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Abstract: Damage to the fascia can cause significant performance deficits in high-performance sports
and recreational exercise and may contribute to the development of musculoskeletal disorders and
persistent potential pain. The fascia is widely distributed from head to toe, encompassing muscles,
bones, blood vessels, nerves, and internal organs and comprising various layers of different depths,
indicating the complexity of its pathogenesis. It is a connective tissue composed of irregularly
arranged collagen fibers, distinctly different from the regularly arranged collagen fibers found in
tendons, ligaments, or periosteum, and mechanical changes in the fascia (stiffness or tension) can
produce changes in its connective tissue that can cause pain. While these mechanical changes induce
inflammation associated with mechanical loading, they are also affected by biochemical influences
such as aging, sex hormones, and obesity. Therefore, this paper will review the current state of
knowledge on the molecular level response to the mechanical properties of the fascia and its response
to other physiological challenges, including mechanical changes, innervation, injury, and aging;
imaging techniques available to study the fascial system; and therapeutic interventions targeting
fascial tissue in sports medicine. This article aims to summarize contemporary views.

Keywords: fasciae; innervation; injury; hyaluronic acid; aging; sex hormone; rehabilitation; imaging;
myofascial release

1. Introduction

Injuries to various fascial tissues can significantly reduce performance in sports [1] and
may contribute to the development and persistence of symptoms of musculoskeletal disor-
ders, including low back pain [2]. Although damage to the fascial tissue has been shown to
be influenced primarily by exercise, aging, sex hormones, obesity, and inflammation [3–14],
there is limited information about the elastic fiber composition of fascial tissue, extracel-
lular matrix properties, vascularity, extent of innervation, and their role in disease and
treatment [15]. Although these properties are fundamental for optimal sports performance,
the fascia is not considered in the physical examination and rehabilitation of sports injuries,
omitting anatomical tissues that could play an important role in sports injury rehabilitation.
For example, acute pain associated with the groin is common in athletes injured by overuse.
Acute strains have been shown to occur at the musculotendinous junction, particularly
in the adductor longus, rectus femoris, and iliopsoas muscles [16]. X-rays and MRIs are
performed to rule out the diagnosis of serious diseases, such as fractures [17–20], and
if serious diseases are ruled out, pain provocation tests are performed using palpation,
stretching, and resistance testing [21,22]. However, these evaluation methods focus on the
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joint range of motion and muscle strength and do not consider the assessment of disorders
of the fascia [23,24].

An accurate understanding of the mechanical behavior of the fascia plays an im-
portant role in investigating pathological phenomena and comprehensive analysis of its
functionality. Furthermore, the fascia and muscle in sports injuries can be identified using
conventional imaging modalities such as magnetic resonance imaging (MRI) and ultra-
sound imaging, which are valuable guides for appropriately rehabilitating sports injuries.
Furthermore, physical examination of these tissues at different sites, depending on the
pathology, may influence the rehabilitation outcome. This article will review the current
state of knowledge on the molecular to mechanical properties of fascia and its response
to other physiological challenges, including mechanical changes, innervation, injury, and
aging; ultrasound imaging and MRI available to study the fascial system; and therapeutic
interventions targeting fascial tissue in sports medicine. The purpose of this article is to
summarize contemporary views on the topics highlighted in the following sections.

2. Role of Fascial Tissue and Pathological Reactions

Fascia is widely distributed from head to toe; it encases and permeates muscles, bones,
blood vessels, nerves, and internal organs, constitutes various layers of different depths [25],
and is a connective tissue composed of irregularly arranged collagen fibers, clearly different
from the regularly arranged collagen fibers found in tendons, ligaments, or periosteal
sheets [26]. Additionally, it supports important functions of the human body, such as
posture, movement, and homeostasis [25–28], and also contains various sensory receptors
for proprioception, nociception, and even hormones [28].

