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Abstract
Under normal conditions, acute pain processing consists of well-characterized neuronal signaling
events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and
their released factors participate in the mediation of pathological pain. The use of cannabinoid
compounds for pain relief is currently an area of great interest for both basic scientists and
physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB1R) or
cannabinoid receptor subtype 2 (CB2R) and are able to modulate pain. Although cannabinoids
were initially only thought to modulate pain via neuronal mechanisms within the central nervous
system, strong evidence now supports that CB2R cannabinoid compounds are capable of
modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms
underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body
of evidence supports that CB2R agonist compounds may prove to be powerful novel therapeutic
candidates for the treatment of chronic pain.

1. Introduction
Chronic pathological pain is one of the most common reasons to seek medical attention and
is a worldwide epidemic [1]. Chronic pain becomes pathological as a consequence of
abnormal pain signaling and is often manifested in numerous diseases, such as diabetes,
arthritis, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and cancer [2–6].
Glial cells, which include oligodendrocytes, astrocytes, and microglia, have been found to
play key roles when chronic pain becomes pathological. Given less is known about the
involvement of oligodendrocytes, this paper will focus primarily on astrocytes and
microglial cells in chronic pain processing.

Cannabinoid compounds are emerging as novel therapeutic targets for the treatment of
chronic neuropathic pain [7]. These compounds, with subsequent CB1 and CB2 receptor
(CB1R and CB2R, resp.) activation, are able to modulate pain through a number of
mechanisms including microglial mechanisms [8]. This paper will first discuss how normal
pain becomes pathological and the role of activated glia in mediating such pain. These
sections will be followed by addressing cannabinoid-mediated modulation of glial
proinflammatory factors, which are known to produce chronic neuropathic pain in animal
models. An emphasis will be made on the CB2R. Given that this paper focuses on the action
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of the CB2R, a discussion is included on the current states of clinical trials examining the
potential efficacy of CB2R agonists as pain therapeutics.

2. Normal versus Pathological Pain
2.1. Acute Pain Signaling

Acute pain processing is distinct from the etiology underlying chronic pathological pain.
Distinguishing the cellular responses and underlying signaling cascades that are unique to
pathological pain may prove critical in understanding why many neuronally targeted
treatments do not prove to be effective in relieving chronic pathological pain in the clinical
setting. In acute pain, such as that caused by high intensity stimuli from mechanical
stimulation (e.g., pinprick), unmyelinated C and lightly myelinated Aδ nociceptive nerve
fiber terminals in the body depolarize and transduce this information into action potentials
that travel through the peripheral axon to the dorsal root ganglia (DRG). The centrally
projecting terminals of these nociceptors predominantly enter the spinal cord dorsal horn to
reach the superficial (laminae I–II) and deeper lamina IV–V and synapse onto second order
pain projection neurons located in lamina I, IV, and V [9–11]. The classical neurotransmitter
primarily responsible for synaptic communication between nociceptors and pain projection
neurons is the excitatory amino acid glutamate. Glutamate then binds and activates the
ionotropic α-amino-3hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate
receptors as well as metabotropic glutamate receptors (mGluR 1, 3, 5, and 7) [12].
Additionally, a number of nociceptive-related neuropeptides acting in the spinal cord dorsal
horn have been identified to play key roles in pain neurotransmission. For example, the
classic neuropeptide, substance P, is released from primary nociceptive afferents [13].
Substance P then binds and activates its receptor, neurokinin 1 (NK1), which is present in
high concentrations on dorsal horn lamina I neurons. Both substance P and its NK1 receptor
are widely known to play a significant role in nociceptive processing [14]. These spinal cord
nociceptive neurotransmitters, along with their receptors, are critical for activating second-
order neurons, which communicate to supraspinal pain-processing centers and elicit
reflexive and protective responses to avoid potential or further tissue damage.

2.2. Central Sensitization
However, under some circumstances, incoming nociceptive signaling is prolonged leading
to clinical manifestations of pathological neuronal signaling. Examples of such pathological
states are hyperalgesia, which is decreased threshold to nociceptive stimuli, and dynamic
tactile allodynia, which is increased sensitivity to nonnociceptive light touch. Both pain
states often occur in regions beyond the tissue-injured site. The underlying neurobiological
events initiated by prolonged nociceptive signaling include increased synaptic function
triggered within the central nervous system. Specifically, these events are known to occur
within the dorsal horn of the spinal cord and culminate in a process termed spinal
sensitization of pain projection neurons [15, 16]. Once triggered, this central sensitization is
sustained despite the termination of noxious input. Experimentally, continued activity is
substantially extended following the end of the stimulus application [17, 18]. These seminal
early studies suggested that pain may be experienced even in the absence of peripheral
noxious stimuli.

Pathological pain results from inflammation and/or trauma to peripheral nerve(s), tissue(s),
or the central nervous system (CNS) and may arise as a complication to numerous medical
conditions. Various animal models have been developed to induce conditions similar to
those observed clinically. Neuropathic pain is commonly studied in models of peripheral
nerve injury/inflammation. Models of diabetic neuropathy, chemotherapy-induced pain,
post-surgical pain, and osteoarthritis pain are well-established examples, and reports of these
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are cited throughout this paper. Although distinct in disease etiology, peripheral
neuropathies share in the manifestation of pathological pain. This pathological processing is
initially triggered by incoming noxious signals from nociceptors leading to central
sensitization. One classically known mechanism for spinal sensitization involves excitation
of pain projection neurons in the superficial laminae of the spinal cord dorsal horn as well as
wide dynamic range neurons (WDR) located in deeper lamina IV and V that process the
rapid and intense nerve depolarizations. Following prolonged and significant depolarization
by the actions of glutamate and substance P, spinal pain projection neurons become
sensitized, leading to the activation of N-Methyl-D-Aspartic Acid (NMDA) receptors that
are normally inactive due to a Mg2+ plug within the cation channel. Prolonged
depolarization induces Mg2+ release followed by enhanced influx of Ca2+ [19, 20]. A
cascade of intracellular events occurs, which ultimately leads to postsynaptic enhancement
of AMPA and mGlu receptor action, thereby increasing synaptic efficacy [21].

