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ABSTRACT
Nociceptive Transient Receptor Potential channels such as TRPV1 are targets for treating pain.
Both antagonism and agonism of TRP channels can promote analgesia, through inactivation and
chronic desensitization. Since plant-derived mixtures of cannabinoids and the Cannabis compo-
nent myrcene have been suggested as pain therapeutics, we screened terpenes found in Cannabis
for activity at TRPV1. We used inducible expression of TRPV1 to examine TRPV1-dependency of
terpene-induced calcium flux responses. Terpenes contribute differentially to calcium fluxes via
TRPV1 induced by Cannabis-mimetic cannabinoid/terpenoid mixtures. Myrcene dominates the
TRPV1-mediated calcium responses seen with terpenoid mixtures. Myrcene-induced calcium influx
is inhibited by the TRPV1 inhibitor capsazepine and Myrcene elicits TRPV1 currents in the whole-
cell patch-clamp configuration. TRPV1 currents are highly sensitive to internal calcium. When
Myrcene currents are evoked, they are distinct from capsaicin responses on the basis of Imax and
their lack of shift to a pore-dilated state. Myrcene pre-application and residency at TRPV1 appears
to negatively impact subsequent responses to TRPV1 ligands such as Cannabidiol, indicating
allosteric modulation and possible competition by Myrcene. Molecular docking studies suggest
a non-covalent interaction site for Myrcene in TRPV1 and identifies key residues that form partially
overlapping Myrcene and Cannabidiol binding sites. We identify several non-Cannabis plant-
derived sources of Myrcene and other compounds targeting nociceptive TRPs using a data mining
approach focused on analgesics suggested by non-Western Traditional Medical Systems. These
data establish TRPV1 as a target of Myrcene and suggest the therapeutic potential of analgesic
formulations containing Myrcene.
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Introduction

Components of plant secondary metabolomes have
been used in traditional and indigenous medical
systems for pain management for centuries.
Examples include Chinese Traditional Medical
System formulations, Japanese Kampo, African sys-
tems, indigenous Pacific and Oceanic systems and
Indian Ayurveda [1–3]. Numerous countries have
pluralized medical systems where these therapies
are integrated to varying degrees with Western med-
ical approaches[4], and they form significant compo-
nents of medical care in economically disadvantaged
countries by necessity [3,5]. The evidence base for
efficacy of these complex mixtures of medicinal com-
pounds ranges from historical and traditional knowl-
edge, contemporary anecdotal and patient-reported

outcomes (PRO), and some (often limited) testing
using Western paradigms of randomized controlled
trials and mechanistic studies [6,7]. The general rele-
gation of these pharmacopeias to the nutraceutical
market in the West has led to the dominance of the
debate around “medical” marijuana as the primary
plant-based medicine currently under scrutiny in the
US and other Western countries for its efficacy and
safety [8–11]. Pain is one of the most common
indications for the use of Cannabis medicinally[12],
and there is data supporting its efficacy and its
potential as an opioid-sparing approach [13–18].

The use of whole plant C. sativa extracts obtained
from dispensaries as “medicine” is beset by issues of
psychoactive adverse effects (due to the presence of
Δ9-tetrahydrocannabinol, THC), lack of consistency
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and standardization, contamination (microbial, pes-
ticide), and inadequate evidence of efficacy [19–24].
All of these place patients at risk and limit the poten-
tial utility of Cannabis-derived compounds as ther-
apeutics. There are unmet needs to evaluate the
major components of the Cannabis secondary meta-
bolome (several hundred cannabinoids and ter-
penes), discriminate active therapeutic from
inactive or dispensable compounds, and reformulate
single compounds or mixtures for prescription using
accepted regulatory pathways[25]. Both cannabinoid
and terpene components of Cannabismixtures need
to be included in these analyses since bioactive mole-
cules with therapeutic potential are found in both of
these categories [26,27]. In a parallel paper, we assess
the cannabinoid suite and in this study, we focused
on terpenes. These compounds are often referred to
as a part of the “entourage”, a concept where minor
components of the Cannabis secondary metabolome
are proposed to contribute additively or synergisti-
cally to physiological effects of the more abundant
cannabinoids such as THC, cannabinol and canna-
bidiol [28–30].

