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Introduction: Cannabidiol (CBD) is reported to produce pain relief, but the clinically 
relevant cellular and molecular mechanisms remain uncertain. The TRPV1 receptor inte-
grates noxious stimuli and plays a key role in pain signaling. Hence, we conducted in vitro 
studies, to elucidate the efficacy and mechanisms of CBD for inhibiting neuronal hypersen-
sitivity in cultured rat sensory neurons, following activation of TRPV1.
Methods: Adult rat dorsal root ganglion (DRG) neurons were cultured and supplemented 
with the neurotrophic factors NGF and GDNF, in an established model of neuronal hyper-
sensitivity. Neurons were stimulated with CBD (Adven 150, EMMAC Life Sciences) at 1, 
10, 100 nMol/L and 1, 10 and 50 µMol/L, 48 h after plating. In separate experiments, DRG 
neurons were also stimulated with capsaicin with or without CBD (1 nMol/L to10 µMol/L), 
in a functional calcium imaging assay. The effects of the adenylyl cyclase activator forskolin 
and the calcineurin inhibitor cyclosporin were determined. We also measured forskolin- 
stimulated cAMP levels, without and after treatment with CBD, using a homogenous time- 
resolved fluorescence (HTRF) assay. The results were analysed using Mann-Whitney test.
Results: DRG neurons treated with 10 and 50 µMol/L CBD showed calcium influx, but not 
at lower doses. Neurons treated with capsaicin demonstrated robust calcium influx, which 
was dose-dependently reduced in the presence of low dose CBD (IC50 = 100 nMol/L). The 
inhibition or desensitization by CBD was reversed in the presence of forskolin and cyclos-
porin. Forskolin-stimulated cAMP levels were significantly reduced in CBD treated neurons.
Conclusion: CBD at low doses corresponding to plasma concentrations observed physio-
logically inhibits or desensitizes neuronal TRPV1 signalling by inhibiting the adenylyl 
cyclase – cAMP pathway, which is essential for maintaining TRPV1 phosphorylation and 
sensitization. CBD also facilitated calcineurin-mediated TRPV1 inhibition. These mechan-
isms may underlie nociceptor desensitization and the therapeutic effect of CBD in animal 
models and patients with acute and chronic pain.
Keywords: cannabidiol, CBD, chronic pain, DRG neurons, cAMP, calcium imaging, 
desensitization

Introduction
Several cannabinoid preparations have been developed for treating conditions such 
as epilepsy, chemotherapy-associated nausea, and chronic pain.1,2 Significant dose- 
related pain relief has been reported in clinical studies of cannabinoids for post-
operative pain,3 and for chronic neuropathic pain following brachial plexus injury.4

Cannabidiol (CBD), the non-psychoactive component of Cannabis sativa, has 
been reported to exert anti-convulsive, anti-inflammatory, neuroprotective and 
analgesic effects, and to be well tolerated in humans.5 A number of preclinical 
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and clinical studies have examined the molecular basis and 
therapeutic effects of CBD, in experimental models of 
neurological disorders and in clinical trials.6 The efficacy 
of CBD in attenuating seizures and social deficits was 
demonstrated in a mouse model of Dravet syndrome.7 

Clinical trials have also shown that CBD is well tolerated 
in children and young adults with Dravet syndrome and 
Lennox-Gastaut syndrome, with reduced incidence of con-
vulsive seizures.8–10 CBD is a major constituent in 
Sativex, combined with Δ9-THC, and used for treating 
the limb spasticity and pain associated with multiple 
sclerosis.11

Cannabinoids exert their effects mainly via the canna-
binoid receptors CB1 and CB2.12 For CBD, further recep-
tor targets are also implicated, including the orphan 
G-protein coupled receptor GPR55, the transient receptor 
potential of vanilloid subtype 1 (TRPV1), the 5-HT1a 
receptor and the α3 and α1 glycine receptors.13–15