Structurally, fascial tissues are composed of various cell types (fibroblasts, myofibrob-
lasts, myofascial cells, and telocytes), as well as fibrous (type I and type III collagen fibers,
elastin, fibrillin), aqueous (a complex mixture of water and glycosaminoglycans) compo-
nents, and neural elements (free nerve endings and mechanoreceptors) [29,30]. The fact
that the fascia can transmit tension far is the basis of the “biotensegrity” framework [31,32].
Biotensegrity is the application of the principle of tensegrity to the understanding of human
movement, where tensegrity is an architectural principle according to which a structure (or
tensegrity system) is stabilized by continuous tension with discontinuous compression and
functions as a single structure [32]. As the tension in the fascia increases, the connective
tissue can disperse the force around it and propagate it along the fascial system [31–34].
Forces passively imposed on the muscle by stretching are distributed throughout the tissue
via the intramuscular connective tissue [33,34]. Fascia transmits tension, influences other
muscles, plays a role in the proper coordination of body movements, and can reflect the
direction of force vectors. Fascia can actively contract, and changes in tension are caused
by contractile cells [35]. Myofibroblasts are present in developing and normal adult tissues
and are responsible for altering tissue tension [35]. Normal fibroblasts are highly sensitive
to physical stimuli.

The transition from fibroblast to myofibroblast is influenced by mechanical stress.
Upon mechanical tension, fibroblasts differentiate into proto-myofibroblasts, which con-
tain actin stress fibers in their cytoplasm that terminate in a fiber bundle adhesion com-
plex [25,36,37]. The adhesion complex bridges the internal cytoskeleton and integrins
of myofibroblasts with extracellular matrix (ECM) fibronectin fibers. Thus, this allowed
contractile forces to be generated in the nearby ECM when traction is applied; moreover,
forces within the ECM are maintained over time and are further enhanced by remodeling
and collagen deposition [37]. In addition, chronic strain, such as sitting or overuse of mus-
cles [38–40], infection and inflammation [40], and immobilization of the limb by trauma,
fracture, or casting [28–30], can produce further contraction of myofibroblast smooth mus-
cle actin fibers and contribute to joint contractures. These environments make it difficult
to maintain a relaxed state, resulting in decreased mechanical tension, and consequently,
myofibroblasts either dedifferentiate or undergo apoptosis [37]. The tipping point between
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exercise and rest is unknown; however, multiple repetitions of the contraction cycle may
result in graded and irreversible tissue contraction [37].

3. Factors Influencing the Pathological Development of Fascia Tissue (Nerve, Disorder,
Aging, Sex Hormone)

Since blood vessels and nerves are scattered throughout the fascia, invasion of these
structures via fascial changes is common [37,38]. Tissue changes translate into changes
in the mobility of the nerve, resulting in a decrease in the independence of the nerve
from its surroundings [39,40]. Changes in the fibrous tissue around the nerve can cause
entrapment lesions [39,40], and patients may notice numbness, dysesthesia, and pain [41].
Existing histological studies indicate that the fascia is the largest sensory organ because
of its large surface area [42,43]. However, it has been shown that the type and density of
innervation, including receptors, varies depending on the fascia present in the different
parts of the body, indicating that this tissue is more complex than imagined [44–51]. The
role of the fascial tissue as a sensory receptor and the environmental changes associated
with structural changes in fascial tissues may increase the stimulation of free nerve endings
in the fascia, potentially increasing inflammation and pain. Reportedly, free nerve endings
have nociceptor characteristics, and the density and length of nociceptors increase in
inflamed thoracolumbar fascia [49,50]. Moreover, repetitive identical postures, sports, and
repetitive motion may produce movement patterns that increase tissue thickness and limit
slippage between fascial layers. In addition, structural changes in the fascia that occur
after fascial adhesions due to trauma, overuse, or surgery can alter the activation of nerve
receptors embedded in the fascia [52–54]. However, few effective treatments are available
due to the complexity of the mechanism [55–57].

Mechanical stress induces the release and activation of molecules stored in the ECM,
triggering the cleavage products of collagen XVIII and other basement membrane com-
ponents; because the ECM is the primary site of the inflammatory response that occurs
in tissues. Moreover, the ECM interacts with immune cells, especially under dynamic
conditions such as growth and regeneration, and the fascial tissue requires significant
changes in the local ECM microenvironment to allow cellular adaptation and remodeling
of the ECM [58–60].

