target site, i.e., the region of nociceptors
(epidermis and dermis) [15].

Isopropyl myristate (IPM) was used as oil due to its consistency (neither too light
nor too viscous) and penetration enhancement effects. Natural oils are prone to oxidation,
and batch-to-batch variability is observed in those oils [16]. Tween 80 was used as the
surfactant based on exhaustive literature reports [12,17]. Most of the time, ethanol has
been used as one of the components of microemulsions, but it is reported to be an irritant.
To maintain the skin penetration characteristics and phospholipid dissolving attributes,
propylene glycol was employed. Phospholipid has been incorporated due to the obvious
reasons of biocompatibility, skin permeation, and drug retention properties [3,18]. In the
present studies, dermatokinetic investigations were also performed to understand the
pharmacokinetic profile of β-caryophyllene in the dermis and epidermis. The composition,
carrier system, and approach for the topical delivery of β-caryophyllene in the conditions
of pain and inflammation are the merits of the present study.

2. Results and Discussion
2.1. Pseudo-Ternary Phase Diagram

The pseudo-ternary phase diagram obtained from IPM, the Smix, and normal saline
are shown in Figure 1. The pink dots show the boundary of the monophasic region, beyond
which the compositions will not result in any microemulsion dispersion. As reported by
various research groups, polysorbate 80 can emulsify substantial amounts of oil, though the
other two components, viz., phospholipid and propylene glycol, also play a vital role [17].
The ternary phase diagram has fetched the complete region where a formulator can explore
numerous compositions that can form microemulsions. It also provides the boundary for
which afterwards there are no chances of microemulsion formation. From Figure 1, a total
of three compositions of the microemulsions were explored, containing almost the same oil
composition as the drug is lipophilic. An ideal condition of drug to oil ratio, i.e., 1:5, was
maintained in this study. Higher oil ratios will result in unnecessary cost escalation and
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lower percentages can result in lower drug entrapment and loading. The compositions of
the three compositions are shown in Table 1.
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Figure 1. Pseudo-ternary phase diagram constructed between IPM, Smix, and normal saline. Each
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Table 1. The compositions of the selected microemulsions from the ternary phase.

Formulation Code β-caryophylline
(mg) IPM (g) Tween 80 (g) Phospholipid

(mg)
Propylene
Glycol (mg)

Normal
Saline (g)

ME1 200
(1%)

2
(10%)

9.23
(46.15%)

185
(0.925%)

185
(0.925%)

8.2
(41%)

ME2 200
(1%)

2
(10%)

7.30
(36.5%)

150
(0.750%)

150
(0.750%)

10.2
(51%)

ME3 200
(1%)

2.2
(10%)

13.27
(66.35)

265
(1.325%)

265
(1.325%)

3.8
(19%)

2.2. Characterisation of the Microemulsions

The results obtained from the various characterisation studies have been presented in
Table 2 for easy comparison and understanding. Practically, all the developed compositions
were transparent as vivid from the optical observation as well the % transmittance values.
All the values of % transmittance were >92% advocating substantial optical clarity. The
values of % transmittance were of non-significant difference for the formulations ME1
and ME2, whereas the formulation ME3 showed a significant difference owing to a higher
percentage of Smix (p < 0.05). The refractive indices of the developed systems ranged
between 1.39 and 1.46, with that of ME1 and ME2 being almost similar. However, the
refractive index of the formulation ME3 was significantly higher than both (p < 0.05),
plausibly due to the higher percentage of polysorbate. The refractive index of water, Tween
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80, and IPM are 1.33, 1.47, and 1.43, respectively. The values of the developed systems
ranged between 1.33 and 1.47 and were in accordance with the published reports [19]. The
conductivity values of all the developed nanoformulations were statistically different from
each other (p < 0.05), ranging from 19.09 to 43.18 µS. The composition ME2 contained the
highest amount of normal saline; hence, the conductivity was of the highest magnitude
for it, whereas its value was least for ME1 reflected the least conductivity value. The pH
values of all the compositions were well within the acceptable range of topical products.
The normal pH value of the skin is around 5, and the skin can withstand pH up to 10.5
without showing any irritation. These physicochemical parameters of the microemulsions
are crucial as substantial changes in these indicate microscopic structural changes in such
systems [20].