In contrast to Δ9-THC, CBD has the advantage of not 
being psychoactive5,6 but is reported to potentiate the 
beneficial effects of Δ9-THC, to enhance its tolerability 
and to widen its therapeutic window.16 The presence of 
CBD in cannabis preparations containing a high ratio of 
CBD:Δ9-THC may protect against the development of 
psychotic symptoms, compared with preparations with 
low CBD:Δ9-THC ratios.17 The beneficial effects of 
CBD have been described in several experimental animal 
models of neurological disorders, especially epilepsy, via 
neuronal inhibition. In a model of paclitaxel-induced neu-
ropathy in mice, treatment with CBD alleviated the devel-
opment of allodynia.18

CBD has been reported to produce pain relief, but the 
clinically relevant cellular and molecular mechanisms 
remain uncertain. The TRPV1 receptor is a potential target 
for some of the pharmacological effects of CBD and its 
analogues, via calcium influx in TRPV1 receptor- 
overexpressing HEK cells, with similar efficacy to 
capsaicin.19 Recent studies also indicate that CBD and 
cannabidivarin (CBDV) stimulate and then desensitize 
TRPV1, TRPV2 and TRPA1 receptors in transfected 
HEK cells, and diminish epileptiform activity in hippo-
campal slices.20 CBD is reported to induce calcium influx 
in TRPA1- and TRPM8-expressing DRG neurons, though 
at very high concentrations (100 µMol/L) in mustard oil 
sensitive neonatal DRG neurons.21 The relevance of CBD 
effects on TRP channels other than TRPV1 is uncertain, 
since they were observed at high micromolar 
concentrations.22

Pharmacokinetic studies have provided estimates of 
systemic plasma concentrations following CBD exposure. 
Healthy adults administered a single oral dose of 750 mg 
purified CBD had estimated blood maximum CBD con-
centration (Cmax) of 1000 ng/mL (3.3 µMol/L).23 Cmax of 
3.0 ± 3.1 µg/L serum CBD levels (equivalent to 10 nMol/ 
L), and maximum time (Tmax) of 2.8 ± 1.3 h were also 
reported in healthy volunteers after a single dose of nabix-
imols, containing 10 mg each of CBD and THC.24 

Similarly, a Phase 1 study of purified CBD reported the 
maximum plasma concentration of CBD in healthy volun-
teers administered 1500 mg CBD was 1385 ng/mL (4.6 
μMol/L), with an average Tmax of 4 h.25 These studies 
raise questions about the relevance of in vitro studies using 
significantly higher ligand concentrations.

We have now examined the effect of CBD, at physio-
logically relevant concentrations, in pain signaling via 
TRPV1 in cultured adult rat DRG neurons. TRPV1 is 
a non-selective transmembrane cation channel expressed 
by polymodal nociceptors and integrates a number of 
noxious exogenous and endogenous stimuli, including 
capsaicin, heat, low pH, and inflammatory ligands,26 to 
mediate thermal hyperalgesia.27 The neurotrophic factors 
(NTFs) NGF and GDNF are increased in tissues in painful 
conditions28 and have a sensitizing effect on sensory neu-
rons via TRPV1.29–31 In this study, DRG neurons were 
cultured with NTFs to generate a model of neuronal hyper-
sensitivity as previously described,30 and the effects of 
CBD on capsaicin responses were studied in this model.

