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Abstract: Myofascial disease is an important complication associated with obesity and one of the
leading causes of physical disability globally. In the face of limited treatment options, the burden of
myofascial disorders is predicted to increase along with the escalating prevalence of obesity. Several
pathological processes in obesity contribute to modifications in fascial extracellular matrix mechanical
and biological properties and functions. Changes in adipose tissue metabolism, chronic inflammatory
phenotype, oxidative stress, and other mechanisms in obesity may alter the physiochemical and
biomechanical properties of fascial hyaluronan. Understanding the pathophysiological importance
of hyaluronan and other components of the fascial connective tissue matrix in obesity may shed
light on the etiology of associated myofascial disorders and inform treatment strategies. Given its
unique and favorable pharmacological properties, hyaluronan has found a broad range of clinical
applications, notably in orthopedic conditions such as osteoarthritis and tendinopathies, which
share important pathophysiological mechanisms implicated in myofascial diseases. However, while
existing clinical studies uniformly affirm the therapeutic value of hyaluronan in myofascial disorders,
more extensive studies in broader pharmacological and clinical contexts are needed to firmly validate
its therapeutic adaptation.
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1. Introduction

The Fascia Research Society, through its Fascia Nomenclature Committee, has pro-
posed both anatomical and functional definitions of the fascia. Morphologically, a fascia
was defined as “a sheath, a sheet, or any other dissectible aggregations of connective tissue
that forms beneath the skin to attach, enclose, and separate muscles and other internal
organs”. Functionally, the fascial system was defined as “the three-dimensional continuum
of soft, collagen-containing, loose and dense fibrous connective tissues that permeate the
body, providing an environment that enables all body systems to operate in an integrated
manner” [1–3]. Based on histological properties and anatomical relationships, fascia may
be classified into four types: superficial (subcutaneous) fascia, deep/muscular fasciae
(aponeurotic and epimysial fasciae), visceral fasciae, and neural fasciae (meningeal lay-
ers and connective tissue sheath of peripheral nerves) [4,5]. Structurally the fascia tissue
consists of various cell types (fibroblasts, myofibroblasts, fasciacytes, and telocytes), an ex-
tracellular matrix consisting of fibrous (types I and III collagen fibers, elastin, and fibrillin),
and aqueous (water and complex mixture of glycosaminoglycans) components, and nerve
elements (free nerve endings and mechanoreceptors) [4,6].

While the biomechanical properties of the clinically important fascia, such as the
plantar fascia, have been well-studied [7–10], the microscopic anatomy and pathology of the
fascia have received limited attention. Little is known about the elastic fiber composition,
extracellular matrix characteristics, vascularity, innervation extent of the fascia tissue,
and their role in disease and therapeutics [11]. Deepening our understanding of the
microanatomical and biochemical basis of fascial disease in obesity may provide novel
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therapeutic insights for the medical and surgical treatment of obesity-related myofascial
complications. A significant body of evidence has highlighted the critical role of fascial cells,
extracellular matrix, and nerve elements in the pathogenesis of myofascial disease [4,6]. In
this regard, a therapeutically relevant consideration is the role of hyaluronan (hyaluronic
acid) in clinical fasciopathy. The present review aims to examine the current evidence
on the pathological role and therapeutic potential of fascial hyaluronan in obesity-related
myofascial disorders.

2. Hyaluronan Biochemistry, Cellular Synthesis, and Homeostasis

Despite being first described nearly 90 years ago, the role of hyaluronan in fascia
physiology and pathology has only received focal attention in recent decades [12,13].
Hyaluronan is the dominant polysaccharide of the extracellular matrix of connective tissues
with high cross-species structural homology, being structurally identical in bacteria and
vertebrates [14]. It can be found in connective, epithelial, and neural tissues, where it
provides mechanical stability and acts as a water reservoir, lubricant, and extracellular
matrix homeostatic regulator [15]. Besides fascial hyaluronan, other body tissues such as
the skin, tendon sheaths, pleura, pericardium, synovial fluid, the vitreous body, and the
umbilical cord are also rich in hyaluronan. A 70-kg body has 15 g of hyaluronan, and about
50% of total body hyaluronan is located in the dermis [14,16].