Table 2. The values of % transmittance, refractive index, pH, conductivity, size, PDI, zeta-potential,
entrapment efficiency (EE), and drug loading (DL) of the developed microemulsions (* indicates the
significant difference at p < 0.05).

Code %
Transmittance

Refractive
Index pH Conductivity

(µS)
Globule Size
(nm) PDI Zeta Potential

(mV) % EE % DL

ME1 95.97 ± 0.17 1.39 ± 0.04 6.23 ± 0.18 23.92 ± 0.97 * 83.46 ± 1.93 * 0.198 * −7.94 ± 0.04 * 71.52 ± 1.98 * 15.77 ± 1.52 *
ME2 92.19 ± 0.21 1.38 ± 0.01 6.19 ± 0.13 43.18 ± 1.15 * 95.07 ± 0.15 * 0.225 * −3.09 ± 0.02 * 87.33 ± 2.17 * 23.08 ± 1.14 *
ME3 98.73 ± 0.19 * 1.46 ± 0.03 * 6.31 ± 0.25 19.09 ± 0.11 * 79.18 ± 0.27 * 0.274 * −0.18 ± 0.01 * 68.01 ± 2.39 * 12.98 ± 1.49 *

The globule size of the developed nanosystems ranged from 79.18 nm to 95.07 nm
in concordance with the % transmittance values. The most optically clear system offered
the least size and vice-versa. The composition ME3 encompassed the maximum level of
surfactants and offered the least globule size, as expected. However, the size range of all
the developed formulations was below 100 nm, as desired from microemulsions [21]. The
PDI values of the developed systems were well below the boundary of 0.3, assuring the
reliability of the average globule size [22]. Being microemulsions derived from nonionic
surfactants, the zeta-potential values of all the formulations were almost zero, though
the systems were relatively stable. The nonionic surfactants stabilise the system by steric
hindrance of the hydration layer on the hydrophilic headgroups rather than the electrostatic
repulsion [23]. Pharmacokinetically, nanocarriers with zeta-potential values ≤±10 mV are
regarded as neutral supramolecular assemblies in biological systems [7]. In both EE and DL,
it was observed that the compositions offered decreasing values with increasing Smix ratios
for almost the same amount of oil and drug. Formulation ME2, having intermediate levels
of surfactants, exhibited the highest EE as well as DL vis-à-vis ME2 and ME1 (p < 0.05). A
possible explanation for such behaviour is that a higher concentration of surfactants might
have extracted the drug molecules from the IPM globules into the dispersion medium,
decreasing the β-caryophylline amounts in the globules. Literature reports also provide
inferences for the dependence of entrapment efficiency on the type and amount of the
surfactant(s) [24]. Based on the entrapment efficiency and drug loading capacity, the
formulation ME2 was selected for further studies. Its globule size was also in the desirable
range and it utilised moderate amounts of surfactants.

2.3. Transmission Electron Microscopy

The microphotograph obtained from TEM is shown in Figure 2. Electron microscopy,
an indispensable characterisation technique for microemulsions, can decipher vital infor-
mation about nanocarriers. The microscopic vision of the nanoconstructs provides an idea
about the topography and aggregation [25]. From the figure, it is clear that spherically
shaped globules smaller than 200 nm have formed in the system. The surface of the globules
appears to be smooth, and there is no evidence of any aggregation. The findings are in
consonance with the previously published reports [26].
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Figure 2. Transmission electron microphotograph of a frame of the selected microemulsion, i.e., ME2.

