
Introduction

β- caryophyllene (BCP) is a plant compound, a member 
of bicyclic sesquiterpene. In nature, it mainly occurs as 
trans- caryophyllene ((E)- BCP) mixed with small amounts 
of its isomers, (Z)- β-caryophyllene (iso- caryophyllene) and 
α- humulene (α- caryophyllene), as well as its oxidation 
derivative—β- caryophyllene oxide (BCPO) (Fig. 1). In this 
review, we will focus on two sesquiterpenes, BCP (in the 
scientific literature, BCP mainly stands for (E)- BCP or 
the natural mixture of BCP isomers) and BCPO.

BCP and BCPO have strong wooden odor and they 
are used as cosmetic and food additives. These two natural 
substances are approved as flavorings by the Food and 
Drug Administration (FDA) and by the European Food 
Safety Authority (EFSA) with identification number FL 
no: 01.007 for BCP and FL no: 16.043 for BCPO. Both 
compounds exhibit low water solubility, thereby the aque-
ous medium such as biological fluids, impede their absorp-
tion to the cell. However, it was shown that both BCP 
and BCPO are able to interact with artificial lipid bilayer, 
which strongly suggests their high affinity to the cell 
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Abstract

Natural bicyclic sesquiterpenes, β- caryophyllene (BCP) and β- caryophyllene oxide 
(BCPO), are present in a large number of plants worldwide. Both BCP and 
BCPO (BCP(O)) possess significant anticancer activities, affecting growth and 
proliferation of numerous cancer cells. Nevertheless, their antineoplastic effects 
have hardly been investigated in vivo. In addition, both compounds potentiate 
the classical drug efficacy by augmenting their concentrations inside the cells. 
The mechanisms underlying the anticancer activities of these sesquiterpenes are 
poorly described. BCP is a phytocannabinoid with strong affinity to cannabinoid 
receptor type 2 (CB2), but not cannabinoid receptor type 1 (CB1). In opposite, 
BCP oxidation derivative, BCPO, does not exhibit CB1/2 binding, thus the 
mechanism of its action is not related to endocannabinoid system (ECS) ma-
chinery. It is known that BCPO alters several key pathways for cancer develop-
ment, such as mitogen- activated protein kinase (MAPK), PI3K/AKT/mTOR/
S6K1 and STAT3 pathways. In addition, treatment with this compound reduces 
the expression of procancer genes/proteins, while increases the levels of those 
with proapoptotic properties. The selective activation of CB2 may be considered 
a novel strategy in pain treatment, devoid of psychoactive side effects associated 
with CB1 stimulation. Thus, BCP as selective CB2 activator may be taken into 
account as potential natural analgesic drug. Moreover, due to the fact that 
chronic pain is often an element of cancer disease, the double activity of BCP, 
anticancer and analgesic, as well as its beneficial influence on the efficacy of 
classical chemotherapeutics, is particularly valuable in oncology. This review is 
focused on anticancer and analgesic activities of BCP and BCPO, the mecha-
nisms of their actions, and potential therapeutic utility.
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membrane [1]. The potential obstacles associated with 
poor solubility of these sesquiterpenes in aqueous fluids 
may be overcome through usage of liposomal drug delivery 
system, which provides much higher bioavailability of these 
compounds and by that ensures obtaining desired biologi-
cal effects.

BCP is one of the major active component of essential 
oils derived from large number of spice and food plants. 
According to Essential Oil Database (EssOilDB) (http://
nipgr.res.in/Essoildb/), BCP as a plant volatile compound 
is commonly found in basil (Ocimum spp.), cinnamon 
(Cinnamomum spp.), black pepper (Piper nigrum L.), 
cloves (Syzygium aromaticum), cannabis (Cannabis sativa 
L.), lavender (Lavandula angustifolia), oregano (Origanum 
vulgare L.), and rosemary (Rosmarinus officinalis). Its 
biological effects include anti- inflammatory [2], anticar-
cinogenic [3], antimicrobial [4], antioxidative [5], and 
analgesic activities [6].