Hyaluronan is a linear non-sulfated glycosaminoglycan composed of a single polysac-
charide chain built by repeated disaccharide units of N-acetyl-D-glucosamine and D-
glucuronic acid, respectively linked by β1–3 and β1–4 glycosidic bonds [12]. It is syn-
thesized by three plasma membrane-bound hyaluronan synthases (HAS1, HAS2, and
HAS3). As hyaluronan is synthesized in the plasma membrane rather than the Golgi, it
lacks peptides in its fundamental structure, unlike other glycosaminoglycans [17]. Hyaluro-
nan may be found in tissues in three forms: attached to plasma membranes, aggregated
with other organic molecules, or as unbound polysaccharides [17]. Hyaluronan can in-
teract with several extracellular matrix-binding proteins, such as aggrecans, but when
not coupled to other molecules, it forms a viscous environment by self-associating and
binding to water molecules [18]. In vivo, hyaluronan polymers range in size from 5000
to 20,000,000 Da and are divided into high and low molecular weight hyaluronan, each
having different functional properties [19]. While high-molecular-weight hyaluronan con-
tributes to tissue homeostasis by inhibiting cell proliferation, migration, angiogenesis,
inflammation, and immunogenicity, hyaluronan oligomers have been shown to stimulate
endothelial proliferation and migration, including tumor cell motility via their interaction
with cluster determinant 44 (CD44) receptors, which is currently thought to be the major
hyaluronan receptor on most cell types [20–22]. The membrane-bound CD44 regulates
adhesion, motility, and intracellular signaling, while the receptor for hyaluronan-mediated
motility (RHAMM) modulates intracellular signaling [23]. RHAMM is a centrosome- and
microtubule-associated protein that is highly expressed before and during mitosis and
hence prominent in neoplastic and other hyperproliferative tissues [24]. Besides the widely
distributed CD44, hyaluronan fragments may also activate RHAMM, LYVE-1 (lymphatic
vessel endothelial hyaluronan receptor), HARE (hyaluronan-receptor for endocytosis),
ICAM-1 (intercellular adhesion molecule 1), layilin, Toll-like receptor 4, and other cell
surface receptors which modulate gene expression via signaling pathways [23,25]. Ac-
cordingly, hyaluronan binding is critical for morphogenesis, matrix organization, wound
repair/regeneration, inflammation, and metastasis [23].

While the predominant cell type in the fascia is the fibroblast which plays critical roles
in mechanotransduction and synthesis of extracellular matrix precursors, a new class of
previously undescribed cells termed “fasciacytes”, which are modified fibroblast-like cells
located at the border of the different fascial layers, have been proposed as the site of fascial
hyaluronan synthesis and secretion [4,26]. These cells are termed synoviocytes in the joints
and hyalocytes in the eye, where they respectively secrete the hyaluronan of the synovial
and vitreous fluids. Fasciacytes stain prominently with Alcian blue and are visualized as
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small clusters of rounded cells with circular nuclei, perinuclear cytoplasm, and small, less-
elongated cellular processes [26]. They have been shown to express hyaluronan synthase
2 mRNA and are positive for the fibroblast marker vimentin, and negative for anti-CD68
indicating they are non-derivatives of the monocyte/macrophage lineage [26,27]. The deep
muscular fascia expresses high levels of hyaluronan in the interface between the fascia and
the epimysium [28]. This layer of hyaluronan-rich loose connective tissue between the deep
fascia and the underlying skeletal muscle was also demonstrated by Stecco and colleagues
using a combination of histological and sonographic analysis [29]. Hyaluronan has been
shown to facilitate the gliding between different fascial sublayers and between fascia and
muscle [28,30]. Given the evidence on its endomysial histolocalisation, it has also been
suggested that hyaluronan not only lubricates but promotes muscle fiber motility [31].

Proteoglycans/glycosaminoglycans, elastin, fibronectin, laminin, and numerous other
glycoproteins make up the thick dynamic extracellular matrix surrounding all fascia cells [4].
Fascia homeostasis is the outcome of dynamic interactions between cellular components
and the extracellular matrix, and reciprocally, small extracellular matrix functional and
structural changes contribute to complex cellular adaption mechanisms [32]. Additionally,
the extracellular matrix functions as a molecular storage system, capturing and releasing
physiologically active chemicals that govern cellular and tissue function, development,
regeneration, and repair [33]. The mechanical properties of hyaluronan are determined
by its molecular weight, tissue concentration, pH, covalent modifications, alterations in
binding interactions with other molecules, and fluid dynamics [30,34]. The tissue half-life
of hyaluronan ranges from a few hours to several days, and removal occurs by receptor-
mediated endocytosis and lysosomal breakdown with subsequent elimination via lymph
nodes, liver, and kidney [17,18]. Tissue hyaluronan equilibrium is maintained by both
hyaluronan synthases and the cleavage enzymes, hyaluronidases (HYAL 1, 2, and 3), as
well as non-enzymatic degradation via thermal or shear stress, acidic/alkaline hydrolysis,
and reactive oxygen species [14,34]. Tissue volume, viscosity, and elasticity are all affected
when hyaluronan mass or molecular weight decreases due to degradation or a decline in
synthesis [18].

