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Abstract: Fibromyalgia (FM) syndrome is a chronic condition causing pain, affecting approxi-

mately 0.5%–6% of the developed countries’ population, and on average, 2% of the worldwide 

population. Despite the large amount of scientific literature available, the FM etiology is still 

uncertain. The diagnosis is based on the clinical presentation and the severity of the symptom-

atology. Several studies pointed out pathological alterations within the central nervous system, 

suggesting that FM could originate from a central sensitization of the pain processing centers. 

Research supports the thesis of a peripheral neuropathic component, with the finding of axonal 

damages. The fibromyalgia patient has many myofascial system abnormalities, such as pain and 

fatigue, impairing the symptomatic profile. This paper revises the myopathic compensations, 

highlighting the possible role of the fascia in generating symptoms, being aware of the new 

information about the fascia’s activity in stimulating inflammation and fat cell production.
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Introduction
Fibromyalgia (FM) syndrome is a chronic condition causing pain, affecting approxi-

mately 0.5%–6% of the developed countries’ population, and on average, 2% of the 

worldwide population.1–3 Caucasian and the middle-aged females are at higher risk of 

FM, as well as those who have family members affected by the disorder.1

FM is characterized by various symptomatological manifestations such as wide-

spread chronic pain (allodynia), hyperalgesia, morning stiffness, altered sensory 

perception (light, sounds, temperature, touch, smell), sleep disorders, mood dis-

turbances (anxiety and depression), general fatigue, memory loss, irritable bowel, 

restless leg, migraine, cognitive difficulties, dysmenorrhea, and temporomandibular 

joint disorder.1–6

Despite the large amount of scientific literature available, FM etiology is still 

uncertain. The diagnosis is based on the clinical presentation and the severity of the 

symptomatology.7

In 2010 and 2011, the 1990 American College of Rheumatology established diag-

nostic criteria for the FM. The scale rating the Symptom Severity (SS) has been added 

to be used along with the Widespread Pain Index (WPI), while the previous routine 

manual exam checking the tender points’ presence has been removed.7 According to 

the American College of Rheumatology, an FM diagnosis is based on these two scales’ 

scores. A patient must have a WPI ≥7 and an SS score ≥5, or an evaluation of WPI 

ranging from 3 to 6 and an SS score ≥9.7. The duration of the symptomatology has 
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been estimated to be ≥3 months without a cause justifying 

the pain.7 Several studies highlighted pathological alterations 

within the central nervous system, leading to the hypothesis 

that the FM could originate from a central sensitization of 

the pain processing centers.8 A thalamocortical dysrhythmia, 

due to a lower threshold for the action of calcium in the thala-

mus, could contribute to a constant pain processing in the 

cortical somatosensory system, leading to the chronicity of 

the disorder.8 A recent study pointed out an increase in theta 

oscillations within the prefrontal cortex, which could cause 

persistent central sensitization.8 Furthermore, another recent 

research demonstrated a decrease in the cortical presence of 

dopamine receptors, which are involved in modulating noci-

ceptive perceptions, but further insights are needed in order to 

make certain assertions about the FM and the dopaminergic 

role.9 A study with 126 patients affected by FM recently 

demonstrated the presence, in some subjects, of a functional 

polymorphic genetic alteration, affecting the frontoparietal 

control network, which plays an important role in assess-

ing and anticipating the pain sensation.10 Neurosteroids act 

as modulators of the synaptic transmission, facilitating or 

inhibiting the GABA-A receptor response, and affecting the 

perception of pain, mood, and cognition; the serotoninergic 

tone will act as a weighing needle for the neurosteroid stimu-

lation or inhibition. An increase of neurosteroids is linked to 

the activation of glial cells, due to a higher concentration in 

mitochondrial membrane proteins; this happens in the case 

of chronic psychiatric and pain conditions, highlighting a 

cerebral inflammatory disease.10 Recent revisions still point 

fingers at central nervous causes. Other genetic differences 

(immunomodulator and purinergic, nociceptive and stress 

mediators, mitochondrial DNA mutation) between healthy 

subjects and patients affected by FM have been highlighted; 

the reasons are unknown.11,12 It has been documented that 

fibromyalgia patients have high level of central glutamate 

(posterior cingulate gyrus, posterior insula, ventrolateral 

prefrontal cortex, amygdala), which has an excitatory role 

on the function of neural cells, lowering the pain threshold.11 

Hypotheses have been advanced about vitamin D and its role 

with the pain’s central modulation: hypovitaminosis findings 

have been reported, but not in all patients.11 Magnetic reso-

nance studies show alterations in the morphology and activity 

of some brain areas. Cortical white matter reduction occurs 

in areas (left side anterior cortex, left lateral orbitofrontal 

cortex) that are important for the output of the pain modula-

tion mechanisms.12 Gray matter undergoes both a decrease 

in volume (superior temporal gyrus, thalamus, amygdala, 

periaqueductal gray, insula, putamen) and an increase in 

volume (orbitofrontal cortex, cerebellum, basal ganglia, 

cingulate cortex).12 These alterations are not fully understood. 