2.3. Sensory Changes in Pathological Pain
Increasing synaptic efficacy exerts profound changes in dorsal horn sensory processing [16,
22]. Indeed, enhanced synaptic efficacy, initiated by low intensity mechanosensitive Aβ
fibers, occurs at synapses on pain projection neurons in the dorsal horn [23], creating the
perceptual equivalent of a noxious stimulus. Activated low-intensity Aβ fibers, that carry
nonpainful information such as light touch, are now capable of activating high intensity
nociceptive neurons resulting in the clinical phenomenon known as allodynia. That is,
nonpainful light touch is coded as painful, leading to a pain sensation that occurs in the
absence of noxious input. Despite the fact that the stimulus is initiated in the periphery, its
manifestation is a consequence of central changes like sensitization in the spinal cord [15].
Both allodynia and hyperalgesia are a hallmark of pathological pain [15, 16].

3. The Role of Glia in Pathological Pain
3.1. Glial Activation

While it is clear that neuronal processes are critical for spinal sensitization leading to
pathological pain signaling, nonneuronal glial mechanisms are also important [24]. Under
persistent pathological conditions, the availability of neuropeptides, such as substance P and
amino acid neurotransmitters like glutamate is increased and able to bind their receptors not
only on neurons, but also on astrocytes as well as parenchymal and perivascular microglia.
Glial “activation” ensues and sets in motion a cascade of excitatory signaling events [25].

At the onset and during pathological pain conditions, multiple signaling cascades within glia
are triggered including the activation of p38 mitogen-activated protein kinase (p-p38MAPK)
and the c-Jun N-terminal kinase (JNK) pathways via phosphorylation events. Consequently,
downstream cascades are initiated, including NF-κβ activation, a cytokine nuclear
transcription factor, and lead to the subsequent production of proinflammatory cytokines
such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well as chemokines
(chemoattractant cytokines) [25–30]. It is important to note that multiple signaling pathways
can activate NF-κβ leading to altered gene expression. For example, glially released TNF-α,
when bound to its receptor, leads to phosphorylation of p38MAPK (p-p38MAPK) and NF-
κβ activation. Alternatively, IL-1β, when bound to its receptor, can directly activate NF-κβ
[31, 32]. In the spinal cord, IL-1β and TNF-α can further directly excite neurons because
neurons express receptors for these cytokines. Indirect neuronal stimulation occurs by
cytokine-induced release of additional excitatory mediators such as prostaglandins and nitric
oxide (NO). It has been reported that spinal p38MAPK, JNK, and the extracellular signal-
regulated kinase, ERK1/2, also referred to as MAPK3/1, are critical mediators of
pathological pain in animal models [33–37]. For example, sciatic nerve ligation (SNL), a
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well-characterized rodent model of peripheral nerve injury, leads to increased p38MAPK in
spinal astrocytes and microglia, and upon spinal pharmacological blockade with the p-
p38MAPK inhibitor SB203580, p38MAPK activation with associated neuropathic pain is
diminished [34]. Although very little is known about oligodendrocyte signaling in chronic
pain, emerging evidence suggests that these cells are not merely passive observers to chronic
pain, but rather these cells may also upregulate (phosphorylated) p-AKT, a factor that has
been found to mediate apoptosis, cell migration, and motility in the dorsal horn of the spinal
cord. Phosphorylated-AKT may be critical to the previously discussed spinal cord neuronal
sensitization process [38].

It is notable that activated microglia respond to and produce inducible nitric oxide synthase
(iNOS), and likewise activated astrocytes release NO [39, 40]. The production of NO by
both neurons and glia is characteristic of neuroinflammation [41–44]. Thus, upon spinal
glial activation from NO (among several other activating factors), intracellular signaling
cascades lead to increases in cytokines and diffusible factors that further activate
neighboring neurons and glia. That is, IL-1β and TNF-α lead to a feed-forward loop of
further JNK and MAPK signaling, NF-κβ activation, and increased NO, cytokine, and
chemokine production, which all contribute to ongoing pathological pain.

While microglia and immune-like astrocytes respond to spinal IL-1β and TNF-α resulting in
pathological pain, increased peripheral immune cell (neutrophils, lymphocytes, monocytes,
macrophages) migration to critical regions of nociceptive processing, such as the DRG and
the spinal cord dorsal horn also occurs in response to cytokines [39, 45–47]. The specific
underlying mechanisms are poorly understood. What is known, however, is that cellular
enrichment at these critically important anatomical sites takes place via increased immune
cell actin remodeling and proliferation in response to chemotactic signaling [46, 48, 49].

3.2. Glial Morphology and Activation Markers
Activated glial cells typically undergo changes in morphology, proliferation, and migration,
termed gliosis. For example, astrocytes upregulate vimentin and glial fibrillary acidic protein
(GFAP) and become highly arborized with thickened processes [50]. These changes in
morphology and increased GFAP expression are often considered a sign of spinal cord
pathogenesis during the expression of neuropathic pain in animal models and are thought to
be indicative of CNS inflammatory processes [26, 50, 51]. A report examining cellular
enrichment of the spinal cord in a peripheral nerve injury ratmodel of pain identified that
microglial cells are more proliferative and undergo more clustering than astrocytes [52].
Microglia, when activated, typically upregulate the cellular makers, ionized calcium binding
adaptor molecule-1 (Iba-1), and CD11b/c, also known as OX42 [52–57]. However, the
upregulation of these proteins is not always indicative of proinflammatory phenotypic
processes of glial cells. For example, activated microglia can additionally express ED2, a
classic anti-inflammatory marker, suggesting that activated microglia are not solely engaged
in proinflammatory processes [58, 59].

Although these cellular changes have been widely documented in animal models of chronic
pain, less is known about whether glial activation always reflects inflammation and whether
it contributes to chronic pain in humans. What is known is that gliosis occurs within the
spinal cord of patients with neuroimmune diseases such as ALS, MS, and spodylotic
myopathy [60, 61]. It is noteworthy that these patients often report chronic pain symptoms
[4, 6]. Furthermore, postmortem tissue analysis from these patients often reveals gliosis
concomitant with the disease, and as such, these glial changes may contribute to chronic
pain in these patients. However, the role of these cellular markers in animal models of
chronic pain are not fully understood, as reports show a disconnection between glial marker
upregulation, proinflammatory signaling markers, and behavior associated with pain. For
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example, while fluorocitrate attenuated upregulation of GFAP in mice with the chronic
constriction injury of the sciatic nerve (CCI), another commonly used model of chronic
neuropathic pain, chronic pain symptoms remained unchanged [55]. Additionally, in
separate studies utilizing a paw incision model of postsurgical pain, chronic morphine
administered subcutaneously delayed the normal resolution of allodynia and hyperalgesia,
which was observed with saline-injected controls. Tissues from the corresponding groups in
this study were analyzed for GFAP, Iba-1, p-ERK, and p-p38MAPK, with saline-injected
animals showing clear behavioral resolution, which was absent in the morphine-treated
groups. Strikingly, no differences in GFAP or Iba-1 immunoreactivity were observed
between saline-or chronic morphine-treated groups. However, p-ERK and p-38MAPK were
increased in the chronic morphine-treated groups, corresponding to their behavioral profile
[62]. Conversely, perivascular microglia have been shown to remain in an activated state as
assessed by immunohistochemical detection of ED2 during the presence of pain reversal
[63]. From these studies, and as noted previously, the presence or absence of glial activation,
per se, is too simplistic to fully understand a glial role in chronic pain. It is possible that
microglia can remain activated while producing and releasing anti-inflammatory factors that
ultimately lead to pain suppression [64, 65].