Healthy fascia requires a specific level of the lubricating layer of hyaluronan, which
allows sliding between fascial sublayers and between fasciae and adjacent structures [35,36].
The hyaluronan composition of human fascial samples obtained from different anatomic
regions was first quantified by Fede and colleagues in 2018 [36]. They demonstrated that
hyaluronan concentration varies in accordance with the degree of fascial plane sliding
and gliding functions in different anatomic regions. For example, the average hyaluronan
concentration in the retinacula of the ankle (fascia associated with a mobile joint) was
90 µg/g of fascial tissue, in contrast to the fascia adherent to a muscle (epimysial fascia),
with limited lubrication requirement, such as fascia overlying the trapezius and deltoid,
which had an average hyaluronan content of 6 µg/g of fascial tissue [36].

3. Obesity and Myofascial Disease

The global prevalence of obesity has escalated to pandemic proportions over the past
half-century [37–39], with recent data from the World Health Organization revealing that
the condition affects 13% of the world’s population [40]. A recent estimate of the economic
impact of obesity in eight countries reported that the condition costs between 0.8% and
2.4% of gross domestic product (GDP) and that the magnitude of economic impact was
similarly substantial in both low-, middle-, and high-income countries, and projected to
increase if current trends persist [41]. The rising global trend of obesity is associated with
the increasing prevalence of cardiometabolic disorders such as type 2 diabetes mellitus and
hypertension, as well as a broad spectrum of orthopedic morbidities [42,43]. A growing
body of evidence suggests that the histological and biomolecular changes of the human
fascia contribute to several myofascial and other connective tissue disorders associated with
obesity and metabolic syndrome, including adhesive capsulitis, Dupuytren’s contracture,
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crystal-induced arthritis, plantar fasciitis, plantar fascia rupture, plantar fibromatosis,
plantar xanthoma, and enthesopathy [12,29,43,44].

Myofascial pain syndromes are musculoskeletal pain disorders with a commonly
associated neuropathic component and represent a leading cause of physical disability
globally. They are thought to originate from myofascial trigger points, which are palpable
hyperirritable painful spots involving a select number of muscle fibers, and may be acute
or chronic, primary, or secondary to another comorbidity [45]. It was long assumed that
the syndrome exclusively involved muscles, but current research suggests that the fascia
plays a critical role, although the exact mechanisms and therapeutic significance of fascial
pathophysiological roles remain an open subject for further investigation [46]. Pathological
degenerative changes in the fascia, or fasciitis, are among the leading causes of functionally
limiting musculoskeletal pain syndromes. For example, plantar fasciitis affects one in ten
people in their lifetime and accounts for 1% of all orthopedic consultations [47]. A high
prevalence of myofascial pain (high proportion of latent and active myofascial trigger
points) is similarly reported in patients presenting with chronic back pain, non-specific
neck pain, and chronic non-traumatic shoulder pain [48–51]. The prevalence of myofascial
pain ranges from 21–93% in general orthopedic practice and specialist pain clinic patients,
respectively, and up to 85% of people in the general population will experience myofascial
pain in their lifetime [52]. In the United States alone, the national economic burden of
plantar fasciitis was estimated at 284 million US dollars, with medication costs accounting
for about 80% of total costs [53]. Several risk factors have been identified, including obesity,
traumatic musculoskeletal injuries, spine disease, cumulative and repeated strain, postural
dysfunction, and physical deconditioning [45].

Obesity is a key epidemiological risk factor for myofascial disease [54–60]. A sys-
tematic review of 51 studies found that the only significant predictor related to plantar
fasciitis was a body mass index (BMI) >27 kg/m2 [61]. Even in an active population such
as recreational and competitive runners, of eleven analyzed risk factors, increased BMI and
body mass were found to be primary risk factors for fasciopathy [55]. In recent-onset type
2 diabetic subjects without complications, plantar fascia thickness was increased compared
to the controls and significantly associated with adiposity and BMI values, suggesting
important clinical implications in obese diabetic patients [62]. Plantar fascia thickness
has also been shown to be a reliable alternative index of tissue glycation and a significant
predictor of microvasculopathy, an essential denominator in several obesity-related compli-
cations [63–67]. Cytokines and other inflammatory molecules that have been demonstrated
in the environment of myofascial trigger points are also typically overexpressed in the
skeletal muscle of obese patients [68,69]. High-fat diet-induced obese mice were shown
to express elevated spontaneous neurotransmission, which facilitates the development of
myofascial trigger points [60].