Brain activity seems to be increased especially in cerebellar 

areas, insula, cortical area, thalamus, and amygdala, probably 

explaining behavioral alterations related to the pain percep-

tion in patients with FM.12 In FM, a peripheral neuropathic 

component has been noticed. The epidermal nerve fibers’ 

density is a sign of so-called “small fibrous neuropathy”, 

a painful neuropathic disorder.13 Reduction in epidermal 

nerve fiber density can also occur in other conditions, such 

as in fibromyalgia. The origin could be immune-mediated, 

and it has been reported in patients affected by FM.13 The 

hypothesis supporting a peripheral origin of the FM is due 

to some data pointing to the presence of peripheral poly-

neuropathy (demyelinating lesions and axonopathy large 

nerve lesions).13 The spinal cord and brain pathway (that 

process sensory information) sensitivity is increased by the 

action of the peripheral system whose afferent nerve fibers 

detect noxious stimuli (C and A-delta fibers) and movement 

(mechanoreceptors) in patients with FM. This is probably 

due to the modulation of the NMDAR which, once activated 

thanks to the presence of glutamate and glycine, causes the 

depolarization of the medullary neural cells.14

The presence of peripheral neuropathy and inflammatory 

elements could decrease the activity-dependent slowing  of 

C-fibers, with a decrease in the latency time to pain, facilitat-

ing the medullary mechanism of the summation of the affer-

ential electrical input.15 The decreased activity-dependent 

slowing compromises the C-fibers activation threshold and 

their spontaneous activation.

The peripheral neuropathic pain could also be related to 

the constant activity of the spinal cordial microglia: these are 

immune cells of the nervous system, releasing proinflamma-

tory substances, whose characteristics are linked to those of 

the macrophage cells.16 These are highly dynamic and mobile 

cells (minutes/seconds), characteristics that allow them to be 

able to repair damaged areas, under constant surveillance of 

the bone marrow precursor.16 The activation of microglial 

cells by a nerve’s peripheral damage leads to a bone marrow 

neuroplasticity with consequent pain hypersensitivity. The 

damaged peripheral nervous tissue releases CSF1, linking 

to its glial receptor with a retrograde transport to the mar-

row. This will activate a membrane protein (DAP12), which 

will stimulate microglial genes upregulation associated with 

nociceptive hypersensitivity (Irf8 and Irf5), neuropathic 

pain, allodynia, and myalgia.16–18 The fibromyalgia patient 

is characterized by peripheral abnormalities affecting the 

myofascial system.2,19 It is known that in some chronic 
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 conditions, such as congestive heart failure (CHF) and airway 

obstruction (chronic obstructive pulmonary disease), there is 

no clear correlation between the clinical presentation and the 

instrumental evaluation (echocardiography and spirometry, 

respectively). It is the myopathic chronic adaptation, with 

the visceral disease as a background, that highly impairs the 

symptomatology, such as dyspnea, fatigue, and pain.20,21 This 

paper explains the myopathic adaptations in the fibromyalgia 

patient, highlighting the possible contribution of the fascia 

to the fibromyalgia’s symptomatology, being aware of the 

new information about the fascial role in the production of 

fat and inflammatory cells.

Myofascial system’s compensation 
in patients with FM
The fascial tissue is equally distributed throughout the entire 

body, creating various layers at different depths and forming 

a three-dimensional metabolic and mechanical matrix. The 

following four fascial planes can be distinguished: the super-

ficial fascia, the axial/appendicular fascia or myofascia, the 

meningeal fascia, and the visceral fascia.22 The myofascial 

continuum, the axial fascia, extends in depth through the 

body, surrounding the contractile areas, the vessels, and the 

nerves. This fascia includes the epimysium, perimysium and 

endomysium, the periosteum, the tissue covering tendons 

and ligaments, as well as joint capsules.22 Muscle tissue is 

an integral part of the fascial system (myofascial), having 

the same embryonic origin.21 DNA fragmentations can be 

noticed within the muscle fibers, without apoptotic signs 

or obvious evidence of inflammatory processes.23–27 Type I 

fibers (slow) are more likely to be lysed and consumed, while 

atrophy processes frequently occur within the Type II (fast) 