3.3. Downstream Glial Signaling of Cytokines
Both IL-1β and TNF-α induce chemotactic activity on CNS microglia and astrocytes.
Indeed, once activated, microglia and astrocytes are well known to undergo migration and
proliferation in the spinal cord under conditions of chronic pain [52]. Recently, it has been
shown that an increase in glial cell numbers occurs within the ipsilateral dorsal horn of the
spinal cord following unilateral peripheral nerve injury [66].

During pathological pain states, peripheral immune cells additionally migrate to critical
CNS pain processing sites. However, the contribution of peripheral versus CNS immune cell
actions with subsequent cytokine signaling to neuropathic pain is not fully understood. Rat
spinal cord meninges contain peripheral immunocompetent cells such as macrophages, and
following in vitro stimulation of isolated meninges with the administration of the HIV-1
envelope glycoprotein gp120, IL-1β, and TNF-α were released [67]. These data suggest that
meningeal cells, characterized to include peripheral immune cells like macrophages,
contribute to ongoing spinal cord glial activation via proinflammatory cytokine actions.
Given these compelling data, we explored the possibility that anatomically intact meninges
contain macrophages that express IL-1β. Here, we utilized immunofluorescent histochemical
procedures followed by detection with confocal microscopy and demonstrated that IL-1β is
indeed present within the meningeal layers surrounding the spinal cord of neuropathic rats
(Figures 1(a), 1(b), and 1(c)). Histologically, these data confirm prior reports showing, via in
situ hybridization, that IL-1β mRNA was colabeled with Iba-1 [68], indicating infiltrating
monocytes/macrophages. Within deeper dorsal horn laminae, IL-1β is colabeled with Iba-1
that identifies microglia (Figures 1(d), 1(e), and 1(f)). While we found some colabeling of
IL-1β with GFAP, no co-labeling with NF-H (data not shown) within the dorsal horn of the
spinal cord was observed. Given the evidence that immune cell and glial-derived IL-1β (as
well as other cytokines discussed, above) has a critical role in animal models of pathological
pain, targeting neurons alone is now thought to be an incomplete approach. Immune and
glial cells within the CNS may serve as novel targets to modulate enduring pathological
pain.

3.4. Glia in DRG
Glial satellite cells in the DRG are also important in mediating pathological pain in addition
to spinal cord glial cytokine actions. Satellite glia completely surround DRG neurons and
together form a functional unit [69]. Glial satellite cells become activated and contribute to
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pathological pain in response to peripheral injury by several possible mechanisms [69–73].
For example, glial satellite cells generate cytokines, including IL-1β and TNF-α, which have
been characterized to activate peripheral immune cells [71, 73–75]. DRG invasion by
peripheral immune cells [76–79] occurs as a consequence of peripheral nerve injury [29, 80,
81]. Neuroimmune activity is a potential mechanism because DRG neurons have receptors
for these cytokines and, when stimulated, lead to the production of the chemokine monocyte
chemoattractant protein-1 (MCP-1), which induces peripheral immune cell migration to the
DRG [49, 81]. In addition, neuroactive IL-1β and other immune signals released from
satellite glia act in a paracrine fashion to stimulate neighboring sensory ganglia and their
axons, creating allodynia [69, 73, 82–84]. Indeed, stimulating sensory neurons in the DRG
with IL-1β leads to further axonal release of substance P [85] within the dorsal horn of the
spinal cord. IL-1β acts in a p-p38MAPK-dependent manner in the DRG [82], and increased
p-p38MAPK expression is well characterized in the DRG following peripheral nerve injury
that produces pathological pain [82, 86, 87]. Here we show an example of DRG IL-1β in
close proximity with sensory neurons. IL-1β is colabeled with GFAP-positive satellite cells
within a DRG from an animal with ongoing CCI-induced neuropathy which is shown
(Figures 1(g), 1(h), and 1(i)). The actions of glially released cytokines such as IL-1β on
nearby neuronal processing in both spinal cord and DRG indicate that not only neuronal, but
also glial systems are altered during conditions that lead to and promote chronic pain. These
data strongly suggests that in order to efficiently control chronic or pathological pain
associated with numerous disease states, including diabetic neuropathy and cancer,
promising therapeutics will need to address this underlying glial contribution.

3.5. Modulating Glial Activation for Pain Relief
Several compounds specifically targeting glial activation have been developed with the
potential for the treatment of pain. While a full discussion of such compounds is beyond the
scope of this paper (for review, see [88]), one example drug is discussed here to underscore
the supposition that altering glial activation states is a highly promising approach to control
pathological pain. An example of a compound that targets microglial activation is
minocycline, a well-characterized microglial inhibitor [89]. In numerous animal models,
minocycline robustly produces antiallodynia and hyperalgesia [55, 89–91]. However,
globally disrupting the function of microglia as well as peripheral immune cells may
produce unintended side effects, such as increased susceptibility to CNS infection [92]. An
alternative approach using cannabinoid-related compounds appears to be very promising for
clinical pain relief. Cannabinoids may act in an anti-inflammatory manner, and these anti-
inflammatory actions may have a glial role [7, 93]. Intriguingly, the cannabinoid receptor
subtype 2, CB2R, has been identified primarily on microglia [94]. Published reports strongly
suggest that activation of this receptor subtype leads to pain control [95, 96]. In the
remainder of this paper we will provide a brief overview of cannabinoids, specifically
discussing published data in support of cannabinoid-related compounds for pain control with
a glial-centric view.