Materials and Methods
Neuronal Cultures
Bilateral DRG from all levels were micro-dissected from 
freshly euthanized adult female Wistar rats (Charles River 
UK Ltd, Margate, Kent, UK) (with approvals from the 
Animal Welfare Ethical Review Body, Imperial College, 
following UK Home Office approved procedures, and in 
keeping with the 3Rs ARRIVE guidelines). DRG were 
collected in Ham’s F12 medium and enzyme digested in 
Ham’s F12 nutrient medium containing 0.2% collagenase 
and 0.5% dispase for 3 hours at 37°C, as previously 
described.32,33 Enzyme digested tissue was triturated in 
modified BSF2 medium [containing 2% HIFCS, 0.1 mg/ 
mL transferrin, 60 ng/mL progesterone, 0.16 μg/mL 
sodium selenite, 3 mg/mL bovine serum albumin (BSA), 
penicillin/streptomycin 100 μg/mL each, 16 μg/mL putres-
cine, 10 μg/mL insulin], soybean trypsin inhibitor and 
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DNAse to obtain a neuronal suspension. One rat was used 
for each experiment, and the neuron suspension was plated 
on several poly-l-lysine and laminin (20 μg/mL each) 
coated glass-bottom MatTek dishes (MatTek Corp, USA), 
at 5000 neurons per dish for calcium imaging studies. 
Two-milliliter BSF2 medium supplemented with 100 ng/ 
mL of NGF and 50 ng/mL GDNF were added to all 
culture dishes and incubated at 37°C in a humidified envir-
onment of 5% CO2 in air, for at least 48 hours before 
further study.

Functional Studies
Calcium imaging was used to determine the effect of acute 
CBD application on the capsaicin sensitivity of DRG 
neurons. Studies were conducted in HEPES buffered phe-
nol-red free Hanks Balanced Salt Solution (HBSS) con-
taining 0.1% BSA, as previously described.32,33 

Experiments were conducted at 37°C in a humidified 
environment on an inverted Nikon microscope (Diaphot 
300; Nikon, UK Ltd, Kingston upon Thames, Surrey, UK) 
and cultures were alternately excited at 340 and 380 nm 
λex wavelengths. Responses to paired capsaicin stimuli 
were measured as the maximum change in the 340/380 
λex nm ratio from baseline in neurons loaded with 2 µMol/ 
L Fura2 AM (Life Technologies, Paisley, UK), before, 
during and after addition. Images of 15 −20 neurons in 
each experiment were captured every 2 seconds in each of 
three channels – brightfield, 340 and 380 nm λex/510 λem, 
and recordings of mean intracellular changes in bound/ 
unbound Ca2+ ratio were obtained before, during and 
after the addition of capsaicin. This provided baseline 
recordings as well as intracellular changes in Ca2+ levels 
in response to added capsaicin. Cells were uniformly 
loaded with the dye and no intracellular compartmentali-
sation of the loaded dye was observed. Images were 
acquired with a Hamamatsu Orca CCD Camera and ana-
lysed with AQM Advance Kinetic imaging software. 
Individual cells under study were highlighted as regions 
of interest for calculating the mean ratios of bound to 
unbound calcium within the area of interest.

In each experiment, neurons were exposed to capsaicin 
for a maximum of two applications, first to identify cap-
saicin sensitive neurons (using 200 nmol/L capsaicin for 
15 seconds), followed by washout and rest period of 45 
minutes. The second stimulus of 1 μMol/L capsaicin was 
used to test the effect of the added CBD or vehicle (0.2% 
ethanol), after the washout period. Only neurons respond-
ing to 200 nmol/L capsaicin with a rapid and sustained 

increase in 340/380 ratio of more than 20% from the 
baseline were selected for the study. The second capsaicin 
stimulus, of 1 μMol/L, was applied after the baseline had 
returned to normal. Neurons in which the baseline 
remained elevated were considered to be desensitized 
and excluded from the analysis.

Statistical Analysis
In each experiment, for each neuron, the second response 
to capsaicin was expressed as a percentage of the first, 
with or without added drugs. Percent responses for each 
experiment were normalized to the vehicle-treated control. 
Averages were calculated for each group, and the non- 
parametric Mann–Whitney test was used to compare 
between groups, using Graphpad Prism software. Data 
are presented as mean ± s.e.m., *P<0.05 was considered 
statistically significant, **P<0.01, and ***P<0.001. “n” 
indicates the number of animals used for each group.