In this study, we focus specifically upon one target
for analgesia, the Transient Receptor Potential ion
channel TRPV1. Several members of the TRP super-
family of non-selective cation channels have been
identified both as nociceptive receptors for pungent
plant compounds (e.g., capsaicin, allicin, menthol)
and as targets for cannabinoids [31–40]. Both antag-
onism and agonism of the TRP channel are critical
pharmacological approaches for pain management.
For example, TRPV1 antagonism has utility in acute
analgesia. However, chronic pain management
requires longer-term strategies such as receptor and
neuronal desensitization using TRPV1 agonists.
There is a need to explore whether other naturally-
occurring TRPV ligands could cause desensitization
at the tissue or cellular level without the accompani-
ment of high pain levels (such as those caused by the
topical 8% capsaicin treatment that is standard in the
field) in the short term. The separation of excitatory
and analgesic effects of chronic TRPV1 activation is
a goal in this field.

In the current paper, we used primary data from
a third-party testing laboratory to arrive at a list of 10
terpenes that are of high relative abundance in com-
monly used medicinal Cannabis chemovars [41,42].
We tested each compound for its ability to induce

calcium influx into a heterologous system with iso-
lated expression of TRPV1. A mixture of these com-
pounds in strain-equivalent ratios activated large
TRPV1-dependent calcium responses. Most of the
compounds were inactive when tested singly, with
only Myrcene and Nerolidol causing TRPV1 activa-
tion. Most of the mixture effect was accounted for by
Myrcene, and so we studied this compound in more
detail using whole-cell patch-clamping. Myrcene is
an activator of a highly rectifying conductance,
which is dependent upon the presence of TRPV1
protein. Myrcene-induced currents are distinct
from those induced by capsaicin in the magnitude
of the attained Imax and the fact that Myrcene cur-
rents do not transition to the pore-dilated highly
permeant state characterized by a linear I/V relation-
ship that has been described for TRPV1. Myrcene-
induced currents are highly sensitive to internal cal-
cium levels, and appear rapidly inactivating in
a manner dependent on the degree of cytosolic buf-
fering of calcium. Under varying conditions of inter-
nal calcium myrcene can be a productive (induction
of nA currents and obvious calcium influx) or non-
productive (receptor occupancy butminimal current
development) ligand for TRPV1, which may open
interesting possibilities for therapeutic manipulation
of TRPV1 using this compound. Myrcene pre-
application and residency at TRPV1 appears to nega-
tively impact subsequent responses to TRPV1
ligands such as Cannabidiol, indicating allosteric
modulation and possible competition by Myrcene.
Molecular docking studies suggest a non-covalent
interaction site for Myrcene in TRPV1 and identifies
key residues that form partially overlappingMyrcene
and Cannabidiol binding sites. A key terpene moiety
that is predictive of likely interaction with the
Myrcene site are identified, providing a means to
differentiate between compounds within the broad
range of Cannabis terpenes that are likely to mimic
Myrcene.

Materials and methods

Cell culture

HEK TRexTRPV1 (human or rat) were cultured in
DMEM, 10% Fetal Bovine Serum, 2 mM
L-glutamine, 10 μg/ml Blasticidin (Calbiochem,
San Diego CA), 400 μg/ml Zeocin (InvivoGen,
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San Diego CA), transgene expression was induced
using 1 μg/ml Tetracycline for 16–24 h. Human
TRPV1 and rat TRPV1 were compared for terpene
responses and quantitative (e.g., response size) but
not qualitative differences in Ca2+ response pro-
files were observed. rTRPV1 was used in the
experiments shown here. A comparison of conser-
vation of all key residues in h and r TRPV1 is
shown in Table II.

Chemicals, reagents, and stimulations

General chemicals were from VWR (West Chester,
PA) and Sigma Aldrich (St. Louis, MO). Terpenes,
beta-Myrcene, Capsaicin, and Capsazepine were
from Sigma Aldrich.