4. The Endocannabinoid System
4.1. Components of the Endocannabinoid System

The endogenous cannabinoid (endocannabinoid) system is comprised of multiple
components, including receptors, ligands, and degradative enzymes. Each will be discussed
in turn, below. Within the past 6 years, an explosion of reports has occurred on the
endocannabinoid system and its potential role in modulating numerous disease processes,
including those associated with pathological pain conditions. This is due, in part, following
the identification of cells that express cannabinoid receptors and subsequent signaling
mechanisms. In general, endocannabinoid signaling was thought to involve only neurons
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[97–99]. Glia in the CNS had no role. However, immune cells, including microglia are now
known to be involved in endocannabinoid signaling cascades (discussed further, below).
While the underlying mechanisms involved in mediating the therapeutic effects of the
endocannabinoid system are still a mystery, new breakthroughs have elucidated the
bioavailability of endocannabinoids and cannabinoid receptor action with regard to the
mediation of pain processing.

The two widely acknowledged cannabinoid receptors are the CB1R and the CB2R. Both
have shown great potential for the development of therapeutics targeted at pain control. The
putative cannabinoid receptor subtype of the “orphan” receptor, GPR55 [100], remains
controversial as several reports indicate opposite pharmacological profiles [101–104].
Research targeting this receptor with cannabinoid ligands has just begun to gain momentum
[105–107]. However, there are reports that at least five distinct cannabinoid receptors have
been identified [8]. The most well-characterized cannabinoid receptor, the CB1R, is
primarily found on neurons within the heart, small intestine, urinary bladder and vas
deferens in the periphery and, within the CNS, has the highest concentrations in the
cerebellum, hippocampus, basal ganglia and cerebral cortex [108–110]. However, the CB2R
has a distinctly different distribution and is primarily found on immune cells [111–113].
Current evidence demonstrates that the endocannabinoid system may have potential as a
target for pain control, and thus the remainder of this paper will focus on the
endocannabinoid system relative to pain therapeutics.

4.2. Classical Cannabinoid Receptor Signaling
Both the CB1R and CB2R belong to the G-protein coupled receptor (GPCR) superfamily
and couple to the inhibitory Gi/o and Gi, respectively. Activation of either receptor leads to
p42/44 MAPK signaling and inhibits adenylate cyclase, limiting the ATP production of
cyclic AMP (cAMP) and leading to lessened activity of protein kinase A (PKA) [108, 114,
115]. CB1R activation, but not CB2R activation, can modulate ionic Ca2+ and K+ channels,
which is blocked with pertussis toxin, indicating that the CB1RGi/o proteins are directly
responsible for modulation of these ion channels [108, 116–118]. Evidence exists that CB1R
activation can activate p38MAPK in vitro [119, 120]. However, this is a paradoxical finding,
because activation of p38MAPK can lead to increased pain signaling, which opposes the
therapeutic efficacy of CB1R agonists for pain control. A mechanism for these findings has
not been elucidated, but may include or be wholly dependent on noncannabinoid receptor
signaling cascades. No similar in vivo report exists detailing p38MAPK activation from
CB1R activation.

Although a few of the above mentioned signaling properties of the CB1R have proven to be
sufficient in leading to pain control, the practical implications of CB1R agonists in a clinical
setting are limited. The CB1R was first discovered as the receptor for the major psychoactive
ingredient in Cannabis sativa, Δ9-tetrahydrocannabinol (THC) which was first isolated in
1965 [121–123]. The attractiveness for clinical application of compounds selectively acting
on the CB1R is limited by the development of tolerance [124] and its psychotropic effects
[7, 125], which include cognitive impairment [126], catalepsy [127–129], hypothermia
[127–129], and negative impacts on learning and memory [130, 131]. This is in contrast to
the effects of cannabidiol, another active compound of marijuana [132]. Cannabidiol does
not produce unwanted CNS side effects by itself, but it is not widely thought to act robustly
at either the CB1R or the CB2R due to low binding affinities observed in vitro [132]. Despite
low CB1R and CB2R binding properties that cannabidiol possesses, it remains as a
promising therapeutic for chronic pain treatment based on its anti-inflammatory actions.

In vivo, cannabidiol within the CNS may still produce CB2R activation resulting in anti-
inflammatory properties. It was recently demonstrated in a mouse model of diabetic
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neuropathy that intranasal administration of cannabidiol produces anti-inflammatory actions
via downregulation of p-p38MAPK in spinal glia [133]. In this animal model, spinal glia are
characterized to become activated and contribute to neuropathic conditions resulting in
mechanical sensitivity and thermal hyperalgesia through the activation of proinflammatory
signaling cascades like p38MAPK [134–136]. Cannabidiol is sufficient to produce
neuropathic pain relief that is dependent on CB2R activation [133]. These data demonstrate
that there is a critical link between cannabidiol’s therapeutic action, which includes a CB2R
role, to spinal glial activation and pain control.

4.3. Cannabinoid 2 Receptors
The CB2R is predominantly found on immune cells, such as lymphocytes, neutrophils, and
macrophages, with the highest peripheral concentrations in the spleen, lymph nodes, and
testes [94, 111–113].Within the CNS, the CB2R is found primarily on microglia, and some
neurons specifically within the hippocampus, cortex, and substantia nigra [110, 137, 138].
However, the spinal cord and DRG distribution of the CB2R is an area of much debate, as
the current literature frequently reports conflicting data. One report suggests that the CB2R
is expressed only on neurons [139], while a separate report reveals CB2R expression on
microglia, and to a lesser extent on neurons [96], and yet another report demonstrates CB2R
on microglia with no neuronal expression [138]. The discrepancy between studies
identifying the CB2R expression on specific cell types may be partially due to the recent
discovery of two separate isoforms of the CB2R. The most prevalent isoform of the CB2R
within the periphery, termed “CB2B”, is found extensively within the spleen, and to a lesser
degree, in the liver, intestines, and leukocytes. The shorter isoform, “CB2A”, is
predominately found within the brain, testes, and to a lesser degree in the spleen, kidney,
muscle, and leukocytes [140]. As most commercially available antibodies for the CB2R
utilize CB2R isolated from spleen, it is possible that the CB2B isoform, found in much
greater abundance within the spleen than the CB2A isoform, is the isoform recognized by
most commercially available antibodies for immunohistochemistry. For example,
Wotherspoon and colleagues, utilizing immunohistochemistry and CB2R null mice, showed
that CB2R expression was induced by nerve ligation and was localized to the spinal cord
superficial lamina ipsilateral to the nerve damage, while null CB2R mice revealed no
upregulation [139]. The authors suggest that CB2R was expressed on sensory afferent
terminals because colocalization with growth-associated protein-43 and the neuropeptide
galanin, was observed. However, Romero-Sandoval and colleagues demonstrated, also
through immunohistochemistry, that the CB2R was primarily found on parenchymal and
perivascular microglial cells. The authors additionally noted very limited and sparse staining
in neurons [63, 96]. Lastly, in a study using in situ hybridization (ISH), CB2R mRNA was
present on immunohistochemically identified microglia [138].