fibers.23,24,27–30 Anomalous lipid, subsarcolemmal glycogen 

deposits, and lipofuscin are found within the contractile 

fibers.23,29,31,32 The latter is considered to be one of the aging 

pigments, as it is formed by the oxidative degradation, and is 

known to be inversely proportional to longevity.33 Mitochon-

drial function is altered along with morphological (wider) 

and functional changes; aerobic metabolism seems to be 

deficient in both building up and using energy.23,31 There is 

a reduction in phosphate production, both under strain and 

at rest.23,24,34 There is an unbalanced relationship between 

inorganic phosphorus production  and the presence of ATP, 

indicating one of the possible causes of muscular fatigue.35 

In the case of excessive inorganic phosphorus levels, the 

phosphate binds with calcium favoring an inorganic phos-

phate precipitation, which in turn prevents the fundamental 

link with the actin for the muscular contraction to take place, 

as a result of the cross-bridge cycle.36 There seems to be a 

greater use of anaerobic muscle metabolism, probably due 

to a dysregulation of the vasoconstrictive mechanism, along 

with hypoperfusion occurring within the fibers.27,37 There 

are vasospasms of the capillary architecture, causing low 

levels of constant ischemia and low levels of oxygen release 

to the contractile cell.31,38–40 Often, the endothelial cells are 

swollen and disorganized, with a greater thickness and a 

lower permeability.31 The capillary density, ie, the number of 

capillaries per area and per square millimeter, is decreased 

as a result.28,41 The blood flow to the muscle cells is reduced, 

both at rest and in activity.38

This ischemia, though of low magnitude, may relate to the 

phenomenon of pain and altered nociceptive perception. The 

vascular hypoperfusion stimulates greater local production 

of iNOS, an enzyme involved in the synthesis of NO.42,43 In 

proper dosage, it is essential for muscle regeneration and 

perfusion, but NO’s abnormal quantities can lead to cellular 

oxidative stress.43 The oxidative stress, due to an overload of 

free radicals within the system, damages the structural integ-

rity of the fiber.42 The nociceptive pain perception also occurs 

as a result of a constant ischemia–reperfusion, related to the 

activity of ASIC3  that is involved in type III and IV somato-

sensory afferents (mechanosensitive component), as well as  

the presence of lactate and protons within the muscles.44,45 

Latent ischemia seems to produce an inflammatory systemic 

response allowing IL-1β cytokine to activate its receptor on 

III/IV (IL-1r1), thus increasing ASIC3’s expression. This 

cascade of events, probably through the use of JNK pathway, 

would modulate myalgic afferent impulse activity, resulting 

in a lower pain threshold.44 There are alterations in the con-

nective tissue metabolism, although it is not yet possible 

to find out about the causes.46 According to some studies, 

a decrease in the density of perimysium and endomysium, 

along with a build-up of connective tissue on the nerve path-

ways crossing the muscles, has been hypothesized.47,48 This 

fascial remodeling could alter the muscles afferent-related 

response, reducing pain perception.48

The electrical activity of motor neurons seems to be 

altered, due to a higher electric conductivity that coordi-

nates the contraction of the muscle.27 As a result, the nerve 

undergoes morphological remodeling superficially. A less 

dense lamellar structure is pointed out within the perineu-

rium and endoneurium (fascial tissue), along with functional 

alterations.49 If the nerve sliding through soft tissues, such 

as muscles, is impaired because of myofascial stiffness or 

restriction (eg, in case of remodeling muscle tissue), nervi 

nervorum are activated, triggering movement-related pain.50 

They play a fundamental role in regulating the metabolic 

nerve background.51 If a nerve runs into an inflamed area, 
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such as muscle fibers, despite the fact that its nociceptors 

are intact, the axon may get inflamed and more sensitive to 

mechanical variations, causing pain.51 The fascia is not just 

about contractile bundles’ subdivision or the attachment to 

bones, but everything that surrounds the perimysium, thus 

connecting every part of the body. One needs only to consider 

the lumbar fascia or the several fascicles favoring the muscles’ 