2.4. Gel Attributes and Rheology

The gel fraction of the developed system was 95.19 ± 5.32%, and the sol fraction was
4.82 ± 0.21%, indicating a higher gel fraction. The swelling index of the gel was found to be
158.32 ± 12.39%. The obtained results were in consonance with the published reports [27].
The particle size of the gel was observed to be 178.7 nm, as shown in Figure 3.
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Figure 3. Particle size distribution of the developed microemulsion gel.

The rheogram of the developed nanogel is shown in Figure 4A, and the graph between
the shear rate and viscosity is depicted in Figure 4B. The graph shows that the shear rate
and shear stress show a non-linear relationship, representing the characteristics of a typical
non-Newtonian system with a yield value of 151.2 Pa. The developed hydrogel offered
an average viscosity of 7.74 Pa·s or 7740 cP, though the initial viscosity was quite high
with 49.1 Pa·s at the shear rate of 2 s−1, which decreased gradually with an increase in the
shear rate. It is a characteristic feature of the shear thinning system, as is the case for the
carbopol gels. This viscosity is sufficient enough for easy application and adherence, as per
the published reports [28]. It will not allow the leakage of the gel from the container orifice.
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For internal quality control standards, optical microscopy of the developed gel was
also performed at 1000×, as shown in Figure 5. The microscopic view was devoid of any
un-swollen gel and particles.

2.5. Skin Permeation and Skin Retention

The results of drug permeation across the skin are shown in Figure 6. It is clear from
the graph that at every time point the amount of drug permeated across the rodent skin
from the developed nanogel was substantially higher than that from the conventional gel
(p < 0.05). The permeation studies were performed for 6 h since topical products, especially
gels, are not retained on the body surface beyond this timeframe. In 6 h, the % of drug
permeated from the nanogel was 83.42 ± 4.71%, and the value from the conventional gel
was 48.66 ± 3.59%, almost 1.7 times lower than the novel formulation. The average drug
permeation flux for the nano hydrogel was calculated to be 20.11 ± 0.96 µg cm−2 h−1,
whereas the value for the conventional product was 9.73 ± 0.35 µg cm−2 h−1 (p < 0.05).
The results clearly indicated that the developed system can deliver β-caryophylline at a
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relatively improved rate and in higher amounts across the skin layers. The composition
as well the size of the nanoglobules of the microemulsion have resulted in improved
delivery [5]. The formula for the calculation of the average permeation flux is shown below:

Average permeation flux =
Total amount of drug permeated

Area of skin × Time of permeation study
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The drug retention values for the conventional gel and the developed microemulsion
gel were observed to be 1.03 ± 0.01% and 4.96 ± 0.02%, respectively. The developed nano
hydrogel was able to retain a substantial amount of drug within the skin layers (p < 0.5),
ensuring a depot formation for durations beyond the 6 h of application [29].

2.6. Dermatokinetics

The results of the dermatokinetic studies are shown in Figure 7. The amount of
drug per unit of skin area was higher for the developed system at every time point with
respect to the conventional gel (p < 0.05). The penetration offered by the microemulsion gel
was substantially higher for the studies of the microemulsion gel as the Cmax achieved
was faster vis-à-vis the conventional gel. The first-order permeation constant (Kp) for
the developed microemulsion gel across the epidermis was 4.01 h−1,and it was 1.19 h−1