Solutions
CBD (Adven 150, EMMAC Life Sciences) was dissolved in 
DMSO to obtain a 100 mMol/L stock solution, and capsai-
cin was dissolved in ethanol at 20 mMol/L concentration. 
CBD and capsaicin stocks were aliquoted and stored at −20° 
C, and fresh aliquots were made up to 500x final concentra-
tion in ethanol prior to use. All chemicals were obtained 
from Sigma-Aldrich UK unless otherwise stated.

cAMP Assay
For each experiment, DRG neurons were plated in poly- 
l-lysine (20 µg/mL) and laminin (20 µg/mL) coated 24 well 
plates, in duplicate, at 8000 neurons/well, in BSF2 medium 
plus NGF (100 ng/mL) and GDNF (50 ng/mL) and incu-
bated at 37°C in a humidified incubator containing 5% CO2. 
After 48 hours, the medium was aspirated from each well 
and replaced with 250 µL of HEPES buffered HBSS con-
taining 10 µMol/L IBMX (3-isobutyl-1-methylxanthine), 
followed by 1 µMol/L CBD and stimulated with 1 µMol/L 
Forskolin, at 37°C. Lysis buffer (100 µL) was added to each 
well after 10 minutes. Cells and medium were aspirated and 
cAMP levels were assayed using the cAMP Dynamic 2 
assay (Cisbio) and read using a Spectramax i3x multimode 
plate reader with HTRF module installed, according to the 
manufacturer’s instructions.

Results
We used calcium imaging to indicate neuronal activation 
in response to the application of CBD at 1, 10, 100 nMol/ 
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L, and 1, 10 and 50 µMol/L, and observed calcium influx 
consistently at 10 and 50 µMol/L (Figure 1). Only 340/380 
ratio changes of 0.02 or more from the baseline were 
considered to constitute a response. The responses to 
CBD at 10 µMol/L (0.11 ± 0.02, n=7, *P=0.03), and 50 
µMol/L (0.15 ± 0.02, n=5, *P=0.01), were significantly 
higher than responses to 1 µMol/L CBD (0.04 ± 0.02, 
n=6). The proportion of neurons responding was dose 
dependent, with increasing numbers responding at higher 

concentration. The proportion of neurons responding with 
calcium influx to 1 µMol/L CBD was 1.25 ± 0.25%, to 10 
µMol/L CBD was 3.4 ± 1.6%, and the maximum of 6 ± 
0.5% to 50 µMol/L CBD (data from n=4 rats, from a field 
of 200 neurons per experiment). CBD-mediated calcium 
influx was prevented in the presence of the TRPV1 
antagonist SB705498. Application of CBD was followed 
by desensitization to the subsequent application (Figure 1). 
The proportion of neurons responding with calcium influx 

Figure 1 CBD mediates calcium influx in DRG neurons. Sample traces demonstrating calcium influx in individual adult rat DRG neurons, with 1 µMol/L CBD (A), 10 µMol/L 
CBD (B) and 50 µMol/L CBD (C) indicated by increase in 340/380 ratio (y-axis), and duration in seconds (x-axis). Calcium responses to 50 µMol/L CBD (D), were abolished 
in the presence of 10 µMol/L TRPV1 antagonist SB705498 (E), and partly restored after washout and reapplication of 50 µMol/L CBD (F). Graph showing summary of CBD 
dose-related calcium influx (G); arrow on y-axis indicates threshold of detection of positive responses i.e. increase of 0.02 from baseline. EC50 is estimated between 1 and 10 
µMol/L CBD (*P<0.05). Dose-related increase in the proportion of neurons responding to CBD application with calcium influx (H), shows that maximum 6% neurons 
responded to the highest concentration (50 µMol/L) of CBD tested.
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to CBD application was far less than those responding to 
200 nMol/L capsaicin (~50%).