Based on the above-noted discrepancies of the cellular localization of the CB2R in the spinal
cord, one possible consideration should be the animal model that is utilized. It has been
demonstrated that the CB2R may not be upregulated in the dorsal horn of the spinal cord in
inflammatory pain models, but rather in chronic neuropathic pain models [138]. This
suggests that the degree of CB2R upregulation in chronic pain is heavily dependent on the
model. The type of the injury induced in a specific model may dictate the overall receptor
upregulation and the cellular colocalization of the CB2R. The CB2R isoform distribution
within the spinal cord and DRG under basal and chronic inflammatory pain conditions has
not been systematically examined. Given these potential confounds, identifying the cellular
distribution of the CB2R within the spinal cord remains elusive.
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4.4. Bioavailability of Endocannabinoids
The endogenous cannabinoid system is also comprised of a number of endogenous ligands
for the CB1R and CB2R, which includes anandamide (AEA), 2-arachadonyl glycerol (2-
AG), as well as degradative enzymes [141, 142]. The endocannabinoids AEA and 2-AG are
produced and released from neurons and microglia [94], which are controlled by enzymatic
hydrolysis of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL),
respectively [141, 143]. The enzyme MAGL has been identified on presynaptic axon
terminals in brain, suggesting that it can terminate 2-AG activity in presynaptic nerve
terminals [142, 144] of centrally projecting afferent nociceptors in the spinal cord dorsal
horn. Interestingly, it has been found that microglia release 2-AG, and functional MAGL has
been described in primary microglial cell cultures [145]. Recently, a novel isoform of
MAGL has been described in BV-2 microglial cell cultures, although it is uncertain if this
isoform occurs within microglial cells in vivo [146]. To date, MAGL cellular coexpression
utilizing immunohistological techniques has not been performed on pain-relevant spinal
cord dorsal horn regions or spinal cord tissue. We show here, utilizing confocal microscopy,
that within the meningeal layer surrounding the spinal cord taken from behaviorally verified
neuropathic rats, MAGL is colabeled with Iba-1-positive infiltrating monocytes. In
superficial laminae, MAGL is colabeled with either resident microglia or infiltrating
monocytes/macrophages (Figures 1(j), 1(k), and 1(l)).We additionally observed in the
deeper dorsal horn laminae, that MAGL is colabeled with Iba-1-positive microglia and
morphologically identifiable neuronal cell bodies (data not shown).

4.5. The Implications of the Endocannabinoid System in Pain Modulation
Following peripheral nerve or tissue injury, increased expression of endocannabinoids,
CB2R, FAAH, and MAGL occurs in DRG and spinal cord [94, 109, 147]. For example,
AEA and 2-AG are upregulated in DRG following L5 spinal nerve ligation (SNL), a well-
described animal model that leads to neuropathic pain [109]. Additionally, in a paw incision
model of pain, 2-AG, widely characterized to produce analgesia, was found to be
upregulated in the ipsilateral lumbar spinal cord on days 3 and 9 and in the contralateral
lumbar spinal cord on days 1 and 9 after surgery [63]. These data suggest that
endocannabinoid compounds may act to counterbalance the cytokine actions known to
mediate neuropathic pain.

Recent studies show that exogenous application of the endocannabinoids, AEA and 2-AG,
leads to pain control. Exogenous AEA administered spinally reverses carageenan-induced
nociception [148], and exogenous 2-AG injected into the hindpaw blocks nociceptive
responses due to formalin injection [149, 150]. Paradoxically, administration of exogenous
AEA to the hindpaw or high intrathecal doses produce nociceptive behavior and, in both
cases, is mediated by the ionotropic transient receptor potential cation channel, superfamily
V subtype 1 (TRPV-1) [148, 151]. Several reports detail that the actions of AEA may be
mediated by TRPV-1, and as such, caution must be taken when assigning endocannabinoid
actions to only the CB1R or the CB2R.

Manipulating the enzymes responsible for the bioavailability of AEA or 2-AG is
additionally effective for pain control. Altering endocannabinoid levels by inhibiting the
actions of MAGL and/or FAAH increases available endogenous AEA and 2-AG and results
in therapeutic actions. Following localized administration of MAGL inhibitors (JZL184,
URB602), into rat hindpaws increases local levels of 2-AG, with simultaneous attenuation
of formalin-induced pain in rats [149, 150]. Additionally, systemic administration of FAAH
inhibitors (PF-3845, URB597), MAGL inhibitors (JZL184, URB602) or the dual FAAH/
MAGL inhibitor, JZL195, increases CNS levels of AEA and 2-AG, with attenuation of CCI-
induced pain in mice [152, 153]. Specifically, the pharmacological FAAH inhibitor,
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PF-3845, decreased allodynia and hyperalgesia in CCI-induced neuropathic mice without
the development of tolerance [129]. Numerous studies have demonstrated that MAGL
inhibitors increase 2-AG accumulation [129, 152, 154].However, recent studies indicate that
following challenge with CB1R agonists, increased 2-AG availability leads to CB1R
downregulation, desensitization, and lessened CB1R effects [127, 129]. These data suggest
that significantly increasing the levels of 2-AG may not be a clinically viable approach for
treating chronic pain conditions.

Although pain behavior is suppressed following exogenous administration of 2-AG and
AEA or by increased levels of endocannabinoids via enzyme inhibitors, the exact
mechanisms of these cannabinoids underlying the modulation of inflammation and pain are
not well understood. Studies are currently underway by several groups to elucidate the
mechanisms whereby the endocannabinoid system is able to lead to pain control [63, 129,
152, 153]. Alkaitis and colleagues, utilizing dual CB1R and CB2R antagonists, AM281 and
AM630, respectively, recently found that the endocannabinoid system plays critical roles in
the resolution of allodynia from surgical hindpaw incision, an animal model of postsurgical
pain [63]. In addition, blocking the activation of both the CB1R and the CB2R resulted in
increased p-p38MAPK levels in this model of postsurgical pain, suggesting that constitutive
endocannabinoid actions play a role in modulating p-p38MAPK. These findings support that
the endocannabinoid system alters factors which are critical mediators of inflammatory
processes underlying pain responses in a wide range of medical conditions where chronic
pain is a component. Although speculative, CB2R actions during chronic pain may be
primed for enhanced activity to ultimately produce pain modulation following CB2R
stimulation, as downregulation and desensitization previously noted to occur with the CB1R
have not been observed with the CB2R [7, 95, 155]. Numerous synthetic CB2R agonists are
currently being explored as potential therapeutic interventions for the treatment of chronic
pain.