for the conventional gel, while for the dermis the respective values were 3.21 h−1 and
0.96 h−1, signifying the substantially higher penetration potential, owing to the benefits
of the components and microemulsion (p < 0.05). The values of Cmax obtained for the
microemulsion gel and the conventional gel in the epidermis were 192.53 µg/cm2 and
114.51 µg/cm2, at the respective Tmax of 2 h and 3 h, indicating a faster delivery of the drug
by the microemulsion-based hydrogel vis-à-vis the plain hydrogel. There was an almost
1.7-fold enhancement in the maximum drug delivered to the epidermis. Analogously, the
Cmax achieved in the dermis was 138.80 µg/cm2 for the developed nanosystem at the
Tmax of 2 h and 39.11 µg/cm2 for the conventional system at the Tmax of 3 h, signifying
the delivery potential of the developed system. There was an almost 3.5-fold enhancement
in the maximum drug delivered to the dermis. The topical bioavailability parameter, i.e.,
AUC, was 502.93 µg/cm2 h for the epidermis by the developed microemulsion gel vis-à-vis
168.67 µg/cm2 h for the conventional system indicating almost three times the enhanced
potential of drug delivery by the developed system. In the dermis, the respective values
were 758.35 µg/cm2 h and 408.50 µg/cm2 h by the novel system and the conventional
gel. All the dermatokinetic parameters have been tabulated in Table 3. The enhancement
of the topical bioavailability in the epidermis was almost three times and in the dermis
it was almost twice, which is substantially higher. All the dermatokinetic parameters of
the developed system were far superior than the conventional product, thus indicating
huge potential of the developed nanocarrier for delivery of this bioactive by the topical
route [26]. In pain conditions, the target nociceptors are located in the areas of the dermis
and the epidermis, and the developed system significantly delivered the bioactive molecule
at these sites, indicating huge potential in the management of such conditions as pain and
inflammation [15].

Table 3. The dermatokinetic parameters obtained from the studied topical formulations for the
dermis and the epidermis.

Dermatokinetic Parameter
Conventional Gel Microemulsion Gel

Epidermis Dermis Epidermis Dermis

Kp (h−1) 1.19 ± 0.02 0.96 ± 0.01 4.01 ± 0.13 3.21 ± 0.09
Cmax (µg/cm2) 114.51 ± 2.03 138.80 ± 1.74 192.53 ± 2.69 39.11 ± 0.95

Tmax (h) 3 3 2 2
AUC (µg/cm2 h) 168.67 ± 9.33 408.50 ± 11.91 502.93 ± 24.67 758.35 ± 33.33

2.7. Carrageenan-Induced Rat Paw Oedema

The results obtained from the most widely used anti-inflammatory model have been
reported in Figure 8. The group of animals (n = 3) receiving the plain gel (no drug) showed
no substantial change in the paw oedema, indicating that the compositions employed in
the microemulsion formulation, viz., IPM, phospholipid, propylene glycol, carbopol, and
saline do not have any significant anti-inflammatory action of their own. However, both
the conventional gel and the nano hydrogel substantially reduced oedema over a while
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(p < 0.05). However, the results obtained from the nano hydrogel were far superior to
that from the conventional gel at every time point (p < 0.05). At the last time point of the
study, i.e., 12 h, the group receiving the nano hydrogel was almost 91% relieved from the
inflammation, whereas this anti-inflammatory value for the animals receiving the plain gel
was around 77%. The enhanced efficacy of the developed system over the conventional
product has been established using a reliable in vivo model. These studies demonstrated
the potential of the designed carrier to deliver the natural bioactive in substantial amounts
to induce its anti-inflammatory potential. The findings are unique and motivating as the
desired effect was elicited in a shorter duration of time and was prolonged substantially.
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3. Conclusions

The present study explored the possibility of a scalable β-caryophylline-loaded
microemulsion-based hydrogel for topical applications in pain-related disorders. The
formulation employed generally recognised as safe (GRAS) ingredients and simple for-
mulation techniques and resulted in a product that can not only deliver the drug to the
interiors of the skin but can also enhance its efficacy. The present strategically designed
nanoformulation inherits huge scope and promise in treating musculoskeletal pain-related
disorders by the topical route while avoiding unnecessary exposure of the body to the
systemic concentration of drugs employed like NSAIDS in the management of pain-related
disorders. The dermatokinetics studies have provided a clear indication that the pharmaco-
logically active molecule was delivered in the various skin layers in substantial amounts
and in an appreciable manner, vouching for the potential of such systems in delivering
bioactives to pain target sites by the topical route.