We also used calcium imaging to examine the effect of 
CBD on capsaicin responses, in a model of neuronal hyper-
sensitivity. As TRPV1 expression is restricted to a subset of 
DRG neurons, this required the identification of individual 
capsaicin-sensitive neurons. In control experiments, TRPV1 
expressing neurons were identified by a 15-second applica-
tion of 200 nmol/L capsaicin (Figure 2A), followed by wash-
out of medium and a rest period of 45 minutes to allow the 
intracellular 340/380 (bound/unbound calcium) ratio to 
return to the baseline. A response was characterized by 
a rapid and sustained increase in intracellular calcium indi-
cated by a rise in the 340/380 ratio, more than 0.02. 
The second stimulus of 1 µMol/L capsaicin in the presence 
of vehicle resulted in a slightly reduced response compared 
with the first response (74.4 ± 5% of the first response), due 
to tachyphylaxis (Figure 2B). Further, dose-related reduction 
of the second response was observed in the presence of CBD 
(Figure 2C and D). Responses in the presence of CBD at 
different doses were normalized to vehicle-treated neurons 
(Figure 2E, Table 1).

In order to identify the mechanism underlying CBD- 
mediated desensitization, we examined the effect of for-
skolin in our functional assay. Forskolin is known to 
activate adenylyl cyclase, leading to the formation of 
cAMP. The availability of cAMP plays an important role 
in TRPV1 sensitization, by phosphorylation via activation 
of protein kinase A, and TRPV1 is desensitized when 
dephosphorylated. Capsaicin responses were maintained 
in the presence of 20 µMol/L forskolin (95.9 ± 6.12%, 
n=6), compared with CBD-mediated desensitization of 
capsaicin responses, that were reduced (51.37 ± 6.5%, 
n=6). In the combined presence of 20 µMol/L forskolin 
and 1 µMol/L CBD, desensitization was abolished (aver-
age capsaicin response 96 ± 11% of control, n=5) (Table 2, 
Figure 3A), indicating that the inhibitory effect of CBD 
was reversed in the presence of cAMP induced by the 
activity of forskolin.

We also examined the effect of the calcineurin inhibitor 
cyclosporin, on CBD-mediated desensitization of capsai-
cin responses. Calcineurin (also known as protein phos-
phatase PP2B) is responsible for protein 
dephosphorylation, and TRPV1 desensitization. Capsaicin 
responses were maintained in the presence of 100 nMol/L 
cyclosporin (90.5 ± 5.6%, n=5), and the presence of 
cyclosporin reversed the CBD-induced desensitization, 

significantly enhancing capsaicin responses to 102.4 ± 
14.8% of control (n=5, *P<0.05) (Table 3, Figure 3B).

To confirm the role of cAMP in our functional assay, 
we quantified cAMP levels biochemically by homogenous 
time-resolved fluorescence (HTRF), which showed that 
basal levels of cAMP were similar in CBD treated neurons 
to those treated with vehicle alone. Elevation of cAMP 
levels by 1 µMol/L forskolin was significantly diminished 
in the presence of 1 µMol/L CBD (Figure 4). This sug-
gests that CBD is able to prevent the activation of adenylyl 
cyclase by forskolin, presumably through activation of 
a Gαi-coupled GPCR.

Discussion
The effects of CBD have been widely reported, including 
pain relief, but the underlying mechanisms remain unde-
termined, and are now of great interest globally.

This study shows that CBD stimulated calcium influx 
in DRG neurons at concentrations of 10 and 50 µMol/L as 
previously reported,19,20 in agreement with the findings of 
Iannotti et al. Similar to their findings, we have observed 
increased numbers of neurons responding with calcium 
influx to high dose CBD application, even though the 
percentage of neurons responding was low. These stimu-
latory effects were proposed to define CBD as a TRPV1 
agonist with calcium-dependent effects of subsequent 
desensitization. As the calcium influx following the appli-
cation of CBD was abolished in the presence of the 
TRPV1 antagonist SB705498, we conclude that CBD 
interacts with TRPV1 in DRG neurons. We also observed 
dose-related desensitization with CBD concentrations 
from 1 nMol/L to 1 µMol/L, which do not generate cal-
cium influx. At 1 µMol/L CBD, 1.25 ± 0.25% of neurons 
showed calcium influx just above the detection threshold, 
which is far less than the TRPV1 responding neurons. 
Thus, calcium influx-mediated desensitization is unlikely 
to apply to our observations in this study, unless the low 
dose CBD-mediated calcium influx that was below the 
sensitivity of detection of our system. The concentrations 
used in our study seek to determine the effects of CBD at 
concentrations within the range (Cmax 1–3 µMol/L), 
observed in the plasma of healthy volunteers given pur-
ified CBD in clinical studies.24,25