Following acute injury due to overload or anoxia in fascial tissues, the immune re-
sponse aims to phagocytose injured cells. The acute inflammatory response is usually
brief and reversible. It involves the release of inflammatory cytokines from injured cells
and macrophages, other substances (such as bradykinin, substance P, and proteases), and
molecules that sensitize nociceptive nerves [61] and promotes immune cell infiltration.
However, prolonged or repeated loading results in persistent inflammation [62–64], and
the long-term presence of macrophages and cytotoxic cytokines in and around the tissue
ultimately leads to progressive tissue damage. Cytotoxic cytokines (e.g., interleukin-1β,
tumor necrosis factor (TNF), transforming growth factor-β (TGFβ-1)) promote fibrosis
through fibroblast overgrowth and collagen matrix deposition [65]. Notably, cytokine
overproduction can also lead to nociceptive afferent nerve maintenance sensitization and
increase the production and release of substance P (nociceptive neuropeptide). Prolonged
or repeated loading results in persistent inflammation and the prolonged presence of
macrophages and cytotoxic cytokines in and around the tissue [63,64]. Eventually, tissue
damage progresses, and overproduction of cytokines is triggered. This overproduction
of cytokines maintains sensitization of nociceptive afferents and increases the production
and release of substance P [65]. Substance P stimulates TGFβ-1 production by fibroblasts.
Furthermore, the substances P and TGFβ-1 have been shown to induce fibrogenic processes
independently [65]. Therefore, it is suggested that neurogenic processes (substance P)
and loading/repair processes (TGFβ-1) may contribute to increased collagen in fascial
tissue. Fibrosis around fascial tissue affects secondary dynamic biomechanical properties,
anchoring structures to one another or inducing chronic compression [60]. In addition,
inflammatory cytokines leak into the bloodstream, causing extensive secondary tissue dam-
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age and impaired function of central nociceptors [62,66,67]. Therefore, it is suggested that
the pathogenesis of myofascial tissue injury is related to the maintenance of musculoskeletal
function during daily life and exercise in the elderly and the prevention of overuse injuries
in athletes. The following methods have been reported to decrease inflammatory cytokines.
Early treatment with anti-inflammatory agents can prevent or reduce pain induced by TNF
signaling and decrease downstream collagen production [68]. Stretching of the fascial tissue
can promote the resolution of inflammation both in vivo and in vitro, and manual therapy
can prevent overuse-induced fibrosis in some fascial tissues [69,70]. Nevertheless, there
is limited information on exercise-induced changes in myofascial tissue and its molecular
response to aging. Hence, further research is needed.

Physiological aging is a highly individualized process characterized by the progressive
degeneration of tissues and organ systems. For example, a sedentary lifestyle and repetitive
overuse of muscles with a limited range of motion can lead to myofascial pain syndrome
(MPS), producing pain in multiple areas of the musculoskeletal system resulting from
myofascial changes/fibrosis. In fact, physically active workers are less likely to develop
symptoms of MPS compared to sedentary workers [67]. Functionally, these pathological
changes alter the mechanical properties of myofascial tissue and skeletal muscles, causing
pain and age-related decreases in muscle strength and range of motion that cannot be
explained by muscle mass loss alone [5]. Physical inactivity is more likely to cause pain
due to collagen changes in fascia, decreased fascial sliding due to hyaluronic acid (HA)
aggregation, increased contractility of myofibroblasts, and increased production of inflam-
matory cytokines [46,63–65]. Furthermore, aging is associated with fluctuations in fascia
thickness. Indeed, age-related modifications are specific to different body regions. Fascia
thickness in the lower extremities decreases with age (−12.3–25.8%), while that in the lower
back increases (+40.0–76.7%) [71]. These connective tissue changes have been suggested to
decrease joint flexibility [72]. Moreover, structural and molecular changes in fascia with
aging affect force transmission in the locomotor system [73]. Fascial tissue becomes denser,
and fibrosis develops with age, reducing muscle force transmission and joint range of
motion [74,75]; consequently, body pain due to MPS is often attributed to age-related loss
of mobility and can be viewed as a natural consequence of a sedentary lifestyle.