Mixture design

(1) Terpene profiling. Terpenoid analyses
(DigiPath Laboratories) were carried out on an
Agilent 7890B GC/7697A Headspace/5977A mass
spectrophotometer with a DB-624UI and Agilent
5181–8818 split/splitless liner. Injector port tem-
perature was 250°C with a transfer line, valve oven
and needle temperature of 180°C. Carrier gas was
helium at a flow of 33.0 cm/s. The MS detector
was set to scan with a range from 50 to 300 m/z.
The instrument was controlled by Agilent
Masshunter quantitative analysis (Vers. B.08.00
Build 8.0.593.0). Certified reference standards
were from Restek (Bellefonte, PA) with
Masshunter library confirmation.
(2) Strain-inspired mixture: Cannabidivarin
(CBDV), Cannabichromene (CBC), Cannabidiol
(CBD), Cannabidiolic Acid (CBDA), Cannabigerol
(CBG), Cannabigerolic Acid (CBGA), Cannabinol
(CBN), alpha-Bisabolol, alpha-Humulene, alpha-
Pinene, beta-Caryophyllene, beta-Myrcene, (+)-beta
-Pinene, Camphene, Limonene, Linalool, Nerolidol.
(3) Cannabinoid mixture: Cannabidivarin (CBDV),
Cannabichromene (CBC), Cannabidiol (CBD),
Cannabidiolic Acid (CBDA), Cannabigerol (CBG),
Cannabigerolic Acid (CBGA), Cannabinol (CBN).
(4) Terpene mixture: alpha-Bisabolol, alpha-
Humulene, alpha-Pinene, beta-Caryophyllene, beta-
Myrcene, (+)-beta-Pinene, Camphene, Limonene,
Linalool, Nerolidol.

Calcium assay (bulk method)

Cells were washed and incubated with 0.2 μM
Fluo-4 [43] for 30 min at 37°C in a standard
modified Ringer’s solution of the following com-
position (in mM): NaCl 145, KCl 2.8, CsCl 10,
CaCl2 10, MgCl2 2, glucose 10, Hepes·NaOH 10,
pH 7.4, 330 mOsm. Cells were transferred to 96-
well plates at 100,000 cells/well and stimulated as
indicated. Calcium signals were acquired using
a Flexstation 3 (Molecular Devices, Sunnydale,
USA). Data were analyzed using SoftMax® Pro 5
(Molecular Devices). Where indicated, nominally
calcium-free external conditions were achieved by
the preparation of 0 mM CaCl2 Ringer solution
containing 1mM EGTA.

Electrophysiology

Cells grown on glass coverslips were transferred to
the recording chamber and kept in a standard
modified Ringer’s solution of the following com-
position (in mM): NaCl 140, KCl 2.8, CaCl2 1,
MgCl2 2, glucose 10, Hepes·NaOH 10, pH 7.2,
with osmolarity typically ranging from 295 to 325
mOsm. Intracellular pipette-filling solutions con-
tained (in mM): Cs-glutamate 140, NaCl 8, MgCl2
1, Cs-BAPTA 10, HEPES·CsOH 10, pH 7.2
adjusted with CsOH with an osmolarity ranging
from 295 to 325 mOsm. Patch-clamp experiments
were performed in the tight-seal whole-cell config-
uration at 21–25°C. High-resolution current
recordings were acquired by a computer-based
patch-clamp amplifier system (EPC-9, HEKA,
Lambrecht, Germany). Patch pipettes had resis-
tances between 2 and 4 MΩ after filling with the
standard intracellular solution. Immediately fol-
lowing establishment of the whole-cell configura-
tion, voltage ramps of 50 ms duration spanning
the voltage range of – 100 to +100 mV were
delivered from a holding potential of 0 mV at
a rate of 0.5 Hz over a period of 500 s. All voltages
were corrected for a liquid junction potential of 10
mV between external and internal solutions
because of glutamate use as intracellular anion.
Currents were filtered at 2.9 kHz and digitized at
100 µs intervals. Capacitive currents and series
resistance were determined and corrected before
each voltage ramp using the automatic capacitance
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compensation of the EPC-9. The current develop-
ment graphs were generated by extracting currents
at −80 and +80 mV. Where applicable, statistical
errors of averaged data are given as means ± SEM
with n determinations.