4. Pathophysiological Importance and Associated Alterations of Hyaluronan
in Obesity

Hyaluronan dysregulation has been implicated in the pathophysiology of several
clinical conditions, including cancer, diabetes, autoimmune disease, and vascular dis-
ease [70–76]. Similarly, hyaluronan-mediated signaling is disrupted in various tissues
in obesity. In metabolic comorbidities associated with obesity, such as nonalcoholic hep-
atic steatosis and insulin resistance, elevated circulatory levels of hyaluronan have been
demonstrated and suggested to have diagnostic value [77–80].

Hyaluronan binds to cell-surface proteins, including receptors, to exert a broad range
of biological effects on adipose tissue. Increasing evidence points to the involvement of
hyaluronan and its receptors in obesity-related adipocyte hyperplasia and hypertrophy
and adipose tissue metabolism [81]. An enhanced expression of hyaluronan synthase-1
was demonstrated in adipose tissue from obese patients [82]. It has been suggested that
adipocyte hypertrophy contributes to adipose tissue inflammation [83]. Adipose tissue
hypertrophy during obesity-related weight gain severely destabilizes extracellular matrix



Int. J. Mol. Sci. 2022, 23, 11843 5 of 17

homeostasis by modifying the local oxygen supply, which in turn triggers cellular stress
events and inflammation [82]. A potential role of hyaluronan in adipogenesis in vivo has
been demonstrated in mouse models of high-fat diet-induced obesity [79,84–87]. Hyaluro-
nan levels were noted to be increased in these mice, mediating insulin resistance via
CD44-dependent mechanisms. Treatment with exogenous hyaluronidase was found to
dose-dependently decrease fat mass and adipocyte size and inhibit abdominal, muscular,
and hepatic lipid accumulation, consequently increasing insulin sensitivity [84–86].

The accumulation and turnover of hyaluronan polymers in many cell types have been
linked to inflammation. The role of hyaluronan in regulating inflammatory responses,
including the expression of inflammatory genes, the recruitment of inflammatory cells, and
the production of inflammatory cytokines, is now firmly established [88]. Hyaluronan mod-
ulates the cellular proliferative phase of tissue repair following inflammatory damage by
facilitating fibroblast detachment from the extracellular matrix, mitosis, and cell migration
via CD44 and RHAMM interactions [89–91]. Human and animal inflammatory disorders
such as sarcoidosis, idiopathic pulmonary fibrosis, farmer’s lung, graft rejection, experimen-
tal myocarditis, myocardial infarction, and inflammatory bowel disease are associated with
increased hyaluronan levels in tissues [92]. As previously noted, high-molecular-weight
hyaluronan is anti-inflammatory and immunosuppressive, while low-molecular-weight
hyaluronan is pro-inflammatory [21,22].

It was shown that while total plasma hyaluronan molecules remain unaltered, the
circulating level of low-molecular-weight hyaluronan fragments is elevated in obesity and
may play a key role via Toll-like receptor (TLR)-mediated activation of innate immune
cells in activating low-grade inflammatory phenotypes and other metabolic complica-
tions [82,93]. The expression of hyaluronan receptors in leukocytes is altered in obesity,
with consequent alterations in the inflammatory response of leucocytes to low-molecular-
weight hyaluronan. It was shown that low-molecular-weight hyaluronan induces nuclear
factor kappa B (NF-κB)-dependent activation in peripheral blood monocytes and THP-1
monocytes, leading to an increase in pro-inflammatory markers [82]. Hyaluronan increases
tumor necrosis factor-α (TNF-α), insulin-like growth factor-1 (IGF-1) mRNA transcript
expression and protein synthesis, interleukin 1 beta (IL-1β), and interleukin 8 (IL-8) via a
CD44-mediated mechanism and modulates cytokine-activated lymphocyte adhesion to
the endothelium [94,95]. TNF-α may also trigger the release of the hyaluronan-binding
protein, TSG-6 (TNFα-stimulated gene-6 protein), which propagates the inflammatory
response [96], while IL-1β up-regulates hyaluronan synthase-1 gene expression in adipose
tissue [82].