Today, the percentage of women participating in physical activity and sports has
never been higher [76,77]. There is also a growing awareness of the potential effects of
cyclical menstrual hormones (estrogen and progesterone) on exercise performance [78]
and metabolic demand [79]. Estrogen is a major regulator of the female body composition;
however, it is also involved in muscle damage and recovery [80,81]. Reportedly, markers of
muscle damage (creatine kinase) and inflammation (interleukin 6) are significantly greater
in the follicular phase than in the mid-luteal phase [82]. Thus, the menstrual cycle phase
may be involved in inflammation and recovery. Therefore, contraceptive methods that can
alter hormonal fluctuations, such as oral contraceptives, are sometimes used by female
athletes [83–85]. Oral contraceptives generally contain estrogen and progestin [86] and
should be cautiously used. Reportedly, females taking oral contraceptives have a lower
anterior cruciate ligament (ACL) elasticity than those not taking oral contraceptives [87],
and muscle-tendon stiffness in the lower extremities of young females is lower during
the ovulatory phase [88,89]. However, oral contraceptives may adversely affect inflamma-
tory markers, as evidenced by the fact that Olympic-level elite female athletes using oral
contraceptives had higher levels of C-reactive protein, a marker of inflammation, than amen-
orrheic athletes, suggesting increased muscle damage and poor recovery potential [90,91].
In fascial tissues, acute and chronic loading stimulates collagen remodeling [6]. Moreover,
the increase in collagen synthesis with exercise is lower in females than in males, and sex
differences in injury frequency and estrogen receptor expression in human fascial tissue
suggest that estrogen may play an important regulatory role in ECM remodeling [6–8].
Estrogen replacement in older postmenopausal females inhibits collagen synthesis during
exercise; in contrast, it has a stimulatory effect on collagen synthesis at rest [9]. Furthermore,
estrogen and estrogen receptor beta (Erβ) inhibit fibrosis by decreasing TGFβ expression,
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connective tissue growth factor production and function, matrix metalloproteinases 2 and
9 expressions and activity, fibroblast conversion to myofibroblasts, and collagen I and III
production [89,90]. Thus, long-term estrogen deficiency is known to be associated with
increased fibrosis. The presence of sex hormone receptors in fascial tissues may help explain
sex differences in the prevalence of myofascial pain [88].

Changes in the physical and chemical properties of hyaluronic acid (HA) are associated
with changes in the viscoelasticity, mechanical plasticity, and nonlinear elasticity of the
extracellular matrix, as previously described [92,93], which may contribute to fascial disease.
HA occurs between the deep fascia and muscle, facilitating sliding between these two
structures and within the loose connective tissue of the fascia, ensuring smooth sliding
of adjacent fibrous fascial layers [94]. Although exercise promotes HA production and
recycling, the biomechanical properties of free connective tissue may change in response to
the amount of lactic acid accumulated after intense exercise. Furthermore, a decrease in pH
due to lactate accumulation increases the viscosity of HA, resulting in instant stiffness [95].
In contrast, immobility increases the concentration of HA without effective HA recycling,
which may increase viscosity and decrease lubrication and sliding of connective tissue and
muscle layers [96]. In addition, the thickening of the fascia caused by aging [66] increases
the distance between surfaces and leads to an increase in HA viscosity [97]. The increase
in HA viscosity within connective tissue may inhibit the sliding of fascial collagen fibers
between layers [98]. The patient may perceive this increase in overall fascial thickness as
increased stiffness and pain. An important component of pain treatment is reversing these
changes in HA; when HA becomes sticky rather than lubricated, densification of the fascia
occurs, and the distribution of force lines within the fascia is distorted [67]. Additionally,
small repetitive movements, immobility, or overuse syndromes of movement that result
in negative modifications of loose connective tissue can distort loose connective tissue
between fascial layers and densification. From the properties of HA within the ECM,
this change, reportedly, is reversible by modification of temperature, pH, and mechanical
loading (such as massage) [74,98].