Molecular modeling

Software used was Molecular Operating
Environment 2018 by Chemical Consulting Group.
The TRPV1 structural source file was the rat crystal
structure RCSB PDBNo. 5IS0 (EMD-8119), electron
microscopy structure (at 3.43 Angstrom)[44]. The
protein with ligand deleted was protonated and
minimized with Amber10 constrained with rigid
water molecules. Site Finder settings were: Probe
Radius 1 = 1.4, Probe Radius 2 = 1.8, Isolated
Donor/Acceptor 3, Connection Distance 2.5,
Minimum Site Size 3, Radius = 2, Rendered Alpha
Spheres. Docking at site 4 (Ala 400 through ASP 707)
used dummy atoms at alpha spheres. The placement
method was Alpha PMI (Principal Moment of
Inertia), scored with ASE (Alpha Sphere and
Excluded volume-based ligand-protein docking)
and refinement using Induced Fit as the method
and scored with ASE.

Analysis

Results are shown as the mean ± standard deviation.
Statistical significance was determined based on
Student’s t-test or ANOVA. Adjacent to data points
in the respective graphs, significant differences were
recorded as follows: single asterisk, p < 0.05; double
asterisk, p < 0.01; triple asterisk, p < 0.001; no sym-
bol, p > 0.05. Experiments are all n of at least 3.

Results

Strain-inspired and cannabinoid or terpene
mixtures initiate calcium responses in a TRPV1
over-expression system

We evaluated Cannabis constituents for their
ability to mobilize intracellular free calcium in
HEK cells that were either untransfected (wild
type, WT) or bearing tetracycline-inducible
expression of TRPV1 (HEK-TRPV1). We first
confirmed (Figure 1(a)) that this system resolved

TRPV1-dependent calcium fluxes, which were
present in HEK-TRPV1 but not HEK WT when
stimulated using the TRPV1 ligand capsaicin[45].
We built a complex mixture of cannabinoids and
terpenes which, omitting tetrahydrocannabinol in
order to focus on non-psychoactive components,
recapitulated the composition of an example
strain of medical marijuana in current use in
Nevada (DigiPath Laboratories) [41,42]. This
“strain mixture” was assembled in two ways,
either using 10 micromolar as a final dose of
each constituent or setting the cannabinol
(the second major constituent after THC) at
a nominal dose of 10 micromolar and adding
relative amounts of other constituents at ratios
informed by quantitative data on strain composi-
tion obtained by a third-party testing laboratory
(see Figure 1(e)). In both cases, extensive optimi-
zation of the mixtures in terms of appropriate
vehicles for each component was performed, and
vehicle controls exactly matched the diluents pre-
sent in the applied mixtures without active com-
pounds added. No major differences were seen
between the presumably saturating 10 micromolar
doses (Figure 1(b)) and the ratioed doses (not
shown) and so the former were selected for sub-
sequent experiments. Figure 1(b) shows the cal-
cium-mobilizing effect in HEK-TRPV1 of
mixtures containing seven cannabinoids
(Cannabidivarin (CBDV), Cannabichromene
(CBC), Cannabidiol (CBD), Cannabidiolic Acid
(CBDA), Cannabigerol (CBG), Cannabigerolic
Acid (CBGA), Cannabinol (CBN)), and 10 ter-
penes (alpha-Bisabolol, alpha-Humulene, alpha-
Pinene, beta-Caryophyllene, beta-Myrcene, (+)-
beta-Pinene, Camphene, Limonene, Linalool,
Nerolidol). Figure 1(c,d) shows the effects in
HEK-TRPV1 of the 7 cannabinoids and 10 ter-
penes as separate mixtures. These are population-
based Ca2+ assays where each datapoint repre-
sents the mean of triplicate samples of 100,000
cells per point. Figure 1(e) shows, for reference,
the relative abundancies (% w/v) of each terpene
we considered for inclusion in our study based on
352 separate chemotype analyses of chemovars
currently in patient use [41,42]. Some compounds
were excluded on the basis of solubility or stabi-
lity issues, resulting in the list of 10 terpenes
evaluated here.
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(a) (b)

(c)

(e)

(d )