tension transmission to the whole body.52 This fascial con-

tinuum is crucial for proper motor coordination and the final 

movement to take place.52,53 Everyday movements of the body 

are possible thanks to the presence of the fascial tissues and 

their inseparable interconnection, which allows the sliding of 

the muscular framework and the sliding of nerves and vessels 

between/around contractile fields and joints, the same way all 

the organs can slide and move among each other, influenced 

by the position of the body (Figure 1). An alteration of the 

bodily movements would have a negative influence on neural, 

peripheral, and central processes, which would induce modi-

fications in the motor patterns.52 An alteration of the function 

and structure of the lumbar fascia could cause disturbances 

to the whole back, shoulders, neck, and motor imbalances of 

the muscular area of the abdomen and thorax.52

The fascial changes that have been recorded in several 

studies are thought to be among the causes of muscular 

incoordination observed in patients with FM.54–56

Adipocytes and fascia
A lot of scientific evidence has shown an existing link 

between FM patients and overweight/obesity, with an aver-

age of approximately 30% and 40%, respectively.57 Possible 

causes could be related to sleep disorders, cognitive and 

behavioral disorders, and/or decreased physical activity. All 

these reasons do not necessarily concern the total calorie 

intake or the diet quality.57,58 It has been shown that there is an 

increase in intramuscular adiposity, probably due to decreased 

mitochondrial density and function, along with disorders of 

the hypothalamic–pituitary–adrenal axis.59 Body fat composi-

tion seems to influence a higher level of nociceptive factors 

as well as a low but constant inflammatory status.59 Adipose 

tissue secretes proinflammatory cytokines, playing a role in 

generating and perpetuating pain in FM.60,61 Adipose tissue is 

composed of adipocytes  embedded in the loose connective 

tissue, preadipocytes, and immune cells; it is innervated and 

vascularized.62 Adipocytes have the ability to secrete differ-

ent cytokines, including high molecular weight adipokines. 

The latter stimulate inflammation along with increase in IL-6 

levels.62 The hormone leptin, secreted by the adipose tissue, 

is responsible for weight gain and inflammatory stuatus.62 

Adipose tissue also secretes chemokines, being stimulated by 

an already existing inflammatory process, thus contributing 

to perpetuation of the event.61 Their function is to manage 

leukocyte traffic through the interaction with specific seven-

transmembrane-spanning G protein-coupled receptors that 

are involved in development, inflammation and cancer.63

The corticotropin-releasing factor (CRF) is secreted by 

the central nervous system, released by the hypothalamus’ 

neurons, with the ability to reach peripheral tissues through 

the sensory afferent nerve fibers. This neuropeptide binds 

to the immune cells expressing its receptors (CRF1R and 

CRF2R) such as macrophages, neutrophils, mast cells, 

monocytes, and other cell types.64,65 This system is also 

seen in the adipose tissue where CRF could play a role in 

the development of a constant but low-level inflammation 

and contribute to peripheral pain modulation.65 Adipo-

cytes are thought to originate from four tissues: stromal 

vascular cells,  pericytes, adipose tissue endothelial cells, 

and/or hematopoietic stem cells within the bone marrow.66 

Recently, the ability to synthesize adipose tissue starting 

from the superficial subcutaneous fascial system has been 

discovered in animals.67 Fascial preadipocytes are unable to 

be converted into other cell types (myocytes or osteocytes), 

but they end up differentiating into adipose cells.67 In the 

rat’s superficial fascial tissue, there is a parallel growth of fat 

(adipogenesis) and vascular pathways feeding the adipocytes 

Figure 1 Sculpture of veiled woman by Antonio Corradini, 1668–1752. 
Note: We can imagine this baroque representation as the action of dysfunctional 
fascial tissue impairing the patient’s proper muscular activation and functionality.
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(angiogenesis).67 In the future, many questions will have to 

be answered. Does the adipose superficial fascia influence 

the inflammatory status? Can the fascial system as a whole 

(superficial and deep, somatic, visceral, and meningeal) 

stimulate adipogenesis and inflammation? Does the fascial 

adipose tissue influence FM symptomatology?

Conclusion
It is known that there is central sensitization and peripheral 

neurological alterations with FM. Evidences link fibromyal-

gia with overweight/obesity, which is associated with greater 

peripheral pain perception. Recently, in animal models, the 

adipogenic capacity of the subcutaneous superficial fascia 

has been uncovered. This paper discussed the possible 

involvement of the fascial system in this chronic pathology. 

The fascial system can produce inflammatory substances 

which could negatively influence the inflammatory environ-

ment. New questions are now opening up about the fascial 

continuum as a whole, whether it is capable of producing 

adipocytes, and whether this contributes to the painful symp-

tomatology in patients affected by FM.
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