5. Well-Characterized CB2R Synthetic Compounds
Growing evidence that CB2R agonism appears to lack the adverse CNS effects that activated
CB1R exerts has fueled the development of clinically viable CB2R agonists. Therefore, a
strong research effort in pursuit of the development and characterization of synthetic CB2R
agonists with modified chemical structures to facilitate selective binding to the CB2R over
the CB1R is ongoing. The remainder of this paper will address the current evidence of
synthetic CB2R selective compounds for the treatment of different animal models of
pathological pain. This is not an exhaustive review of all studies, but rather an overview.
Additional reviews detailing the chemistry, bioavailability, efficacy, and kinetics of specific
drug compounds are available elsewhere [7, 156, 157].

Synthetic agonists selective for CB2R have been shown to produce anti-inflammatory effects
with modulation of signaling cascades favorable for controlling chronic pain. Caution must
be used in assuming that specific anti-inflammatory effects seen with a particular CB2R
agonist will additionally be seen with all other CB2R agonists, as the binding site for
different compounds may not be the same. This factor may further influence the cellular
signaling pathways that occur, downstream of cannabinoid receptor binding, and the
compound’s ultimate intracellular fate, such as degradation by MAGL as opposed to FAAH.
Therefore, each selected CB2R agonist and its observed actions are presented in a table
(Table 1). The most recent findings for each compound are summarized. JWH-015 is a
CB2R selective agonist from the aminoalkylindole classification of CB2R agonists with a
27-fold affinity for the CB2R over the CB1R [158, 159]. Collectively, the aminoalkylindoles
represent the most studied group of synthetic CB2R agonists. Romero-Sandoval and
colleagues have recently used a well-characterized in vitro model of inflammation to
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examine the anti-inflammatory actions of JWH-015. Lipopolysaccharide (LPS), an outer
cell-wall particle of Gram-negative bacteria which strongly activates innate immune cells,
was given to macrophages in cell culture. It was demonstrated that incubation with
JWH-015 leads to a decrease in phosphorylated extracellular signal-regulated kinase-1 (P-
ERK) that is mediated by mitogen-activated kinase phosphatase (MKP) 1 and 3 [93].
MKP-3 is a selective negative modulator of the ERK-2 signaling pathway through negative
feedback loop mechanisms, while in the same in vitro studies, neither JNK nor p38MAPK
signaling was affected [160]. CB2R agonist treatment failed to suppress LPS-stimulated
increases in p-ERK-2 in the presence of MKP-3 inhibitors, supporting the possibility that
CB2R agonists exert antiinflammatory actions via MKP-3 signaling [93]. These data support
that CB2R activation, by binding highly selective synthetic agonists, may control
proinflammatory processes.

Other CB2R agonists that produce therapeutic effects to control chronic pain are described
below. The compound AM1241, a CB2R selective agonist also from the aminoalkylindole
class, has a 36-fold affinity for the CB2R > CB1R [157, 161, 162]. Despite the fact that it has
been described as a protean agonist because it exerts different inverse agonist properties
[162], it is widely characterized as an effective compound for pain suppression. For
example, AM1241 has been found to be effective in treating experimental models of bone
cancer pain. Acute and sustained intraperitoneal (i.p.) administration of AM1241 to mice
decreased pain symptoms and additionally lessened the amount of bone loss during bone
cancer-induced neuropathic pain. The authors suggest that these observations were mediated
via the CB2R, as acute behavioral effects observed were not present with the addition of
SR144528, a CB2R antagonist [163]. In a separate study using two models of bone cancer
pain, systemic administration of AM1241 was efficacious in reducing pain symptoms and
was reliant on spinal CB2R. Interestingly, the authors concluded that the actions of opioid
receptors were necessary to achieve these analgesic effects, as the administration of
naloxone, a short-acting opioid antagonist in a replicate experiment, blocked the
development of AM1241-mediated analgesia [164]. The involvement of endogenous opioids
was further supported in mediating CB2R analgesia by an earlier study using non-
neuropathic naïve rats [165]. However, Rahn and colleagues have recently demonstrated that
the anti-nociceptive effects of systemic AM1241 in naïve rats are not dependent on the
actions of opioid receptors or downstream effects [166]. In this study, the reported dose of
AM1241 utilized by Ibrahim and colleagues, 0.1 mg/kg i.p, did not achieve reliable effects,
and so higher doses of AM1241, up to 1 mg/kg, were evaluated. Additionally, in the SNL
model of neuropathic pain, the effects of AM1241 following i.p. administration were not
blocked by naloxone suggesting that AM1241 does not act via opioid receptors to exert
analgesic effects [167] (Table 1). The discrepancy between these studies suggests that bone
cancer pain may uniquely involve endorphin-endocannabinoid interactions while other
discrete peripheral nerve lesions or naïve conditions may involve only the endocannabinoid
system.

Spinal sensitization is a key component of chronic pathological pain. Thus, compounds
developed for chronic pain control will require centrally mediated actions and may be
insufficient if they do not cross the blood brain barrier because their actions will be
sequestered to peripheral sites of pain processing. A growing body of evidence supports that
spinal administration of AM1241 produces significant control over pathological pain in
several models using peripheral manipulations. For example, intrathecal (perispinal, i.t.)
AM1241 reverses allodynia induced by either SNL or intrapaw injection of complete
Freund’s adjuvant (CFA), a model of local inflammatory pain [167]. Additionally, i.t.
AM1241 has been found to reverse CCI-induced allodynia [168] and leads to a
corresponding decrease in spinal cord astrocyte activation of these previously neuropathic
animals [169]. In separate studies that used SNL to induce peripheral neuropathy in rats,
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both astrocyte and microglial phenotypic markers of activation were decreased following
either i.t. administration of JWH-015 [96] or i.p. administration of GW405833 [170], a
partial CB2R agonist. Taken together, these reports demonstrate that CB2R agonists are able
to alter spinal glial activation states and create in vivo anti-inflammatory effects suitable for
pain control.