Figure 1. Strain-inspired and cannabinoid or terpene mixtures initiate calcium responses in a TRPV1 over-expression system.
a. HEK-TRPV1 differentiate TRPV1-dependent calcium responses. HEK WT and HEK-TRPV1 were loaded with Fluo-4 and
population-based calcium assays were conducted in the presence of 1mM external calcium. After a non-stimulated (NS) period to
establish a baseline, cells were stimulated at 20 s with 100 nM capsaicin. b, c, d. HEK-TRPV1 were exposed to a matched vehicle
mixture (veh) or the indicated mixtures of cannabinoids plus terpenes, cannabinoids, or terpenes, as indicated. Fluo-4 calcium assays
were performed as described. e. Distribution of content values of terpenoids in 2,662 Cannabis samples representing 396
“strains” in three major chemovars [41,42]. The box plots display the range and distribution of each analyte in terms of %w/w. The
line bisecting each box represents the median for that distribution. The lower and upper lines show the minimum and maximum
values of the lower and upper quartiles, respectfully. The points show the outliers for the sampled ranges. The y-axis values represent
% (w/w) of dried flower for each of the indicated cannabinoid species.
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Individual terpenes contribute differentially to
terpene mixture-induced calcium responses

In a separate study, we evaluated individual effects
of cannabinoids. Cannabidiol, Cannabividarin,
Cannabigerolic Acid, Cannabichromene, and
Cannabidiolic Acid were found to be effective
TRPV1 ligands both in bulk calcium assay and
using electrophysiology[46]. In this study, we
focused on terpenes, and Figure 2(a–l) show cal-
cium responses to individual terpenes applied to
HEK-TRPV1, with a summary in Figure 2(m).
These are population-based Ca2+ assays where
each datapoint represents the mean of triplicate
samples of 100,000 cells per point. Responses are
present in cells stimulated with Myrcene and
Nerolidol, suggesting that these compounds may
be primarily driving the large calcium mobilization
responses seen in response to the terpene mixture.
Responses to Nerolidol are significantly smaller
than those to Myrcene, and Figure 2(n,o) show
that Myrcene explains most of the response to
the terpene mixture in HEK-TRPV1 cells.

Dependency of terpene and myrcene responses
on presence of TRPV1

We used the comparison between HEK WT and
HEK TRPV1 cells to establish which, if any, of the
calcium responses observed were dependent on
the presence of TRPV1. Figure 3(a–c) show that
the strain-inspired, cannabinoid and terpene mix-
tures described above are without significant cal-
cium-mobilizing effects in HEK WT, but when
cells are induced to express TRPV1, calcium-
mobilizing responses are observed. Figure 3(d–g)
shows a dose-response of Myrcene in HEK WT
and TRPV-expressing cells, and again, the
observed calcium mobilization responses are
mainly dependent on the presence of TRPV1.
The low-level responses seen in Figure 3(d), for
example, may represent another endogenous TRP
involvement (possibly TRPV2, data not shown).
The relationship between Myrcene and TRPV1
was further confirmed in Figure 3(h,i) where the
TRPV1 antagonist capsazepine was applied after
Myrcene addition, causing a rapid drop-off in the
calcium response (top panel). In contrast, when
the capsazepine vehicle (PBS) was added in the

same protocol (bottom panel) no diminution in
the Myrcene-induced calcium response was seen.
Finally, we asked whether all of the calcium mobi-
lization observed in HEK-TRPV1 treated with
Myrcene represented entry across the plasma
membrane or whether there was a store release
component. TRPV1 present in internal mem-
branes (e.g., ER and Golgi during biosynthesis
and trafficking) can gate calcium stores as it is
being trafficked to the cell surface and if the
applied ligand is sufficiently lipophilic to access
internal membranes[47]. Figure 3(j) shows that
under nominally calcium-free external conditions
(0 mM added CaCl2 plus 1mM EGTA), Myrcene
does cause stored calcium release. Interestingly
(Figure 3(j) right panel cf Figure 3(e)), the release
response appears less dose-sensitive than the com-
posite release and influx response, perhaps reflect-
ing that a component of specific activity for
Myrcene at internal TRPV1 is access across mem-
branes and the cytosol.