The inflammatory milieu in obesity underlies the pathophysiology of several associ-
ated complications, including the development of fasciopathies and tendinopathies [97–101].
The array of proinflammatory mediators, such as cytokines, adipokines (e.g., leptins),
lipocalin-1, serum amyloid A-3, and adiponectin released during the development of
obesity-related chronic inflammatory phenotypes promote insulin resistance by altering
the extracellular matrix, the capillary network architecture, and the glucose uptake mech-
anisms [102]. The resulting hyperglycemia causes changes in the stiffness, gliding, and
distribution of force transmission in the fasciae due to collagen thickening, elastic fiber frag-
mentation, and changes in glycosaminoglycans, particularly hyaluronan, with cascading
ramifications at the cellular and molecular levels, including alterations in cellular prolifera-
tion, differentiation, growth, and migration [4]. In addition, inflammation increases reactive
oxygen species, which degrade collagen, laminin, and hyaluronan, and hyaluronan frag-
ments generated by this process sustain an inflammatory cycle (recruitment of leukocytes
and release of various inflammatory mediators such as reactive oxygen species, cytokines,
chemokines, and destructive enzymes) [14,88]. Conversely, high molecular weight hyaluro-
nan works as an effective barrier to the inflammatory process and protects against oxidative
damage by free radicals (superoxide anions, hydroxyl radicals, and hypochlorite) [103].



Int. J. Mol. Sci. 2022, 23, 11843 6 of 17

5. The Etiological Significance of Changes in Hyaluronan Properties in
Myofascial Disease

The fibrous and glycosaminoglycan components of the fascial extracellular matrix can
be affected by various physical, mechanical, hormonal, and pharmacological factors [4].
Alterations in the physiological levels of hyaluronan have been demonstrated to be etiologi-
cally important in myofascial pain syndromes [29,36]. Changes in the physical and chemical
properties of hyaluronan are associated with modifications in extracellular matrix viscoelas-
ticity, mechanical plasticity, and nonlinear elasticity [104,105], all of which may contribute
to myofascial disease (Figure 1). Although the evidence is conflicting, it has been suggested
that a strong association exists between body temperature and obesity markers [106]. With
increasing temperature, both stiffening and weakening of hyaluronan-based hydrogels
were observed [107,108]. Given that pH is directly related to viscosity [109], the biomechan-
ical properties of hyaluronan may be altered by tissue acidity from increased lactic acid
accumulation seen in obesity [110]. It was shown that hyaluronan degradation occurs at
pH < 4 and pH > 11 [111]. Alterations in hyaluronan function may result from the effects
of van der Waals and hydrophobic forces on its concentration, polyelectrolyte properties,
and aggregation characteristics [25,108]. Hyaluronan takes on non-Newtonian characteris-
tics and becomes more viscous at higher concentrations [112]. Myofascial disorders may
originate from altered hydrodynamic characteristics and atypical viscoelastic properties
of fascia [46]. Obesity is associated with diminished physical mobility [113,114], which
has been shown to raise the concentration of hyaluronan without adequate hyaluronan
recycling, increase hyaluronan viscosity, and limit the lubrication and gliding of the layers
of connective tissue and muscle, with a consequent increase in overall fascial thickness,
stiffness, and pain perception [30]. Any loading condition reduces hyaluronan viscosity;
however, resting conditions allow hyaluronan to recover to a more viscous state.

The distribution of lines of force inside the fascia alters when hyaluronan changes from
lubricating to adhesive function, a process referred to as densification of fascia [115,116].
As the connective tissue and its extracellular matrix thicken and become denser, the ca-
pacity of fascial tissue to slide is reduced or eliminated [116,117]. Chronic densification
modifies the gliding of the fibrous layers, influencing collagen fiber deposition locally and
remotely [116]. While fascial densification and fibrosis describe alterations in the fascia
resulting in myofascial pain syndromes, it is important to differentiate both processes as
they have distinct pathological and therapeutic implications. Densification indicates a
potentially easily reversible modification in the loose connective tissue due to hyaluronan
super-aggregation with a decreased water-binding capacity resulting in altered mechan-
ical characteristics of the fascia but not its overall structure, whereas fibrosis refers to a
difficult-to-reverse modification of the general tissue structure and mechanical properties
from the excessive deposition of fibrous connective tissue as part of a reparative or reactive
response [25,116]. The loose connective tissue found within the deep fascia can be altered
by diet, exercise, and overuse syndromes, resulting in fascial densification, whereas trauma,
surgery, and diabetes can modify the fibrous layers of the deep fasciae, resulting in fibrosis
of the fascia [116]. Chronic, nonspecific neck pain may be reflective of fascial densification,
whereas Dupuytren’s disease and eosinophil fasciitis are typical fibrotic disorders, and
therapeutic approaches are distinct in both pathologies [46,118]. Studies have demonstrated
that mechanosensitive signaling underlies obesity-induced connective tissue fibrosis [119].
Fascial tissues contain various types of mechanoreceptors, in addition to the vast network
of free nerve endings that play important roles in pain perception and regulation [120,121].
Myofibroblasts in the fascia, which are specialized fibroblasts with contractile properties
that regulate the tissue basal tone, are also etiologically important in some pathological
fibrotic contractures such as Dupuytren disease that affects the palmar and digital fascia of
the hand [4].
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Figure 1. Relationships of pathophysiological mechanisms in obesity with changes in hyaluronan
properties and the development of myofascial disease. ECM: extracellular matrix; HAS1: hyaluronan
synthase 1; ROS: reactive oxygen species.