Similarly to BCP, BCPO due to its high biological activ-
ity was extensively studied in recent years. EssOilDB- based 
data indicate basil (Ocimum spp.), salvia (Salvia glutinosa) 
and Syzygium cordatum as the main natural sources of 
BCPO. Either as a pure substance or a component of 
plant essential oils, BCPO was found to exhibit anti- 
inflammatory [7], antioxidant, antiviral [8], anticarcino-
genic [9], and analgesic properties [10].

The metabolism of BCP(O) is poorly described. While 
BCP metabolic pathway was investigated in rabbits, there 
is some information on BCPO biotransformation. In vivo 
tests performed on rabbits revealed that (E)- BCP is con-
verted to intermediate metabolite, (–)- caryophyllene- 5, 
6- oxide, which is metabolized to [10S- (−)- 14- hydroxycaryophyllene- 
 5,6- oxide] or hydroxylated to by- product, caryophyllene- 
5,6- oxide- 2,12- diol (Fig. 2) [11]. By comparison with rabbit 
metabolic pathway, one can suspect that BCP may undergo 
sequential transformations also in humans, however the 
experimental data confirming this hypothesis is lacking 
[11]. Interestingly, Hart and Wong [12] evaluated BCP 

toxicity in rats and found that oral lethal dose (LD50) 
for this compound was higher than 5000 mg/kg.

BCP belongs to a class of cannabinoids (CBs), specifi-
cally phytocannabinoids (pCBs), which were identified as 
plant derivatives of Cannabis sativa L. Natural and synthetic 
cannabinoids have ability to activate the cannabinoid 
receptors (CB1 and CB2), however BCP, which is com-
mon in essential oil from C. sativa (up to 37%) [13], 
activates exclusively CB2 and exhibits no affinity to CB1. 
This implies that BPC action is devoid of psychoactive 
side effects associated with CB1 activation and suggests 
its potential use in medicine. The quantitative radioligand- 
binding experiments showed that E- BCP displays insensibly 
higher biding affinity to CB2 than its isomer Z- BCP, 
whereas BCPO and α- humulene possess no CB2 binding 
properties. In addition, all these compounds did not bind 
to CB1 [14]. Lack of affinity of BCPO to CB2 clearly 
shows that both chemically related compounds, BPC and 
BCPO, exert their biological activities though at least 
partially different mechanisms.

Cannabinoid­Receptors

Cannabinoid receptors—cannabinoid receptor type 1 (CB1) 
and type 2 (CB2)—are G- protein- coupled receptors 
(GPCR) and main components of endocannabinoid system 
(ECS). They play important roles not only in the main-
tenance of energy balance, metabolism, neurotransmission, 
and immune response, but are also engaged in pathological 
processes, for example, neuropathic pain [15–17]. CB1 
and CB2 differ essentially in their structures, ligands, cel-
lular distributions, and topologies. CB1 are mostly localized 
to the central nervous system (CNS), whereas CB2 are 
found predominantly in the peripheral tissues and immune 
cells. However, immunohistochemical studies revealed that 
CB2 are also expressed in the brain, glial cells, and neu-
rons [18, 19]. Both types of CB receptors are elements 
of numerous signaling pathways, mediating cellular 

Figure 1. Trans- caryophyllene, its isomers, and oxidative product.

http://nipgr.res.in/Essoildb/
http://nipgr.res.in/Essoildb/
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responses to various bioactive molecules such as hormones, 
local mediators, or neurotransmitters. For that reason, 
they are also involved in pathomechanisms of many clini-
cal conditions such as obesity, osteoporosis, neurodegen-
erative/neuroinflammatory disorders, psychiatric diseases, 
stroke, and spinal cord injury [20–22].

BCP binding to CB2 results in the activation of Gαi/o 
protein, which leads to decline of cAMP production and 
in consequence inhibition of adenylyl cyclase. In addition, 
ligand- coupled CB2 activate Gγβ proteins and stimulate 
both mitogen- activated protein kinase (MAPK) and phos-
phoinositide 3- kinase (PI3K) signaling pathways [23]. 
Moreover, the chemical modifications of BCP have impact 
on its activity through generating molecules with different 
affinities to CB1/2, thus altered pharmacological traits [24].