4. Imaging Diagnosis

Ultrasound and MRI are the commonly used imaging modalities for fascial injuries.
Ultrasonography of fascia allows the deep fascia to be observed and provides a more
convenient assessment of subcutaneous and perimuscular connective tissue thickness
compared with other imaging modalities. Moreover, ultrasonography can also provide
dynamic images. This allows us to identify slippage and movement between the muscle
and the adjacent fascial layer and on the fascial side for the movement we wish to evaluate.
Another feature is that the thickness of the fascia varies with age [99–101]. The thickness of
the fascia and its relationship with the underlying muscles distinguish aponeurotic fasciae
from epimysial fasciae, which are covered by a fibrous sheath and maintain their position
as a muscle group or broad muscle attachment; in contrast, epimysial fasciae are covered by
a fibrous sheath and maintain their position as a muscle group or broad muscle attachment.
The epimysial fasciae characterize each muscle and determine its shape and volume. By
observing each, the relationship between muscle, fascia, bone, and surrounding soft tissues
can be identified [102,103]. Ultrasonography is also useful for muscle atrophy and fascial
tears. Muscle atrophy can be observed by measuring the volume under ultrasound. In
contrast, fascial tears can be identified by observing the damage to the continuity of the
fascia. Observing the fascia while moving it and assessing the proximal and distal areas of
the tear can also determine if the fascia is completely or incompletely torn [104,105]. MRI
can assess fascial thickening and signal changes, adjacent soft tissue, and bone marrow
edema; T1, T2; moreover, fat suppression images on MRI can identify various injuries [106].
Furthermore, MRI can identify fascial thickening, perifascial fluid retention, contiguous
tears, adjacent soft tissue edema, and bone marrow edema at fascial bone marrow edema in
the adherent area. Fascial thickening and complete tears are easily identified on MRI. For
example, fibrous tissues may demonstrate a low signal in the T1- and T2-weighted images
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and a high signal in fat suppression in some cases. Acute myofascial tears show low signal
areas of tear, high signal on fat suppression, and intermediate signal changes on T1. High
signal areas may indicate fluid retention in the soft tissues surrounding the injury. The T1-
and T2-weighted images showing heterogeneous signal intensity may indicate a neoplastic
lesion. In the case of a foreign body reaction, the incidence of a low signal on T1-weighted
images and a high signal on T2-weighted images is high. In addition, an infection may be
present with a high signal on fat suppression and a low signal on the T1-weighted images,
indicating contrasting enhancements. Thus, the degree of inflammation, localization, and
spread of infection can be evaluated [106,107]. In addition, ultrasonography and MRI are
easy to identify the fascia, and the contrast between the fascia and its surroundings is clear;
therefore, there is a high degree of inter-specialty reliability in evaluating the fascia.

5. Myofascial Release (MFR) for Muscle and Fascia Dysfunction

Myofascia degenerates due to various causes. The main causes are circulatory failures
due to trauma or reduced physical activity, disuse syndrome, overuse syndrome due to
repetitive motion, and chronic poor posture. This causes the densification of the fascia
because of the twisted collagen fibers, which harden the substrate because of dehydration.
In addition, sustained muscle contraction, such as in overuse syndrome, causes hyaluronic
acid aggregation, which is a factor that reduces the sliding properties of the fascia [58,69,70].
Furthermore, it has also been hypothesized that because of the continuity of fascia, dysfunc-
tion of fascia in one part of the body can cause stress in other body parts [108]. Thus, gliding
between the fascia and its deeper tissues, such as muscle tissue, is inhibited, reducing the
ability to maintain an antigravity posture and efficient athletic performance. Therefore, it
causes poor performance in sports and interference with daily activities. Training is neces-
sary to improve performance, especially in athletes; however, inadequate rest periods can
cause high-frequency, high-intensity training that leads to continued pointless training [109].
Maladaptive training before tissue recovery and rebuilding can lead to the accumulation
of microdamage in affected tissues, resulting in overuse injuries, thereby compromising
the athletes’ competitive performance due to pain and dysfunction [110]. As evidenced by
the fact that 39% of athletes experience unexplained musculoskeletal pain weekly [111],
athletes may continue to train despite the risk of disability. Since it is difficult to determine
training at the appropriate load and rest periods, we believe that MFR, as discussed below,
can reduce the risk of overuse injury. MFR aims to improve the mobility and length of
myofascial tissue, thereby reducing pain and allowing it to function normally [112]. As
a treatment, the injection of local anesthetics into the interfascial space was expected to
be a new anesthetic technique [113]. Nevertheless, it has since been clinically applied
and used as a hydrorelease. Reportedly, the hydrorelease has shown therapeutic efficacy,
including improvement in pain and a range of motion after arthroscopic surgery [113].
Furthermore, there was an improvement in low back pain after 5 min of intervention on
the multifidus muscle in patients with acute low back pain [114]. In addition, the therapist
and patient can see where the fascia is being stripped using ultrasound imaging, possibly
because the patient may experience changes in muscle tension and pain, thus, increasing
the level of expectations and satisfaction with the treatment. MFR in physical therapy
(manual therapy) uses techniques systematized by Barnes and colleagues [115,116]. This
is a technique that not only stretches the fascia but also unties and untwists it. Recently,
self-myofascial release (SMFR) using foam rolling (FR) has become popular. The effects of
FR include reducing delayed-onset muscle soreness after exercise [117], increasing the pain
threshold, and making the pain less perceptible [118]. It has also been reported to improve
the range of motion without decreasing exercise performance [119].