The CBD-induced desensitization was significantly 
greater than the expected reduction in neuronal respon-
siveness due to repeat capsaicin stimulation (i.e. 
tachyphylaxis).34,35 Our study showed that maximum 
desensitization was observed with 1 µMol/L CBD; the 
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Figure 2 CBD desensitizes capsaicin responses in DRG neurons. Capsaicin sensitive neurons were identified by an increase in intracellular calcium ratio, following 200 nMol/ 
L capsaicin application (A) Following washout and rest period of 45 minutes, a second application of 1 µMol/L capsaicin resulted in slightly reduced responses compared with 
the first due to tachyphylaxis (B). In another dish, capsaicin-sensitive neurons were similarly identified with 200 nMol/L capsaicin (C), and following the washout and 45 
minutes rest period, the second response to 1 µMol/L capsaicin was significantly reduced in the presence of 1 µMol/L CBD (D). Dose-related reduction in capsaicin 
responses was observed in the presence of CBD, and capsaicin responses in the presence of CBD were normalized to vehicle-treated neurons. *P=0.015, **P=0.004, Mann– 
Whitney test. Percent inhibition was calculated and IC50=100 nMol/L (E).
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higher concentration tested, 10 µMol/L, resulted in less 
desensitization. This observation suggests that higher 
micromolar concentrations may have a predominantly sti-
mulatory acute effect, as observed in our study and as 
reported in previous studies.19,20

Having established the desensitization effect of CBD at 
“physiological” doses on capsaicin-evoked responses in 
cultured DRG neurons, we investigated the underlying 
mechanisms. Calcium imaging also showed that CBD- 
mediated TRPV1 inhibition/desensitization was comple-
tely reversed in the presence of forskolin, which is 
known to activate adenylyl cyclase, leading to the eleva-
tion of cAMP.36 Capsaicin responses in the presence of 
forskolin alone were similar to vehicle controls. The 
increased availability of cAMP leads to the phosphoryla-
tion and sensitization of TRPV1. This was prevented in the 
presence of CBD, when TRPV1 was desensitized, and 
cAMP levels were significantly reduced compared with 
forskolin. In the combined presence of CBD and forskolin, 
cAMP levels were reduced compared to those with for-
skolin alone (Figure 4). Thus, CBD appears to prevent the 
activation of adenylyl cyclase by forskolin, resulting in 
reduced cAMP and consequent TRPV1 desensitization.

TRPV1 desensitization by CBD was also reversed by 
the calcineurin inhibitor cyclosporin, which resulted in 
significant sensitization compared to vehicle-treated 

neurons. Calcineurin is the protein phosphatase PP2B, 
responsible for protein dephosphorylation, and consequent 
TRPV1 desensitization.34–36 The calcineurin inhibitor 

Table 1 CBD Dose-Related Effects on Capsaicin Responses 
Normalized to Control

CBD 
nmol/L

0 
(Vehicle)

1 10 100 1000 10,000

% 

Response

100 89.16 79.86 69.16 51.37 56.3

s.e.m 6.7 7.0 7.9 7.3 6.5 3.7

n = 5 3 4 4 6 4

Table 2 Effect of Forskolin on CBD-Mediated TRPV1 
Desensitization

Percent 
Response

Vehicle 
0 uMol/L 
CBD

20 µMol/L 
FSK + 1 
uMol/L Caps

1 
uMol/ 
L CBD

20 µMol/L 
FSK + 1 
uMol/L 
CBD

Mean ± 

sem (n)

100 ± 6.7 

(5)

95.9 ± 6.1 (5) 51.3 ± 

6.5 (6)

96 ± 11 (5)

Note: Data showing the desensitization effects of CBD on capsaicin responses are 
reversed in the presence of forskolin.