BCP(O)­as­Anticancer­Agents

Many investigations have been made to establish the 
potential utility of cannabinoids in cancer therapies. 
Currently, it is believed that all anticancer activities of 

cannabinoids may be based on three different mechanisms 
such as (1) induction of apoptosis [25], (2) repression 
of cell cycle [26], and (3) inhibition of angiogenesis and 
metastasis [27]. The anticancer properties of BCP and 
BCPO are less recognized than those of traditional can-
nabinoids, however several lines of evidence have dem-
onstrated that these natural compounds can be interesting 
candidates for complementary treatment of the cancer. 
Both sesquiterpenes revealed cytotoxic activities against 
several types of cancer cells. It was shown that BCPO 
isolated from Jeju guava (Psidium cattleianum Sabine) 
leaves exerted cytotoxic effect on various cancer cell lines, 
such as HeLa (human cervical adenocarcinoma cells), 
HepG2 (human leukemia cancer cells), AGS (human lung 
cancer cells), SNU- 1 (human gastric cancer cells), and 
SNU- 16 (human stomach cancer cells). Interestingly, com-
parative data analysis has shown that dose of BCPO and 
time required for BCPO- induced cytotoxicity was specific 
for each studied cell line [28]. Moreover, Shahwar et al. 
[29] noted that BCPO derived from Cinnamomum tamala 
leaf extracts exhibited moderate cytotoxic activity against 

Figure 2. The metabolism of (E)- BCP in rabbits. Based on Asakawa et al. (1986). BCP, β- caryophyllene.
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human ovarian cancer cell line, A- 2780. The antiprolifera-
tive effect of BCP on several cancer cell lines was reported 
by Dahham et al. [30]. They found that treatment with 
BCP obtained from essential oils of Aquilaria crassna stem 
bark led to strong growth inhibition in two colon cancer 
cell lines, HCT- 116 and HT- 29, as well as in pancreatic 
cancer cells, PANC- 1, whereas other tested cancer cell 
lines demonstrated moderate susceptibility to BCP. In 
contrast, Ambrož et al. [31] studies revealed that BCP 
isolated from Myrica rubra did not affect CaCo- 2 intestinal 
cancer cell viability at used doses. On the other hand, 
BCP isomer, α- humulene, exhibited significant antipro-
liferative activities against those cells. Moreover, the cyto-
toxic effect of not only α- humulene, but also 
iso- caryophyllene, was enhanced by BCP. Furthermore, 
both isomers combined with BCP were more effective in 
reduction of MCF- 7 human breast cancer cell line pro-
liferation than when used separately [32]. Amiel et al. 
[33] demonstrated that treatment of BS- 24- 1 (mouse 
lymphoma cell line—T cells) and MoFir (human B lym-
phocytes transformed with Epstein–Barr virus) cells with 
BCP- activated caspase- 3 and led to internucleosomal frag-
mentation of DNA, one of the main features of apoptosis. 
Analogous changes were observed by Dahham et al. [30] 
in HCT- 116 cells treated with BCP derived from the 
essential oil of A. crassna. Interestingly, Amiel et al. [33] 
showed that human skin fibroblast (FB) were resistant 
to Commiphora gileadensis stem extracts, in which BCP 
was a major compound.