Myrcene activation of cationic currents is
dependent on TRPV1

Myrcene is a component of Thyme oil, some com-
ponents of which are TRPV1 and TRPA1 activa-
tors (thymol, linalool) [48,49]. However, the target
of Myrcene as an ion channel activator [50–52]
has not been explicitly explored. We used whole-
cell patch-clamping to investigate Myrcene activa-
tion of TRPV1. Figure 4(a,b) shows current devel-
opment over time in HEK-TRPV1 cells exposed
extracellularly to the indicated doses of Myrcene
using an applicator pipette in the whole-cell patch-
clamp configuration. Current-voltage relationships
were extracted and (Figure 4(c,d)) are consistent
with published characteristics of TRPV1 prior to
state transition (see below). Capsaicin-induced
currents are shown for comparison (Figure 4(e,f)).

State-specific activation of TRPV1 by myrcene

TRPV1 is a two state channel, exhibiting rapid pore
dilation after activation in response to Capsaicin
[53–55]. This pore-dilation results in a loss of selectiv-
ity, rendering the channel permeant to large cations
(e.g., NMDG) and in this state, the I/V relationship
becomes highly linearized and reverses at close to 0
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mVpotentials. Currents at the largest Imax thatwe see
withMyrcene (e.g. Figure 4(c,d)) retain their rectifying
characteristics. In contrast, capsaicin-induced cur-
rents immediately exhibit the dilated state (Figure 4
(e,f)). Note that the Myrcene-induced currents shown

here in response to a moderate ligand dose (five
micromolar, selected to minimize calcium-induced
current inactivation, see below), are nevertheless of
the order of 1–1.2 nA. They are relatively dwarfed by
the massive TRPV1 currents present in this over-

(a) (b) (c)

(d) (e) (f)

(g) (h)
(i)

Figure 2. Individual terpenes contribute differentially to terpene mixture-induced calcium responses. a-l. HEK-TRPV1 were
loaded with Fluo-4 and population-based calcium assays were conducted in the presence of 1mM external calcium. After a matched
vehicle exposure (veh) period to establish a baseline, cells were stimulated at 20 s with the indicated terpenes (a. all terpenes, 10 μM;
b-l. indicated terpene at 10 μM). m. Summary of a-l. Area under the curve analyses were performed followed by Student’s t-test.
P-value relative to vehicle: Caryophyllene, Limonene, Bisabolol, Linalool, Humulene, Pinene, Camphene, Ocimene; p > 0.05. Myrcene,
p = 0.00055. Nerolidol, p = 0.002. n. Relative contribution of Myrcene compared to response to mixture of all Terpenes. o. Area
Under the Curve (AUC) analysis comparing Myrcene alone, Terpene mixture, and Terpene mixture without Myrcene (all
compounds at 10 μM final) to matched vehicles. HEK-TRPV1 were loaded with Fluo-4 in the presence of 1mM external calcium.
Calcium flux data were collected for 900 s and AUC calculated.

350 C. JANSEN ET AL.



expression system, but are sizable in their own right.
Figure 4(g,h) presents the rectification properties of
Myrcene-induced TRPV1 and Capsaicin-induced
TRPV1 both before and after state transition. We
note that lower Myrcene doses induce a slow inacti-
vating current while at higher concentrations the

current is fast inactivating, thus suggesting either dif-
ferent modes of action or that the Ca2+ entry resulting
from higher activation translates to more rapid Ca2+ -
dependent inactivation. The latter is not explored
further in this paper but we examine Ca2+ -
dependent inactivation below.

(j) (k) (l)

(m) (n)

(o)

Figure 2. (Continued)
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(a) (b) (c)

(f)(d) (e)

(g) (h) (i)

(j)