6. Therapeutic Considerations of Hyaluronan in Myofascial Disease

The complicated peripheral and central pathophysiological mechanisms in myofascial
pain syndromes present unique challenges for effective treatment. Current pharmaco-
logical therapies include nonsteroidal anti-inflammatory drugs (NSAIDs), opioid anal-
gesics (e.g., tramadol), muscle relaxants (e.g., tizanidine, cyclobenzaprine), anticonvulsants
(e.g., gabapentin and pregabalin), antidepressants (e.g., tricyclic antidepressants such as
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amitriptyline and serotonin-norepinephrine reuptake inhibitors such as duloxetine), benzo-
diazepines, tropisetron (5-HT3 receptor antagonist and alpha-7-nicotinic receptor agonist),
sumatriptan (peripheral 5-HT receptor agonist), lidocaine transdermal patch, intramuscular
ketamine, steroid injections, and botulinum type A toxin (BoNT-A) injections. Several non-
pharmacological treatment modalities have also been proposed, including manual therapy,
dry needling, ultrasound therapy, ischemic compression, phonophoresis, pressure release,
transcutaneous electric nerve stimulation (TENS), electrical twitch obtaining intramuscular
stimulation (ETOIMS), magnetic stimulation, and laser therapy [52,122–126]. Unfortunately,
the current pharmacological and non-pharmacological treatment modalities are not backed
by high-quality evidence regarding efficacy and safety, and the search for evidence-based
effective treatment options continues.

Unraveling novel therapeutic approaches to alleviate chronic pain syndromes may be
facilitated by an enhanced understanding of the pathophysiological importance of hyaluro-
nan and other components of the connective tissue matrix of fascia, as well as the mechanical
forces that are both permitted and restricted by fascial planes [116]. Hyaluronan’s ubiqui-
tous availability, complete resorbability, biocompatibility, hydrophilicity, unique viscoelas-
ticity, and minimal immunogenicity and adverse effects account for its wide biomedical
and clinical applications in different fields of medicine (e.g., viscosupplementation for
osteoarthritis treatment, vitreous substitution/replacement in ophthalmic surgery, as der-
matological fillers, as scaffolds in nerve-, vessel-, and adipose tissue- engineering, as drug
conjugation and delivery agent, and as an immunomodulatory agent in cancer therapeu-
tics) [14,18,127–129]. Cosmetic injection of hyaluronan as a dermal filler (an FDA-approved
clinical use) was ranked as the second and third most common non-surgical procedure
for women and males, respectively [130,131]. Intra-synovial injection of crosslinked and
non-crosslinked hyaluronan as viscosupplements is also a favored and FDA-approved
treatment for osteoarthritic pain [132–134].