The ability for CB2R agonists to be administered without the development of tolerance or
reliance on μ-opioid actions within the spinal cord has been studied utilizing GW405833.
This compound is also classified as an aminoalkylindole and is additionally known as
L-768,242. Conflicting reports of GW405833’s affinity for the CB2R over the CB1R exist
[157]. However, it is generally accepted that at the human CB2R the compound displays a
1,200-fold affinity for the CB2R over the CB1R, and at the rat CB2R there is a 78-fold
affinity for the CB2R over the CB1R [171]. Leichsenring and colleagues recently
demonstrated that chronic repeated i.p. injection of GW405833 was able to provide
sustained reversal from allodynia following SNL. That is, animals did not develop tolerance
to this compound, which was in stark contrast to treatment with the mixed CB1R/CB2R
agonist WIN55,212-22 [170]. Additionally, allodynia returned after intermittent treatment of
GW405833. The authors also performed immunohistochemistry and, as previously noted,
found diminished astrocyte and microglial activation. However, after cessation of
GW405833 treatment, astrocyte and microglial activation returned, which occurred in
parallel with the return of allodynia. In addition to the above mentioned benefits of CB2R
agonist actions, it has recently been reported that GW405833 can reverse CCI-induced
increased helplessness responses, as assessed in the forced swim test for rats, which is a
model that may elucidate depression-like symptoms in animals [172]. Furthermore,
GW405833 is efficacious in treating knee pain however, these studies indicate that
GW405833 may have partial agonist actions at the TRPV-1 [173]. While endocannabinoids
are capable of acting at the TRPV-1 receptor at high doses that subsequently lead to TRPV-1
desensitization [174, 175], the report by Schuleret and colleagues is the first
electrophysiological demonstration of CB2R agonist actions on neuronal TRPV-1 ion
channels. Further research is needed to understand if the downstream signaling following
GW405833 binding to neuronal TRPV-1 may enhance this CB2R agonist compound’s
antinociceptive actions.

6. Newer CB2R Agonist Compounds
Several newer classes of CB2R agonists have been developed to examine therapeutic
efficacy for chronic pain relief. AM1714 and AM1710 are members of the novel
cannabilactone classification [157, 176]. AM1710’s pharmacological profile has recently
been characterized both in vitro and in vivo [169, 177]. AM1710 does not cross the blood
brain barrier and is 57-fold more selective for the CB2R over the CB1R [177]. Systemic i.p.
AM1710 in naïve rats was able to produce antinociceptive mechanical responses when a
100-fold dose range (from 0.1 mg/kg–10 mg/kg) was examined. At the 0.1 mg/kg dose,
AM1710’s effects were altered only by the administration of a CB2R antagonist, but not the
administration of a CB1R antagonist. However, at the dose of 5 mg/kg, both CB1R and
CB2R antagonists diminished AM1710’s antinociceptive actions. The doses of either 0.1
mg/kg or 10 mg/kg AM1710 did not produce behaviors typically associated with CB1R
activation. This was in stark contrast to the observed CB1R-induced effects from the mixed
CB1R/CB2R agonist, WIN 55,212-2. Antinociceptive effects of 5 mg/kg AM1710 were
observed for as long as 120 minutes after i.p. injection, while no effects at 0.1 mg/kg were
observed at the same timepoint, showing a dose effect on the duration of AM1710 efficacy
[177]. In separate studies, i.t. injection of AM1710 reverses CCI-induced allodynia for
approximately 3 hours [168, 169]. Additionally i.t. pretreatment with AM1710 blocks the
development of allodynia in a rat model of sterile spinal cord inflammation using i.t.
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administration of the HIV-1 envelope glycoprotein, gp120 [168]. Separately, Rahn and
colleagues have shown that AM1714 is capable of reversing chemotherapy-induced pain
[178] while AM1710 prevented pain in the same model [179]. NESS400, a novel CB2R
agonist, decreased spinal astrocyte and microglial activation and reversed signs of
neuropathic pain behavior following i.p. administration [180]. MDA19 is also a novel CB2R
agonist with moderate selectivity for the CB2R over the CB1R (approximately 14-fold) and
displays properties of a protean agonist in vitro [181], like AM1241. MDA19 was found to
reverse both the spinal nerve ligation and chemotherapy-induced models of chronic pain
(Table 1).

Abbott Laboratories has developed two novel compounds, A-796260 and A-836339, both of
which are selective for the CB2R over the CB1R [182–184]. A-796260, when given to rats
i.p., was able to produce relief from local inflammatory pain, neuropathic pain,
postoperative pain, and osteoarthritis pain. These effects were due only to the actions of the
CB2R, and not CB1R or μ-opioid receptor actions, and without the development of CB1R-
mediated psychotropic effects. It was found in vitro that A-836339 could act as a CB1R
agonist, and studies in vivo revealed that high doses of A-836339 produced CB1R-mediated
psychotropic effects [183]. Further studies with A-836339 reveal that this compound was
also efficacious in animal models of inflammatory, neuropathic, postoperative, and
osteoarthritis pain, when administered locally to the hindpaw, intra-DRG, and intrathecally.
As before, the actions of A-836339 at these sites were due primarily to the CB2R, and not μ-
opioid receptor agonism [167] (Table 1).

Several independent groups have developed and characterized additional promising CB2R
selective compounds. The Lichtman laboratory has recently synthesized an ethyl
sulfonamide THC analog: O-3223. This compound is also a novel CB2R agonist with a 79-
fold affinity for the CB2R over the CB1R, and administration of this compound in naïve
mice did not produce the psychotropic effects associated with CB1R activation [185]. In vivo
antinociceptive effects of this compound were determined to be reliant on CB2R, but not
CB1R function. Pretreatment with i.p. O-3223 was efficacious in lowering the amount of
edema in the paws of mice given the immune stimulant LPS, and i.p. O-3223 reversed
hyperalgesia in a mouse model of sciatic nerve ligation [185]. CBS0550 is a novel CB2R
agonist with high selectivity for the CB2R and, when given orally to rats, was efficacious in
reversing yeast cell-wall-induced local inflammatory pain [186]. Taken together, these
studies reflect just a sample of the efforts being made toward identifying optimal CB2R
compounds for pain therapeutics (Table 1).