Despite many reports on antiproliferative and cytotoxic 
properties of BCP(O) toward numerous cancer cell lines, 
there is only limited data supporting the antitumor efficacy 
of these compounds in animal models. Jung et al. [34] 
described in their excellent work the effects of BCP treat-
ment on the multiple cancer parameters in obese mice. 
Authors observed that animals fed the high- fat diet (HFD) 
and injected with B16F10 melanoma cells were prone to 
form larger and more aggressive tumors than their lean 
counterparts, and BCP treatment abolished the HFD pro-
cancer effects. The anticancer activity of BCP in vivo was 
also presented at the Euro Global Summit on Cancer 
Therapy in Valencia, 2015 [35]. In this report, a growth 
and vascularization of tumors developed from orthotopi-
cally grafted colon cancer cells into nude mice were reduced 
significantly after administration of BCP isolated from 
agar wood. Interestingly, Campos et al. [36] demonstrated 
an additional bioactivity of BCP, which could be useful 
in cancer therapy. Thus, they found that BCP treatment 
alleviated the leukopenia induced by the experimental 
chemotherapy in rats. Taking into account the strong 
evidence of BCP(O) antineoplastic actions in vitro, there 
is an urgent need to test these compounds in animal 
model systems. This is particularly important since up to 

now only one peer- reviewed report describing an in vivo 
effect of BCP on tumor growth exists in the scientific 
literature. Moreover, there is some information on BCPO 
antitumor activity in animal models.

Aside from the direct anticancer activities, BCP and 
BCPO have ability to enhance the efficacy of classical 
anticancer drugs, such as paclitaxel or doxorubicin (DOX) 
[31, 32, 37]. Ambrož et al. [31] have reported that BCPO 
potentiated the anticancer activities of DOX toward CaCo- 2 
cells. Authors noted that cotreatment with BCPO increased 
the concentration of DOX in CaCo- 2 cells in dose- 
dependent manner leading ultimately to accumulation of 
the drug in the cells. Likewise, BCPO was shown to 
improve the anticancer effectiveness of paclitaxel [37], 
which is a microtubule toxin with ability to arrest cells 
in mitosis by interfering with normal breakdown of micro-
tubules during cell division [38]. Kim et al. [37] found 
a potentiating influence of BCPO on DOX and paclitaxel 
anticancer activities in human myeloid leukemia (KBM- 5), 
multiple myeloma (U266), and human prostate cancer 
(DU145) cell lines. Furthermore, Legault et Pichette [32] 
showed that BCP can also increase the anticancer drug 
efficacy. Thus, they observed the enhancement of paclitaxel 
activity in MCF- 7 (breast cancer), DLD- 1 (colon cancer), 
and L- 929 (murine fibroblast) cells cotreated with BCP. 
Interestingly, in DLD- 1 cell line, BCP induced the accu-
mulation of paclitaxel inside the cells [32], thus exhibited 
the analogs mechanism of action to that of BCPO. The 
ability of BCP to increase the intracellular concentrations 
of anticancer drugs may be linked to its chemical structure 
of sesquiterpene. Namely, various cyclic hydrocarbons such 
as terpenes may assemble in the cell membrane leading 
to higher bilayer permeability [39]. Thus, it is likely that 
BCP is incorporated into the membrane of cancer cell, 
making it more available for entering the drugs.