4. Materials and Methods
4.1. Materials

β-caryophyllene, triethanolamine, and carrageenan were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Isopropyl myristate (IPM), Tween 80, phospholipid, buffer
reagents, and dialysis membrane were procured from HiMedia (Maharashtra, India).
Phospholipon 90 G (phospholipid) was procured from Lipid LLC, Ludwigshafen, Germany.
Propylene glycol (1,2-Propanediol) was supplied by Merck Millipore, Mumbai, India.
Carbopol 940 (carbomer) was supplied by Lubrizol India Pvt. Limited, Mumbai, India.
In-house double distilled water was used throughout the studies.

4.2. Methods
4.2.1. Preparation of Microemulsions

A pseudo-ternary phase diagram was prepared between the oil (IPM), surfactant
mix (Smix; Tween 80, phospholipid, and propylene glycol in the mass ratio of 5:0.1:0.1),
and normal saline. Other ratios were also tried, but phospholipid amounts greater than
2% resulted in a hazy Smix composition. The reasons for the component selection have
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already been disclosed in the introduction section. In brief, dilutions of oil and Smix were
prepared in the mass ratios of 9:1 to 1:9 and titrated with normal saline. The separation of
phases, appearing as haze or gelling, was the visual end point of the titration. Analogously,
dilutions of Smix with saline were prepared and titrated with IPM until the end. All the
percentage values of the three components for each titration were plotted on a ternary phase
diagram to demarcate the homogeneous (microemulsion) [3] region from the heterogeneous
phase [30,31]. Three compositions were selected out of the homogeneous phase of the
pseudo-ternary diagram, accounting for almost the same amount of oil, but different Smix
and saline amounts. The compositions were deciphered from the microemulsion region,
and phospholipid was dissolved in propylene glycol and IPM with stirring at 500 rpm.
β-caryophyllene (equivalent to 1% w/w) was dissolved in it. After a clear solution formed,
a weighed amount of Tween 80 was added. The calculated amount of saline was added
in aliquots to the mixture to fetch with the microemulsion. The exact compositions of the
three microemulsions have been disclosed in the results and discussion section [3].

4.2.2. Characterisation of the Microemulsions

The microemulsions were characterised for various attributes ranging from optical
clarity, pH, refractive index, conductivity, globule size, zeta-potential, polydispersity index
(PDI), drug loading, and drug entrapment. Based on the comparisons of these attributes,
the formulation to be gelled was selected.

4.2.3. Optical Clarity, Conductivity, pH, and Refractive Index

For optical clarity, a simple UV-visible spectrophotometric technique was employed
using the % transmittance feature of the spectrophotometer (Cary 100; Agilent Technolo-
gies, Hong Kong). The developed systems were observed for % transmittance at 650 nm
against water as a blank [3]. A conductivity meter (Seven Excellence S100; Mettler Toledo,
Hong Kong) was used to test electrical conductivity. The recordings were made when the
electrode was dipped into the microemulsions and equilibrium was reached. A minimum
of three observations were recorded for each recording [2,32].

pH determination of the undiluted formulations was performed on a TDS digital
pH meter. The refractive index of the developed systems was measured using an Abby’s
refractometer against water as the reference fluid at the ambient temperature.

4.2.4. Micromeritics and Zetapotential

The globule size, globule size distribution, and the PDI were determined in triplicate
using a particle size analyser based on dynamic light scattering (Litesizer 500; Anton Paar,
Graz, Austria). Being an emulsified system, the dilution prior to size determination was
avoided. The PDI was also provided by the same equipment while determining the average
globule size from the globule size distribution. The same equipment determined the zeta-
potential values of the developed microemulsions using electrophoretic light scattering
in triplicate.