7. Clinical Use of CB2R Agonists
The current clinical trials using cannabinoid compounds for the treatment of chronic pain
have examined mixed CB1R/CB2R agonists or CB1R agonists. Sativex, Marinol/Dronabinol,
and Nabilone, all containing THC derivatives, have reached late stage or regulatory approval
in various countries [187, 188]. To date, only three CB2R compounds have entered into
clinical trials for human evaluation. First noted by Beltramo [156], the progress of CB2R
agonists in clinical trials has not been swift. Glenmark Pharmaceuticals reported in a press
release (April 13th, 2009) that its CB2R compound, GRC10693, successfully completed a
phase I clinical trial, showing good tolerance and no serious adverse events in the 80 healthy
patients enrolled. This safety profile of GRC10693 was observed with the highest dose of
GRC10693 evaluated—1200 mg. Glenmark Pharmaceuticals states that GRC10693 shows a
CB2R selectivity of >4700-fold over the CB1R. Additionally, peripheral and oral
administration of GRC10693 showed efficacy in modulating the in vivo animal models of
systemic acetic acid-induced visceral pain and hindpaw carageenan-induced local
inflammation, as well as CCI [189, 190]. However, the company has decided not to move
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forward with phase II clinical trials, as it is currently contemplating licensing the compound
to other pharmaceutical companies (http://www.glenmarkpharma.cz/clin2.php?lang=en).
Early clinical trials showed a safety and tolerability profile of Pharmos Scientific’s
Cannabinor CB2R selective compound, but it lacked reliable analgesia. Cannabinor is no
longer being developed as an i.v. therapeutic
(http://www.pharmoscorp.com/development/cannabinor.html). Glaxo-Smith-Klein reports
numerous phase I and II trials for its CB2R agonist GW842166X. GW842166X was
described as highly selective for the CB2R over the CB1R, with the ability to cross the blood
brain barrier in animals. Additionally, this compound showed efficacy in the CFA
inflammatory model of pain, without the development of tolerance [191] (Table 1).
Interestingly, the only completed phase I clinical trial examined the distribution of radio-
labeled GW842166X (specifically, [11c]GW842166X) via positron emission tomography
(PET) analysis
(http://clinicaltrials.gov/ct2/show/NCT00511524?term=GW842166X&rank=2). The
rationale was to identify whether this compound was able to cross the blood brain barrier in
6 healthy males. All other phase I studies of this compound were terminated prior to study
completion. Glaxo-Smith-Klein reports a total of 3 phase II clinical studies, all aimed at oral
dosing, with all reaching completion. The first phase II study examined molar tooth
extraction with enrollment in European sites. The other two studies, also with European
enrollment sites, examined GW842166X efficacy in osteoarthritis pain (Table 1). Reports
from these studies have not been released, and all were completed by September 2009.

The outcomes from the above-noted early clinical trials, specifically those of Cannabinor
from Pharmos Scientific, suggest that there may be intrinsic differences between the cellular
mechanisms within the human patient that has suffered with pain for an indeterminate
amount of time. Further, intrinsic physiological differences may also exist, even in a closely
monitored animal model of pain. One potential explanation may lie within the previously
described spinal cord mechanisms underlying the maintenance of chronic pain. The clinical
studies described did not administer these CB2R agonist compounds to the spinal cord. The
restriction of these compounds to peripheral sites (i.e., poor blood brain barrier permeability)
is desired to ensure that even minuscule CB1R nonspecific binding within the CNS does not
occur. This is thought to be an optimal approach to avoid off-target (i.e., CB1R)
psychotropic effects. However, it may be that the administration of these compounds to
reach the spinal cord is necessary to produce enduring pain relief due to the potential spinal
glial mechanisms underlying chronic pathological pain. Indeed, the argument can be made
that these compounds, lipophilic in nature, do possess the ability to penetrate the blood brain
barrier. Additionally, it may be that these compounds, acting as very weak CB1R agonists
within the CNS, at levels that do not produce psychotropic or motor side effects, are
beneficial in producing pain relief.

8. Summary
CB2R agonists are emerging as favorable therapeutics over CB1R for the treatment of
chronic pain, as these compounds produce relief from pain symptoms without the commonly
reported CB1R-related side-effects, like catalepsy and motor ataxia. CB2R agonists may
exert their actions independently from μ-opioid receptor actions, and no evidence currently
exists related to the development of tolerance or addiction following CB2R agonist
administration. While CB2R agonists appear to be highly promising as a new avenue for
pain therapeutics, the actual direct CNS and DRG effects of CB2R agonists on the
endocannabinoid system are largely unknown. In addition, the CNS role in pain modulation
of the endocannabinoid system is itself currently not fully understood and is an area of
intense research. The findings discussed in this paper suggest that CB2R ligands hold
promise as future therapeutics to treat chronic pain problems. However, greater research
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efforts are required to yield new clinically useful CB2R ligands, as the evidence and
outcomes from clinical trials is limited regarding the efficacy of these compounds. Although
speculative, spinal CB2R activation in humans may be necessary to reverse ongoing chronic
pathological pain. This approach would preferentially target activated glia which are critical
modulators of chronic neuropathic pain. Targeting glial cells, including microglial cells,
with CB2R ligands may hold the key to unlocking an efficacious treatment for chronic pain
patients.
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Figure 1.
Qualitative confocal images of cellular immunostaining. (a) Immunostaining of Iba-1 (red)
for infiltrating macrophages and microglia in the meninges and superficial white matter of
the spinal cord in a rat with ongoing neuropathy. (b) Immunostaining with IL-1β (green). (c)
Arrows indicate yellow colabeling of IL-1β- and Iba-1-positive cells and not with GFAP
(blue). (d) Immunostaining of Iba-1 (red) in the deeper laminae of the spinal cord dorsal
horn in a rat with ongoing neuropathy. (e) Immunostaining with IL-1β (green). (f) Arrows
indicate yellow colabeling of IL-1β- and Iba-1-positive cells and not with GFAP (blue). (g)
DRG immunostaining of GFAP positive satellite cells (red) and neurons stained for
neurofilament-heavy (NF-H, white) from a rat with ongoing neuropathy. (h) DRG
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immunostaining for IL-1β (green). (i) Arrows indicate yellow DRG IL-1β and GFAP
colabeling with DAPI nuclear labeling (blue). (j) Immunostaining of Iba-1 (red) in meninges
and superficial laminae of the dorsal horn spinal cord in a rat with ongoing neuropathy. (k)
Immunostaining of MAGL (green). (l) Arrows indicate yellow colabeling of MAGL and
Iba-1-positive cells, and not with GFAP (blue). Scale bars for all images indicate 20 µm.
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