MFR has been applied to treat a wide range of disease areas, including tension-type
headaches [120], postmenopausal venous insufficiency [121], and nonspecific chronic low
back pain [122]. This is believed to be because MFR does not require joint movement and
applies mild myofascial stretching and pressure, making it safe and applicable to many age
groups and diseases.
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Furthermore, Ichikawa et al. compared fascial gliding and flexibility of the vastus lateralis
muscle with MFR and hot pack treatment and reported improved gliding and flexibility in
MFR [123]. It was suggested that continuous lengthening and pressure were necessary
to improve these. Furthermore, several reports have shown the effectiveness of MFR in
combination with conventional therapies rather than as a standalone treatment [124,125].
For example, Ozsoy et al. reported that in elderly patients with nonspecific low back pain,
the group that received MFR and trunk stabilization exercises showed a significant increase
in MFR and trunk compared to the group that received only MFR. In addition, the results
reported that trunk endurance and mobility improved in the group that received MFR and
trunk stabilization exercises [126], suggesting that MFR in combination with conventional
exercise therapy is effective.

Recently, scattered reports have shown the effectiveness of MFR in combination
with conventional treatment for postoperative orthopedic patients [127,128]. Therefore,
the Oswestry disability index (ODI) was examined at the beginning of the study, and a
1-month follow-up after the intervention was discontinued. The exercise was performed
three times a week under the supervision of a physical therapist. The results showed
that ODI improved significantly more with MFR than with SE alone, with a minimally
clinically important difference of more than 10% [129,130]. The mechanism of these effects
is suggested to be that MFR causes normalization of the apoptosis rate of damaged fascia,
changes in cell morphology, and reorientation of fibroblasts [131], reducing fascial shorten-
ing and thickening, improving normal muscle length and flexibility of fascial tissue [102].
Furthermore, by activating the descending pain suppression system [132], it is speculated
that pain modulation occurred and contributed to the improvement of ODI.

However, studies using MFR in the postoperative orthopedic setting are still limited,
making generalized conclusions difficult to establish. Postoperative patients have been
reported to experience tissue fibrosis during wound healing [133]. Kawanishi et al. reported
improved pain [134] and walking ability [135] by improving subcutaneous tissue gliding
in patients with femoral metaphyseal fractures. The effectiveness of a broad range of
orthopedic postoperative therapies that focus on the fascia and the connective tissue as a
whole needs to be clarified.