4.2.5. Drug Entrapment and Drug Loading

To determine the amount of drug entrapped within the IPM globules, drug entrapment
and drug loading were [4] determined using the dialysis method [33,34]. In brief, 1 mL
of the microemulsion was packed in a dialysis bag (12 kDa; 2.4 nm) and suspended in
20 mL of ethanol. The system was maintained at ambient temperature, and the sink
conditions were maintained by stirring at 100 rpm for two hours. After the stirring, an
aliquot of the diffusion medium was analysed for the unentrapped drug by reverse phase
high-performance liquid chromatography, using a well-established method [35]. For the
used method, the limit of quantification was 0.398 µg/mL and the limit of detection was
0.119 µg/mL with a coefficient of determination of 0.9976. The entrapment efficiency
was reported as the amount of the bioactive present inside the globules out of the total
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drug added, whereas the drug loading was reported as the amount of entrapped drug per
100 parts of the microemulsion, as per the following equations:

Drug entrapment efficiency =
(Total Drug − Diffused Drug)

Total Drug
× 100

Percent drug loading =
Entrapped Drug

Total carrier to entrap the drug
× 100

4.2.6. Transmission Electron Microscopy

Out of the three developed microemulsions, the transmission electron microscopy of
the selected composition was performed using negative staining of 1% phosphotungstic
acid. After being pipetted onto the carbon grids, the microemulsion was dyed with a
solution of 1% phosphotungstic acid. The stained microemulsion was then observed and
captured on a transmission electron microscope (TEM) using Analysis 3.0 Software and a
Hitachi H-7000 TEM equipped with a Mega View II Digital Camera.

4.2.7. Development of Microemulsion Gel and Gel Characteristics

The formulation was intended to be applied topically in the gel form. To develop a
microemulsion-based gel, the selected microemulsion was incorporated into a secondary
hydrogel. The microemulsion-based hydrogel was prepared using Carbopol 940. Pre-
cisely, carbomer, equivalent to 1% of the total drug-loaded microemulsion, was added
into the microemulsion. It was mixed properly and refrigerated overnight. The next day,
triethanolamine was added equalling 1.5 times of the carbomer, and the carbomer was
neutralised to form gel [36]. Analogously, a plain gel comprising 1% β-caryophylline, saline,
carbomer, and triethanolamine was prepared for comparison. The optical microscopy of the
microemulsion gel was also performed as a routine characterisation study. The microemul-
sion gel was diluted to 100 times with distilled water assisted with bath sonication and
analysed for particle size as disclosed in the micromeritics and zetapotential section [37].

The sol-gel fraction analysis was also performed as per the standard procedure by
making hydrogel discs with radii between 1 and 2 mm. These discs were dried at room
temperature and further placed in an oven maintained at 45 ◦C until a constant weight was
achieved. The dried discs were boiled for four hours in water and again dried as discussed
above. The weights after drying were measured. The sol and gel fractions were determined
as per the following equations, where “x” designates the weight of dry gel before boiling
and “y” represents the weight of dry gel after boiling [27]:

% Fraction of sol =
(x − y)

x
× 100

% Fraction of gel = 1 − % of sol fraction

The swelling index of the gel was also performed by dipping the pre-weighed discs
as discussed above in distilled water and taking them out and re-weighing after 3 h, after
removing the adherent water by blotting paper. The percent swelling was determined
using the following equation, where “a” stands for the weight of “swollen disc” and “b”
represents the weight of “dry disc” [27]:

% gel swelling =
(a − b)

b
× 100

4.2.8. Rheology

The rheology of the developed gel was studied using a cup and bob rheometer (Model
MC1, PaarPhysica). Approximately 5 g of the gel was placed in the cup and was allowed to
rest for around 5 min. The shear stress value was increased, automatically, linearly from 0.1
to 100 s−1. From the rheogram, the viscosity of the gel was determined [38].
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4.2.9. Skin Permeation and Skin Retention Studies