Figure 3. Dependency of terpene and myrcene responses on presence of TRPV1. a–c. HEK WT and HEK-TRPV1 were loaded
with Fluo-4 and population-based calcium assays were conducted in the presence of 1mM external calcium. After a non-stimulated
(NS) period to establish a baseline, cells were stimulated at 20 s with the indicated compound or mixture. d-g. Myrcene dose-
response. Area under the curve analyses were performed followed by Student’s t-test. P value for HEK TRPV1 relative to HEK WT:
panels A–G, P < 0.005. h, i. Effect of TRPV1 antagonist Capsazepine on calcium responses initiated by Myrcene in HEK-TRPV1 cells.
Area under the curve analyses were performed followed by Student’s t-test. P value for trace in panel H relative to I: P = 0.002.
j. Comparison of Myrcene induced (two doses, left and right panels) calcium responses in HEK TRPV1 stimulated in the absence (red
trace, 0 mM added CaCl2 plus 1 mM EGTA) or presence of external calcium. Area under the curve analyses were performed followed
by Student’s t-test. P-value for 1mM relative to 0mM external Ca2+: left panel, P = 0.018; right panel, P = 0.0008.
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(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 4. Myrcene activation of cationic currents is dependent on TRPV1. a, b. Current development graphs (n = 6) for
HEKTRPV1 stimulated as indicated with Myrcene at 5 μM or 150 μM followed by capsaicin (1 μM). Recordings were performed in
1mM external Ca2+. Attained Imax are shown above the Myrcene recordings. The current development graphs were generated by
extracting currents at −80 mV and +80 mV. c–f. High dose Myrcene responses do not elicit pore-dilation in TRPV1 as assessed
by rectification in the I/V relationship. c, d. Extracted I/V curves for Myrcene responses. Extraction point from the time series is
indicated by upward arrows on a and b. e, f. Extracted I/V curves for Capsaicin responses. Extraction point from the time series is
indicated by upward arrows on a and b. High amplitude Myrcene-induced currents (4 nA) were induced using 150 μM Myrcene
application. These rapidly inactivating currents display a rectification that is not seen in large capsaicin-induced TRPV1 currents
where pore dilation has occurred. g, h. Bar graphs representing inward and outward current at different doses of Capsaicin (G) and
Myrcene (H).
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External calcium impact on myrcene activation
of TRPV1

In Figure 5 we evaluated the impact of external
calcium levels on Myrcene activation of TRPV1.
Figure 5(a) shows that a ~ 1 nA conductance
develops in the absence of external calcium but
when Caext is restored to 1 mM, a large 5 nA
conductance develops which retains its highly rec-
tifying I/V relationship (extracted I/V curves are
shown in Figure 5(b–f)). When external calcium is
removed the conductance dissipates rapidly. We
note that this experiment also eliminates the pos-
sibility that stored Ca2+ release (see Figure 3(j)) is
activating the Ca2+ -release activated current
(CRAC) in these cells since the small current acti-
vated under zero external Ca2+ (60–120 s) in
Figure 5(a) does not have the positive reversal
potential and rectification properties of ICRAC.

Internal calcium impact on myrcene activation of
TRPV1

We hypothesized that Myrcene may have a high
permeation of external calcium which then desensi-
tizes the channel and prevents activation of the
TRPV1 current. To test this, we buffered internal
calcium to different levels including Ca 0 nM, Ca
180 nM, Ca 620 nM, and left internal calcium unbuf-
fered with zero mM BAPTA in the internal solution.
Figure 6(a–d) shows a dose-response of Myrcene (10
to 150 micromolar) in cells perfused with external
solution containing no BAPTA, leaving internal cal-
cium essentially unbuffered. Under these conditions
minimal, if any, Myrcene-induced TRPV1 currents
were observed. We then altered the internal Ca2+

conditions as shown in Figure 7. When internal
calcium is buffered to zero (Figure 7(a)) large current
manifest in response to Myrcene. Low internal cal-
cium levels that mimic the cytosol at rest (180 nM,
Figure 7(b)) allowed Myrcene-activated TRPV1 to
manifest at 1–2 nA Imax, and this effect was dimin-
ished as we raised the internal calcium levels to 620
nM (Figure 7(c)). In comparison, Figure 6(d) shows
the effect of a very high Myrcene dose (150 μM) in
unbuffered cytosolic Ca2+ showing that even under
such high levels of stimulation the presumed Ca2+

dependent inactivation of the channel suppresses
currents.