The­Mechanisms­of­BCP(O)­Anticancer­
Activities

Many experiments have been performed in order to elu-
cidate the mechanisms of anticancer activities of BCPO. 
On the contrary, the mechanisms underlying the anti-
neoplastic actions of BCP have hardly been studied. It 
seems that among these two compounds, BCPO possesses 
stronger anticancer properties, which can be explained by 
its chemical structure. Thus, BCPO contains methylene 
and epoxide exocyclic functional groups, therefore it binds 
covalently to proteins and DNA bases by sulfhydryl and 
amino groups. For that reason, BCPO reveals high potential 
for being signaling modulator in tumor cancer cells [40]. 
Anticancer activities of both sesquiterpenes may be exerted 
through suppression of cellular growth and induction of 
apoptosis. Park et al. [40] showed that BCPO suppressed 
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PC- 3—prostate cancer cell and MCF- 7—breast cancer cell 
proliferation in a dose- dependent manner. Moreover, it 
induced ROS generation, MAPK activation, and inhibition 
of PI3K/AKT/mTOR/S6K1 signaling pathway in these cells, 
a pathway which is essential in cell survival, proliferation, 
and angiogenesis of the tumor [41]. Furthermore, the 
authors found that BCPO significantly reduced levels of 
procancer proteins, those involved in proliferation—cyclin 
D1, metastasis—COX- 2 (cyclooxygenase 2), angiogenesis—
VEGF (vascular endothelial growth factor), and apoptosis 
inhibitors—bcl- 2 (B- cell lymphoma 2), bcl- xL (B- cell 
lymphoma extra- large), IAP- 1, IAP- 2 (inhibitor of apop-
tosis 1 and 2), and survivin. In contrast, a treatment with 
this natural compound augmented the expression of tumor 
suppressors—p53 and p21—in PC- 3 cells [40]. Suppression 
of AKT/mTOR/S6K1 signaling in PC- 3 cells was also 
reported after treatment with hexane fraction obtained 
from guava leaf (Psidium guajava L.), in which BCPO 
was a major bioactive constituent [42]. BCPO also targets 
STAT3 (Signal Transducer and Activator of Transcription 
3) signaling pathway, which is involved in proliferation, 
survival, invasion, angiogenesis, and metastasis of cancer 
and was found to be highly active in many human tumors 
[43]. Kim et al. [44] observed the reduced activity of 
STAT- 3 transcription factor after BCPO treatment in 
multiple melanoma, breast, and prostate cancer cell lines. 
They reported that suppression of STAT3 pathway by 
BCPO was mediated through activation of SHP- 1 protein 
tyrosine phosphatase. Moreover, BCPO was capable to 
block the IL- 6- induced activation of STAT- 3 and the 
upstream elements of STAT3 pathway, such as c- Src, JAK1, 
and JAK2, in time-  and dose- dependent manners.

Proapoptotic activity of BCPO in cancer cells can be 
associated with reduced activation of NF- κB [37]. NF- κB 
is one of the key transcription factors in tumor develop-
ment, controlling such processes as cancer cell prolifera-
tion, tumorigenesis, angiogenesis, and metastasis [45]. 
NF- κB regulates expression of a large number of genes, 
involved in cellular proliferation, apoptosis, and inflam-
mation (e.g., TRAF—TNF receptor- associated factor, 
c- FLIP—cellular FLICE- like inhibitory protein, survivin, 
various chemokines, and cytokines). Kim et al. [37] reported 
BCPO- induced inhibition of the constitutive and inducible 
NF- κB activities in cancer cells. Moreover, they found 
that BCPO increased the TNFα- caused apoptosis by inhib-
iting the NF- κB activation. In addition, treatment with 
BCPO led to lowering the levels of cyclin D1, COX- 2, 
and c- Myc, which expression was upregulated by TNFα. 
Sain et al. [46] evaluated an influence of BCP and BCPO 
fractions from Aegle marmelos extract on IMR- 32 human 
neuroblastoma and Jurkat cell lines. They found that 
treatment of the cells with these chemical fractions led 
to induction of p53- dependent apoptosis. Cellular death 

was accompanied by upregulation of proapoptotic gene 
expression, namely those encoding p53, bax, bak1, caspase 
8, caspase 9, and ATM as well as decrement of mRNA 
levels of antiapoptotic genes, such as bcl- 2, mdm2, COX- 
2, and c- myb.

Taking together, BCP(O) present the anticancer activi-
ties toward numerous cancer cell lines, however strength 
of the cellular response induced by treatment with these 
compounds differs substantially among cancer cells. Doses 
used in in vitro studies described in this review are listed 
in Table 1. Moreover, the antitumor potential of BCP(O) 
still needs to be evaluated in in vivo systems. Interestingly, 
BCP(O) has ability to potentiate the efficacy of classical 
drugs by augmenting their concentrations inside the cells. 
The mechanisms underlying the antineoplastic effects 
evoked by these sesquiterpenes are poorly recognized. One 
can assume that BCP exerts its action through binding 
to CB2. In contrast, BCPO does not display any affinity 
to CB1/2, but reveals the equally strong (or ever stronger) 
anticancer activity than BCP. It is known that BCPO alters 
several key pathways for cancer development, such as 
MAPK, PI3K/AKT/mTOR/S6K1, and STAT3 pathways. In 
addition, treatment with this compound reduces the expres-
sion of procancer genes/proteins, while increases levels of 
those with proapoptotic properties.