Healthy unisex Laca mice were used for the drug permeation studies across the rodent
skin. The animals (n = 3) were sacrificed by cervical dislocation, and the skin was harvested.
All animal-handling procedures, as well as sample collection and disposal, were carried
out following the Institutional Animal Care and Use Committee (IACUC) rules, with
monitoring provided by the faculty of Veterinary Medicine at the University of Sadat City,
Egypt, bearing approval number VUSC-022-1-23. The depilated skin was placed in the
donor compartment of a Franz diffusion cell, with the outer portion facing the upper side
of the donor compartment. The area of the donor compartment was 3.14 cm2 (as per the
specifications of the manufacturer, PermeGear Franz Diffusion Cell), and the volume of the
receptor compartment was 30.0 mL. The receptor compartment was filled with phosphate-
buffered saline solution (PBS) of pH 6.8 containing 10% ethanol. A 1:1 volume ratio of
buffer and ethanol has been reported earlier, but the 10% v/v solution offered sufficient sink
medium for the natural bioactive, henceforth, it was used [10]. Formulations (developed
nano hydrogel and the conventional gel) were applied on the exposed portion of the skin
containing around 200 mg of accurately weighed gel. At predetermined time-points, a
sample of 1 mL was withdrawn from the receptor compartment and replenished with an
equal volume of fresh medium. The samples were filtered and analysed by reverse phase
high-performance liquid chromatography [35].

For skin retention studies, the skin from the donor compartment was removed after the
permeation studies and washed with water thrice to remove the adhering formulation. The
skin was chopped into small pieces and placed in 20 mL of ethanol for 12 h for complete
extraction of the drug. The filtered solvent was processed and analysed as disclosed
earlier [39].

4.2.10. Dermatokinetics

The dermatokinetic profile of the developed hydrogel and the conventional hydrogel
were examined using the well-established method reported earlier. The animal skin was
excised and mounted on the Franz Diffusion Cells as in the skin permeation and retention
studies. The difference lies in the sampling technique. At each sampling time point, the
whole skin was removed, washed off the adhered drug/formulation, and separated into
the dermis and the epidermis using lukewarm water. Both the skin layers were extracted
in ethanol for the drug and the amount of the drug was determined using HPLC, as
reported previously. The study was carried out for 6 h and the sampling was conducted
at 0.5 h, 1 h, 1.5 h, 2 h, 4 h, and 6 h. The obtained drug concentrations in both the skin
layers at the sampling time points were analysed using one compartment open body
model. From the data analyses, the important dermatokinetic parameters like respective
permeation constant (Kp), respective layer elimination rate constant (Ke), area under drug
concentration and time curve (AUC), maximum concentration achieved in the respective
skin layer (Cmax), and the time required to achieve the respective Cmax (Tmax) were
computed and compared [40–42].

4.2.11. Carrageenan-Induced Rat Paw Oedema

For this pharmacodynamics evaluation, healthy unisex Wistar rats were employed. A
total of five groups were made comprised of three animals each. The right hind paws of the
rats in all groups received an intra-plantar injection of 0.05 mL homogeneous suspension
of 1% carrageenan in sterile normal saline to cause local inflammation. The paw volume
was assessed immediately after carrageenan administration (i.e., time zero). To calculate
the immersed paw volume in mL, the hind paw was submerged in the measurement cell
from the hairline to the ankle. This was measured using a plethysmometer and the volume
displacement method (UgoBasile, Gemonio, Italy). After waiting for thirty minutes, 200 mg
of the formulation to be evaluated was lightly rubbed on the surface of the right hind paws
with the index finger without any dressing. At 1, 2, 4, 6, 8, 10, and 12 h after carrageenan
administration, paw volume was assessed. A % increase in paw volume since time zero
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was calculated. The anti-inflammatory response’s time-course was identified [16]. The
following equations were employed:

Percent swelling (PS) =
(V − V0)

v0
× 100

Percent inhibition of oedema =
(1 − PSt)

PSc
× 100

V is the paw volume at different time intervals, V0 is the initial paw volume at time
0, PSt is the percent swelling in the test group, and PSc is the percent swelling in the
control group.

4.2.12. Statistical Analysis

To reach a statistical decision, the mean values were compared with each other using
Student’s t-test and the analysis was performed using SPSS statistical software (SPSS
version 10.0.1, Chicago, IL, USA).
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