SMFR is used to prevent injuries and maintain performance in sports [136,137]. For
example, in soccer, in the early period after half-time, both physical and cognitive perfor-
mance is reduced, and the risk of injury increases [138]. Kaya et al. tested the effects of
SMFR by replicating the running distance and half-time experienced during a game with
soccer players of various levels [139]. When SMFR was performed during the recreated
half-time period, the subsequent decrease in sprint performance was suppressed [139].
This effect, reported by Okamoto et al., was attributed to SMFR improving vascular en-
dothelial function, increasing blood flow to the muscles targeted by SMFR, increasing
the supply of oxygen and other vital nutrients, and promoting more efficient removal of
metabolites [140]. Athletes, young and old, male and female, novice and elite, are prone
to delayed-onset muscle soreness (DOMS) after intense regular exercise; DOMS results
in fibrous tissue adhesions that limit joint range of motion [115,141,142]. Adhesions of
fibrous tissue and fascia occur due to disease or injury and reduce joint ROM, muscle
length, muscle endurance, and motor coordination [115,143,144]. Therefore, suppressing
DOMS may also inhibit fascial adhesions. Static stretching (SS) is generally used before
exercise to improve the range of motion and prevent injury. It is also believed to decrease
force and power, making it difficult to use before exercise [145]. However, in a study in
which SMFR was performed prior to exercise, it improved exercise performance without
decreasing force and power, in addition to improving the range of motion [142,146,147].
SMFR has also been reported to reduce muscle fatigue before exercise [147,148]. Thus, the
use of SMFR before exercise is thought to be effective in restoring range of motion, fatigue,
and performance after exercise [146,147]. A systematic review investigating the effects of
post-exercise massage reported that massage, such as MFR, stimulates the parasympathetic
nervous system, indirectly enhances the immune system by improving local circulation,
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and decreases inflammatory cytokines [149]. SMFR, especially after exercise, has been
shown to be beneficial for recovery after exercise-induced muscle damage (EIMD), DOMS,
and other impairments of physical performance [150–154]. The improved performance
after SMFR has also been reported to last up to 72 h [152,154]. SMFR has been reported to be
a safe intervention used for performance (especially flexibility) and recovery from previous
training and competition and can reduce DOMS [154,155]. These findings suggest that
SMFR, as a routine practice before and after exercise, may help prevent fascial adhesions in
athletes and reduce the incidence of injury.

When the fascia is restricted in any part, it causes stress and impairment in other
areas [156], depending on the continuity of the myofascial structure, and reduces muscle
flexibility [138]. This is a particularly important issue for athletes subjected to long-term
repetitive strain, and using SMFR with FR is an important part of an athlete’s training.
Therefore, SMFR with FR is recommended for inclusion in athletes’ training regarding
performance loss, injury prevention, and recovery [138].

While some reports have shown the effectiveness of MFR, as mentioned earlier,
there are several manual therapies for myofascial as follows: osteopathic soft tissue tech-
niques [157], strain counter strain [158], myofascial trigger point therapy [159], muscle
energy technique [160]. However, there is no evidence to suggest which manual therapy
is optimal [161]. Furthermore, while MFR for chronic low back pain patients is effective
for low back pain and ADL disability, the clinical significance of MFR is unclear [162].
Therefore, further studies are needed to clarify clinical relevance and build evidence in
the future.

6. Conclusions

In myofascial tissue, normal fibroblasts are highly sensitive to physical stimuli. The
transition from fibroblast to myofibroblast is influenced by mechanical stress and may result
in gradual and irreversible tissue contraction as the contraction cycle is repeated many
times. The acute inflammatory response of fascial tissue is usually brief and reversible but
repeated identical postures, sports, and repetitive motion promote fibrosis via fibroblast
overgrowth and collagen matrix deposition. Fibrosis around fascial tissue is translated into
nerve mobility changes, resulting in dysfunction of central nociceptors. In addition, the
thickening of the fascia increases the distance between surfaces, increasing HA viscosity.
The increase in HA viscosity within the connective tissue inhibits the sliding of fascial
collagen fibers between layers. Furthermore, MRI imaging allows the deep fascia to be
observed and provides a broad and detailed assessment of fascial thickening and signal
changes, as well as adjacent soft tissue and bone marrow edema; in contrast, ultrasound
imaging allows dynamic observation of the fascia and is a useful tool for assessing the
proximity and distal extent of the injury to determine treatment efficacy. The goal of
myofascial release for myofascial dysfunction is to reduce pain and allow myofascial tissue
mobility to function normally. Several manual therapies have been developed in addition
to myofascial release; however, there is no evidence to suggest which manual therapy is
best, and the effectiveness of a broad range of therapies targeting the entire connective
tissue system needs to be clarified. Additionally, the effectiveness of a broad range of
therapies that look at connective tissue as a whole also needs to be clarified.
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