BCP(O)­as­Analgesic­Agents

Pain is a subjective sensation, evoked by various internal 
and external stimuli. In biological aspect, it is unpleasant 
feeling, which arises from sensitization of nociceptors—
peripheral neurons responding to pain stimuli. Acute but 
in particular chronic pain is a serious social burden, it 
affects quality of life and leads to economic loss for patients 
as well as health services [47]. It has been estimated that 
around 10% of population worldwide suffers from long- 
lasting pain [48].

One of the most difficult pain to manage is cancer 
related. Many factors may be involved in etiology of cancer 
pain, such as progression/invasion of the tumor, surgical 
procedures and other cancer treatments, cancer- related 
infections, etc. [49], which makes it complicated to treat. 
As a consequence, a large part of oncological patients 
tend to overuse the synthetic or semisynthetic pain killers 
such as opioids or nonsteroidal anti- inflammatory drugs 
(NSAIDs). Prolonged consumption of these medicines may 
cause serious side effects leading to health complications 
as well as drug tolerance and addiction. In order to decrease 
a use of synthetic drugs, the natural products with strong 
analgesic activities and low side effects are still being 
sought. On account of that, cannabinoid receptors have 
been extensively studied as mediators of analgesia and 
thus potential targets for treatment of acute and 
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neuropathic pain [50]. Activation of those receptors by 
endo-  and exogenous ligands may inhibit pain responses, 
therefore CBs are considered as substances with high 
analgesic activities. One of the best studied natural product, 
which contains large amount of cannabinoids, is cannabis, 
also known as marijuana. Medicinal marijuana with THC 
(tetrahydrocannabinol) as a major constituent is approved 
for the supportive care of several medical conditions in 
Austria, Belgium, Canada, and several states of the United 
States [51].

BCP is a selective agonist of CB2, which is predomi-
nantly expressed on the periphery. Thereby pain modula-
tion by BCP could be largely mediated through 
non- neuronal cells. In contrast to anticancer research, 
most of the studies on analgesia focus on BCP, since 
BCPO does not bind to CB2. However, there is some 
evidence that BCPO can exert its antinociceptive action 
beyond cannabinoid system machinery.

For reliable evaluation of BCP analgesic properties, 
all data described in this review were obtained with use 
of animal models of acute or chronic pain. Kuwahata 
et al. [52] employed the mouse models of neuropathic 
pain to assess whether BCP evokes antinociception 
through activation of CB2 or CB1. In these experiments, 
the animals were administered with CB2 and CB1 

antagonists, AM630 and AM251, respectively, before BCP 
injection. The results have shown an inhibition of anal-
gesic effects of BCP by pretreatment with AM630, but 
not with AM251, which proved that antiallodynic actions 
of BCP are exerted only through activation of local 
peripheral CB2. Analgesic efficacy of oral BCP treatment 
in mouse models of inflammatory and neuropathic pain 
was investigated by Klauke et al. [6]. The antinociceptive 
properties of BCP were evaluated on wild- type, CB2(+/+), 
and knockout, CB2(−/−), mice. Similarly to studies of 
Kuwahata et al. [52], BCP acted as an analgesic agent 
by activation of CB2 since antipain effect of BCP was 
not observed in CB2(−/−) animals. Interestingly, BCP can 
diminish an acute and chronic pain not only through 
cannabinoid, but additionally through opioid system. 
This was observed in mice after oral administration of 
BCP, in which licking and jumping latency in the hot 
plate test was increased, whereas pain feeling in the 
formalin test was attenuated [53]. In contrast to BCP, 
BCPO does not attract much attention as a pain modu-
lator, although it may possess some antinociceptive 
properties since Chavan et al. [54] have documented 
centrally and peripherally mediated analgesia by BCPO 
isolated from Annona squamosa bark extract, in response 
to pain stimuli in mice.