Figure 3 Reversal of CBD-mediated TRPV1 desensitization in DRG neurons. 
Capsaicin responses without any added drugs (A, bar 1), were similar to responses 
in the presence of 20 µMol/L forskolin (FSK) (A, bar 2). Capsaicin responses were 
significantly reduced (51.37 ± 6.5% of control, n=6, **P=0.0043), in the presence of 
1 µMol/L CBD (A, bar 3). CBD-mediated desensitization of capsaicin responses was 
abolished in the presence of 20 µMol/L forskolin (FSK) (bar 4, **P=0.0043, n=5). 
Similarly, capsaicin responses without added drugs (B, bar 1), were equivalent to 
those in the presence of 100 nMol/L cyclosporin (CSP) (B, bar 2). Desensitization 
due to 1 µMol/L CBD (B, bar 3, **P=0.0043), was significantly reversed in the 
combined presence of CBD and the calcineurin inhibitor cyclosporin (B, bar 4, 
*P=0.017).

Table 3 Effect of Cyclosporin on CBD-Mediated TRPV1 
Desensitization

Percent 
Response

Vehicle 
0 uMol/ 
L CBD

100 nMol/L 
CSP + 1 
uMol/L Caps

1 
uMol/ 
L CBD

100 nMol/L 
CSP + 1 
uMol/L CBD

Mean ± 
sem (n)

100 ± 
6.7 (5)

90.5 ± 5.6 (5) 51.3 ± 
6.5 (6)

102.4 ± 14.8 
(5)

Note: Data showing the desensitization of capsaicin responses caused by CBD, is 
reversed in the presence of cyclosporin.
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cyclosporin reversed CBD-mediated TRPV1 inhibition 
and significantly sensitized capsaicin responses, similar 
to cyclosporin controls alone. Calcineurin acts by depho-
sphorylating proteins, here TRPV1, and its inhibition 
would lead to the maintenance of the phosphorylated 
form of TRPV1, with consequent sensitization. The 
enhanced responses suggest that calcineurin may exert 
a basal inhibitory role in regulating TRPV1 sensitivity. 
Similar cannabinoid inhibition of TRPV1 has previously 
been reported, following calcium influx and calcineurin 
activation.14 The effects of cyclosporin and forskolin sug-
gest there may be two potentially synergistic pathways for 
TRPV1 phosphorylation and sensitization which are 
blocked by CBD.

TRPV1 is modulated by several different signaling 
pathways,37 including binding to Phosphatidylinositol- 
4,5-bisphosphate,31,38,39 phosphorylation by protein kinase 
A,40 protein kinase C,41 protein kinase D,42 and the cal-
cium-calmodulin dependent protein kinase II.43 The phos-
phorylation state of TRPV1 depends on the balance 
between kinase activity and phosphatase activity, with 
the protein phosphatase 2B calcineurin playing an impor-
tant part in TRPV1 desensitization.34,36,37

As adenylyl cyclase inhibition leading to reduced cAMP 
is a hallmark of cannabinoid action,44 we examined this 
mechanism in the inhibition of TRPV1 by CBD, by measur-
ing cAMP levels. While cAMP levels were similar in CBD 
treated neurons to vehicle, they were significantly elevated in 
the presence of forskolin, as expected. Forskolin-stimulated 
cAMP levels were significantly diminished by CBD, sug-
gesting that CBD mediates its inhibitory effects via a Gi 

pathway, the main pathway in cannabinoid signaling.44 

cAMP levels depleted by CBD are likely to prevent 
TRPV1 phosphorylation, resulting in diminished capsaicin 
responses, while pre-incubation with forskolin abolished the 
CBD inhibitory effect, and restored capsaicin responses. 
These findings are in accord with our previous study, which 
showed TRPV1 inhibition in cultured human DRG neurons 
by cannabinoid receptor subtype 2 (CB2R) agonists, which 
was reversed by 8-bromo-cAMP, via a Gi pathway.32