Several preclinical and clinical studies have reported on the therapeutic applications
of hyaluronan in managing fasciopathies, tendinopathies, and osteoarthritis, all of which
share important pathophysiological mechanisms [18,135–146]. In an animal model of os-
teoarthritis, administration of hyaluronan to isolated medial articular nerves dramatically
lowered both ongoing and movement-evoked nerve activities, indicating a therapeutically
important antinociceptive activity in inflamed joints through an elastoviscous, rheological
effect on nociceptive afferent fibers [147]. In vitro experiments have demonstrated ther-
apeutically important effects of hyaluronan on the extracellular matrix in osteoarthritis,
including increased synthesis of chondroitin sulfate and proteoglycans, suppressed pro-
teoglycan release from chondrocyte, and cartilage cell-matrix, and inhibited proteoglycan
breakdown from cartilage. Several effects of hyaluronan on inflammatory mediators and
immune cells have been described, notably decreased levels of IL-1-induced prostaglandin
E2, TNF-α, plasminogen activator activity, increased tissue inhibitor of metalloproteinases-
1, enhanced antioxidant effects, reduced lymphocyte stimulation, motility, and proliferation,
suppressed neutrophil aggregation and adhesion, inhibited macrophage and neutrophil
phagocytosis, and enhanced polymorphonuclear leukocyte phagocytosis, adherence, and
migration [148]. These effects of hyaluronan on the extracellular matrix, inflammatory me-
diators, and immune cells are therapeutically important in fascial disease and support the
adaptability of hyaluronan for the treatment of myofascial disorders. As in osteoarthritis,
functionally limited patients with myofascial disease who have not responded adequately
to conventional pharmacological and nonpharmacological treatment options, those who
have gastrointestinal or renal intolerance to NSAIDs and other therapies, and those who
wish to postpone or are ineligible for surgery are good candidates for hyaluronan treat-
ment [132]. On the other hand, it has been suggested that obesity may be an independent
risk factor for viscosupplementation failure in patients with osteoarthritis [149], although
further investigation demonstrated that benefits were similar in normal-weight and obese
patients with mild or moderate knee osteoarthritis who responded to treatment [150].
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Indeed, a potential therapeutic role of hyaluronan injections in treating fasciopathies
has been demonstrated [151]. A recent randomized controlled trial found that the ad-
ministration of five injections of high-molecular-weight hyaluronan is a safe and effective
treatment option for patients with persistent pain for more than 12 weeks from plantar
fasciopathy [152]. In patients with various enthesopathies (lateral epicondylitis, patellar
tendinopathy, insertional Achilles tendinopathy, and plantar fasciitis), a single injection
of up to 2.5 mL hyaluronan uniformly reduced pain as assessed by the visual analog
scale (VAS) for pain and local pain symptoms 1 week after injection [145]. Tendinopathies
and fasciopathies share similar pathophysiological mechanisms, mindful that tendons are
technically part of the fascial system. Recall that the broader functional definition of the
fascial system incorporates elements such as adipose tissue, adventitiae and neurovascular
sheaths, aponeuroses, deep and superficial fasciae, epineurium, joint capsules, ligaments,
membranes, meninges, myofascial expansions, periostea, retinacula, septa, tendons, and
visceral fasciae [1].

A few studies have compared hyaluronan and other conventional therapies, as well
as different pharmacological preparations and modifications of hyaluronan. Raeissadat
et al. found that while corticosteroid injection appeared to have a faster trend of im-
provement in the short term, hyaluronan injection was comparably effective in reducing
the symptoms of plantar fasciitis [144]. Additionally, hyaluronan may also be consid-
ered a physiologically more favorable option than corticosteroids which are notorious
for a broad spectrum of short- and long-term adverse effects. At three months post-
treatment, pain ratings indicated that two peritendinous hyaluronan injections were more
effective than conventional extracorporeal shock wave therapy in treating patients with
Achilles’ midportion tendinopathy for ≥6 weeks [153]. In patients with lateral elbow,
Achilles, and patellar tendinopathy, ultrasound-guided peritendinous injections of lower-
molecular-weight hyaluronan (500–730 kDa) were safe, well-tolerated, and associated with
significant pain improvement and reduction in ultrasound-assessed tendon thickness and
neovascularization [141]. In a recent study comparing ultrasound-guided injections with
low molecular weight (500–730 KDa) and high molecular weight (>2000 KDa) hyaluro-
nan, Mohebbi et al. found that while both hyaluronan types had similar efficacy in the
treatment of rotator cuff tendinopathy, patients tolerated low-molecular-weight injections
better [154]. In patients with knee osteoarthritis, Bahrami et al. showed that a single
high-molecular-weight hyaluronan injection is as effective as multiple injections of low-
molecular-weight hyaluronan at 2- and 6-months follow-up [155]. In contrast to the native
form of hyaluronan (>1000 kDa), lower-molecular-weight forms of the molecule (<500 kDa,
especially preparations in 100–250 kDa) are pathophysiologically important as proinflam-
matory mediators [156,157]. Thus, further studies will be needed to clarify the impact of
molecular weight on the therapeutic effects of hyaluronan. Furthermore, mindful that most
of the current pharmacologic adaptations of hyaluronan in myofascial disease primarily
aim to address the pathological consequences of the changes in its tissue concentration
or molecular weight, it would be useful to explore the therapeutic endogenous or exoge-
nous modifications of hyaluronan to target other pathophysiological mechanisms such
as covalent modifications, binding interactions, rheological alterations, pH changes, and
alterations in adipose tissue metabolism and inflammatory phenotype. Focal studies in
obese patients with myofascial disease are also warranted to clarify the impact of obesity
on the therapeutic potential of hyaluronan in myofascial disease.