Table 1. Concentrations of BCPO and BCP used in in vitro studies of BCP(O) anticancer activities.

 Concentration (μg/mL) Cell line Author

BCPO
Isolated from Psidium cattleianum Sabine  IC50 0.87 HepG2 Jun et al. [28]

2.98 HeLa
2.77 AGS
3.69 SNU- 1
6.03 SNU- 16

Isolated from Cinnamomum tamala leaves extract 
 IC50

8.94 A- 2780 Shahwar et al. [29]
7.19 BHK- 21

Purchased from Sigma- Aldrich IC50 57.7 CaCo- 2 Ambrož et al. [31]
Purchased from Jeju National University, Korea 6.6 KBM- 5, H1299, A293, U266, DU145 Kim et al. [37]
Purchased from Jeju National University, Korea 6.6 PC- 3, MCF- 7 Park et al. [40]
Purchased from Jeju National University, Korea 2.2 DU145, MDAMB- 231 Kim et al. [44]

6.6 U266, MM1.S
BCP

Isolated from essential oils of Aquilaria crassna 
 IC50

3.9 HCT 116 Dahham et al. [30]
5.5 PANC- 1

12.9 HT- 29
19.4 ME- 180
21.3 PC3
21.5 K562
58.2 MCF- 7

IC50 (source unknown) 64 lack of anticancer 
effects

DLD- 1/L- 929 Legault, Pichette 
[32]

Purchased from Sigma- Aldrich 4.9 × 10−5 BS- 24- 1, MoFir Amiel et al. [33]

BCP(O) concentrations are shown as: IC50, half maximal inhibitory concentration or the lowest concentration used exhibiting antiproliferative/cyto-
toxic activity. BCPO, β- caryophyllene oxide; BCP, β- caryophyllene.
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Interestingly, pure BCP displays similar analgesic activities 
as several essential oils, in which BCP is a major active 
compound. Thus, oils extracted from Dracocephalum kotschyi 
[55], Hyptis fruticosa [56], Teucrium stocksianum [57], 
Peperomia serpens [58], Vitex agnus-castus [59], and Hyptis 
pectinata [60] alleviated pain sensation to similar extent as 
BCP, which was shown in rodent pain models such as writh-
ing [55–59], formalin [58–60], hot plate [56], and tail immer-
sion [59] tests. However, it should be noted that essential 
oils are mixture of various chemical compounds, which may 
potentially modulate the antinociceptive action of BCP.

One can hypothesize that better analgesic effects may 
be obtained when BCP is used in combination with other 

natural agent(s) of desired properties. For this purpose, 
Fiorenzani et al. [61] studied the antinociceptive activity 
of BCP in mixture with docosahexaenoic acid (DHA). 
DHA is a member of omega- 3 polyunsaturated fatty acids 
(PUFAs) and well- known anti- inflammatory mediator [62]. 
Thus, a combination of BCP and DHA was suspected to 
bring a double, analgesic and anti- inflammatory effect in 
the treatment of inflammation- associated pain. However, 
it turned out that mixture of BCP+DHA did not exert 
an additional analgesic activity over that of BCP alone 
in animal model of formalin- induced pain. On the other 
hand, the same study has revealed that DHA attenuated 
BCP toxicity in fibroblasts.