The present study shows that CBD activated calcium 
influx in DRG neurons at 10 and 50 µMol/L, but between 
1 nMol/L to 1 µMol/L concentrations, CBD inhibited 
capsaicin responses by blocking the adenylyl cyclase – 
cAMP signaling pathway, which is essential for maintain-
ing TRPV1 sensitization. Increased cAMP levels in neu-
rons are generally associated with increased nociception, 
whereas agents that decrease cAMP synthesis have analge-
sic effects. Forskolin stimulation leads to activation of 
adenylyl cyclase with the formation of cAMP, which 
plays an important role in maintaining TRPV1 sensitiza-
tion, as TRPV1 was shown to be sensitized when phos-
phorylated by PKA, and desensitized when 
dephosphorylated.35,41 Similarly, cAMP generation in 
response to inflammatory mediators such as prostaglan-
dins, and the direct activation of PKA with cAMP analo-
gues, is known to cause behavioural hypersensitivity.45,46

Apart from the effects of CBD signaling via a range of 
receptors including CB1, CB2, GPR55, TRPA1, TRPM8, 
5-HT1a and the α3 and α1 glycine receptors,13–15 other 
effects of CBD have been described recently. These 
include non-selective inhibition of voltage-dependent 
sodium currents,47 diminished action potential firing fre-
quency via G-protein-coupled receptors, and restoration of 
the excitability of inhibitory interneurons in a mouse 
model of Dravet syndrome.7 Inhibition of voltage-gated 
T-type channels in mouse trigeminal neurons by CBD, 
with similar potency and efficacy as in our study (by 
about 45% at 1 µMol/L), has also been reported.48 

TRPV1 signaling pathways were identified as a target of 
CBD, as carrageenan-induced thermal hyperalgesia in rats 
was abolished by CBD and capsazepine, but not by CB1 
or CB2 antagonists.13 Another study found no direct effect 
of CBD on TRPV1, which mediated vasorespiratory 
effects induced by capsaicin and anandamide but not 
CBD in anaesthetized rats.49 CBD was also reported to 
block the progression of collagen-induced arthritis in mice, 
suppress lymphocyte proliferation, and diminish lipopoly-
saccharide-induced TNF secretion.50 It should be 

Figure 4 Forskolin-stimulated cAMP is inhibited by CBD. cAMP levels in the 
presence of vehicle (bar 1), were significantly increased by 1 µMol/L FSK 
(**P=0.0079, n=5), but similar to those in the presence of 1 µMol/L CBD (bar 3, 
n.s). Forskolin-stimulated cAMP levels (bar 2), were diminished by CBD (bar 4). 
cAMP levels in the combined presence of 1 µMol/L FSK and 1 µMol/L CBD were 
significantly higher than vehicle or CBD alone (*P=0.03, n=5).
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emphasized that further studies with selective antagonists 
are required to identify the GPCR(s) mediating the inhibi-
tory effects of CBD observed in our study, as well as CBD 
effects in human vs. rat sensory neurons.

In conclusion, our study shows that at physiological 
concentrations, CBD inhibits TRPV1 signaling by a dual 
mechanism: the first by inhibiting the adenylyl cyclase – 
cAMP pathway, which is essential for maintaining TRPV1 
sensitization. The second pathway likely involves calci-
neurin-mediated TRPV1 inhibition. Both mechanisms may 
underlie nociceptor desensitization and the therapeutic 
effect of CBD in animal models and patients with acute 
and chronic pain.
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