Some investigators have explored molecular alterations to exogenously administered
hyaluronan to change the extracellular matrix’s mechanics. Low-load elastic mechanical
features, such as lower toe modulus and a tendency toward lower toe stiffness and a
larger transition strain, are seen in the fascial extracellular matrix treated with tyramine-
substituted high-molecular-weight hyaluronan [158]. Given its relatively short half-life in
biological fluids, a number of modifications of hyaluronan molecules to extend the duration
of its biological actions have been explored. The most common of these is crosslinking
to form a hydrogel; however, this could lead to higher viscosity and toxicity [159]. On
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the other hand, stimulating endogenous hyaluronan production has been explored as
another therapeutic strategy. The endocannabinoid receptors 1 and 2 (CB1 and CB2) are
expressed in various deep fasciae, and it is known that the endocannabinoid system is
crucially involved in the modulation of pain, inflammation, and fibrosis [160]. For example,
a synthetic cannabinoid induced a rapid production of hyaluronan and hyaluronan-rich
vesicles in an in vitro culture of fascial fibroblasts, confirming a peripheral effect of the
endocannabinoid system on fascial cell regulation and remodeling of the formation of the
extracellular matrix [143].

A potential therapeutic role of exogenous hyaluronidases has also been suggested.
Trigger point injection of hyaluronidase was reported to substantially decrease clinically
assessed pain in patients with myofascial pain disorders [161]. Similarly, in patients with
spastic disorders partly related to hyaluronan accumulation in muscles, hyaluronidase
injections improved both passive and active mobility [162]. It is thought that the beneficial
effects may be related to modifications in hyaluronan viscosity. In addition, recombinant
hyaluronidase PH20 (PEGPH20) was found to significantly reduce adipose tissue mass and
adipocyte size and improve insulin sensitivity in a mouse model of diet-induced obesity [79].
These effects may ameliorate the pathological ramifications of adipose tissue inflammation
in myofascial disease. Finally, an understanding of the rheological properties of hyaluronan
provides a physiochemical explanation of the therapeutic effects of massage, manipulation,
laser therapy, and other physical therapy procedures in myofascial disease, namely the
disaggregation of the pathologic chain–chain interactions of hyaluronan molecule under
controlled physical conditions such as high temperature [46].

7. Conclusions

Obesity is a primary risk factor for myofascial disease, which is a leading cause of
physical disability globally. With the escalating prevalence of obesity, it is expected that
the burden of myofascial disease will worsen. Unfortunately, current treatment options
are limited in terms of safety and efficacy, and thus new therapeutic strategies are needed.
Clarifying the etiological significance of various components of the connective tissue matrix
of the fascia in obesity may aid in developing novel therapeutic methods for obesity-related
myofascial disorders. In particular, understanding the pathophysiological importance of
fascial hyaluronan may provide valuable therapeutic insights. Hyaluronan is the dominant
polysaccharide of the extracellular matrix of connective tissues, which provides mechanical
stability and acts as a water reservoir and lubricant, allowing sliding between fascial
sublayers and between fasciae and adjacent structures. It also acts as an extracellular matrix
homeostatic regulator via various cellular mechanisms and interactions.

Alterations in the physical and chemical properties of hyaluronan are associated with
modifications in extracellular matrix viscoelasticity and other mechanical properties and
biological functions and have been demonstrated as critical factors in the development of
myofascial disease in obesity. Understanding this pathophysiological connection paves the
way for the potential therapeutic exploitation of hyaluronan. Given its ubiquitous availabil-
ity and unique pharmacological properties, hyaluronan has found a broad range of clinical
applications, including in orthopedic disorders such as osteoarthritis, tendinopathies, and
fasciopathies. While the relatively few results of therapeutic adaptation in myofascial dis-
ease are promising and supported by the current understanding of the pathophysiological
importance of hyaluronan in fasciopathy, larger and more rigorous clinical trials utiliz-
ing a broader spectrum of myofascial disorders or different modifications of hyaluronan
molecule are warranted to validate its therapeutic potential.
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