Figure 3. Anticancer and analgesic activities of β- caryophyllene (BCP) and β- caryophyllene oxide (BCPO). BCP and BCPO induce apoptosis and 
suppress proliferation of cancer cells as well as reduce levels of tumor angiogenesis and metastasis markers. Molecular mechanisms of BCPO anticancer 
activities include activation of mitogen- activated protein kinase (MAPK) pathway as well as inhibition of PI3K/AKT/mTOR/S6K1 and STAT3 signaling. 
Additionally, BCP(O) increase cellular accumulation of chemotherapeutic drugs, enhancing their anticancer effectiveness. In response to pain stimuli, 
BCP and BCPO reveal different mode of actions. BCP- induced effect of analgesia is obtained with endocannabinoid system (ECS) involvement, while 
BCPO analgesic activity is ECS independent. BCP binds to peripheral cannabinoid receptor type 2 (CB2) leading to β- endorphin release from 
keratinocytes and activation of opioid receptors. In contrast, antipain effects of BCPO are possibly achieved by inhibition of central pain receptors. 
Additionally, both compounds inhibit the release of inflammatory mediators of pain.
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To understand better the BCP- mediated analgesia, it 
is essential to get insight into mechanism of its action. 
It still requires elucidation, however current knowledge 
about this compound allows for some assumptions to be 
made. As phytocannabinoid, it may act in a similar man-
ner to other CB2- selective agonists. CB2 activation can 
mediate antinociception either directly or indirectly, where 
direct activity is exerted through CB2 stimulation on pri-
mary sensory neurons [63]. In contrast, indirect analgesic 
responses are related to inhibition of the release of pro-
inflammatory factors or/and may engage other systems 
involved in analgesia, such as endogenous opioid system 
[64]. The literature data indicate that CB2- selective agonists 
stimulate peripheral release of endogenous opioids such 
as β- endorphins, which activates μ- opioid receptors on 
primary afferent neurons [65]. In inflammatory hyperal-
gesia, indirect pain inhibition through CB2 localized on 
mast and immune cells is possibly achieved by the reduc-
tion of prostanoids or cytokines release, which are respon-
sible for peripheral nociceptor sensitization. Other 
CB2- dependent analgesic activities, which are not associated 
with inflammation, such as inhibition of nerve injury- 
induced sensory hypersensitivity or inhibition of acute 
thermal nociception, are still indeterminate [66]. Fernandes 
et al. [67] found that BCP derived from essential oil of 
Cordia verbenacea exhibited anti- inflammatory properties, 
blocking release of proinflammatory molecules, such as 
TNFα and prostaglandin E2 (PGE2). The same report 
showed BCP- induced decrement in expression of COX- 2 
and inducible nitric oxide synthase (iNOS), which could 
suppress the NF- κB activation and in a consequence pro-
mote analgesia. In addition, Paula- Freire et al. [53] reported 
a decreased level of IL- 1β in the injured sciatic nerve 
after BCP treatment, in a model of chronic pain. Another 
possible mechanism of BCP pain modulation may be 
related to peripheral CB2 simulation and β- endorphin 
release from keratinocytes, which was noted after local 
and intraplantar injections of BCP in response to capsaicin- 
induced nociception. Interestingly, Katsuyama et al. [68] 
showed that BCP potentiated an analgesic action of mor-
phine, thereby combination therapy with BCP may be 
suggested in order to reduce doses and common side 
effects of this opioid agent.

Conclusions

We have presented in this review that natural products, 
BCP(O), have strong potential for being used in medical 
applications, due to their anticancer and analgesic proper-
ties (Fig. 3). Both compounds could be applied in alter-
native therapy of cancer, supporting the conventional 
forms of treatment. Since BCP(O) enhances the efficacy 
of some chemotherapeutics, they could be employed in 

combination therapy with the classical anticancer drugs. 
BCP has also the ability to reduce pain, without causing 
psychoactive side effects, as other CB1 agonists do, which 
makes it particularly valuable in chronic pain treatment. 
Moreover, BCP and BCPO could be used in a mixture 
as they often occur in plants. In a medical practice, the 
application of such BCP/BCPO mixture in combination 
with the classical anticancer drugs could bring many ben-
efits, thus could potentiate the efficacy of used chemo-
therapeutics, elicit the supplementary antineoplastic effect, 
as well as reduce the refractory cancer pain at the same 
time. However, this potential triple activity of BCP/BCPO 
need to be carefully evaluated in animal models of cancer 
and cancer pain. Importantly, BCP and BCPO are found 
in reasonable amounts in wide range of plants and are 
well tolerated at high doses, thus easily accessible and 
safe. Despite the fact that both sesquiterpenes can be 
potentially useful in medicine, the metabolic, biochemical, 
and molecular characteristics of these natural compounds 
are still humble and need further investigations.
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