Myrcene effects on subsequent TRPV1 ligand
application
Myrcene-induced TRPV1 currents are highly sen-
sitive to internal Ca2+, raising the interesting pos-
sibility that under high internal Ca2+ conditions
Myrcene could occupy TRPV1, not induce flux,
but affect subsequent availability to other stimuli.
We have previously shown that Cannabidiol
(CBD) is an effective ligand for TRPV1[46], and
Figure 8(a–d) exemplify the CBD-mediated effects
on TRPV1 including activation of a current that
develops to Imax of up to 5nA (Figure 8(a)), is
sensitive to both capsazepine and washout
(Figure 8(b,c)) and is a rectifying current with
Erev of ~0mV (Figure 8(d)). We sought to explore
the potential for Myrcene application to modulate
subsequent CBD effects. Figure 8(e) examines the
responses when Myrcene is allowed to occupy the
channel in 0 mM external Ca2+, prohibiting influx.
When a Ca2+ “add-back” protocol is performed
with Cannabidiol (Figure 8(e), Table I) as
a second stimulus in 1 mM external Ca2+, the
Cannabidiol response is suppressed compared to
Cannabidiol without prior Myrcene. These data
suggest the Myrcene has the potential to act as
an allosteric modulator of other TRPV1 ligands,
and prompted an effort to model the interaction
sites at TRPV1 for both molecules.

Molecular docking of myrcene and cannabidiol at
TRPV1
Small molecule ligands for oxidation-sensitive
TRPs such as TRPA1 and V1 can act through
electrophilic additions at the same Cysteines that
are regulated by hypoxia and hyperoxia [56–58].
However, not all ligands participate in electrophi-
lic additions with the channels. We performed
preliminary molecular docking analyses using the
Cryo-EM structure of rTRPV1 (RCSB PDB No.
5IS0) to assess potential sites and mechanisms for
Myrcene binding. We performed an unbiased
computational modeling analysis of Myrcene:
TRPV1 compared to Allicin:TRPV1 binding[56]
(MOE Site Finder, Molecular Operating
Environment version 2018, Chemical Computing
Group, Montreal, QC). First, on the basis of its
structure, Myrcene is unlikely to participate in the
electrophilic additions but is more likely to parti-
cipate through lipophilic interactions with the
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channel. Through hydrophobic interactions over
80 potential binding sites for Myrcene were iden-
tified in TRPV1, many in the region of Cys 621
but no close interactions with Cys 616 or 621 were
observed. One site (site #4) showed binding of
both Allicin and Myrcene but a lower (better)
docking energy (−17.7 versus −14.0 kcal/mol) for
Myrcene over Allicin, despite the fact that Allicin
was able to interact with the Cysteines as
described, likely in a covalent manner, whereas
Myrcene was only able to interact through hydro-
phobic interactions primarily with Arg 491 and
Tyr 554 (Figure 9(a,b)). Other residues implicated
in this contact are F488, N437, F434, Y555, S512,
E513 and F516 (Figure 9(a,b)). Each of these resi-
dues is identical or closely conserved between rat
or human TRPV1 and most have been implicated
previously as of importance in ligand binding or
regulation of TRPV1, for example, prior studies
showed a Tyr 554 to alanine mutation ablated both
capsaicin and resiniferatoxin binding in TRPV1
[59]. These relationships are fully described in
Table II and include a protonation site (R491)

[45], capsaicin interacting sites and residues that
contribute to the hydrophobic interior of trans-
membranes domains S1,2, and 4 [60]. Several are
involved in voltage or thermal sensing [61,62], and
based on mutagenesis studies this Myrcene bind-
ing site might also be sensitive to Resiniferatoxin
competition [62–64]. Residues close to the S4-S5
linker, a key regulatory region for TRPs, are also
implicated in binding.

One chemical moiety in Myrcene that is con-
tacted by several residues in the binding site is
a dimethyl group that is shared by a number of
other terpenes found in Cannabis and other plant
sources. Figure 9(c) shows a group of Cannabis
terpenes that share this moiety, and may have the
capacity to occupy this site. Interestingly, our data
confirm that Nerolidiol also actives TRPV1-
mediated Ca2+ influx (Figure 2(d)), although we
do not see similar fluxes with the other com-
pounds at the doses we tested. Given that other
terpenes have dramatically different structures
than this group (cf. humulene, not shown) our
data may offer a pre-screen approach for decisions

(a) (b)

(c)

(d) (e) (f)

Figure 5. External calcium impact on Myrcene activation of TRPV1. External calcium levels in the perfusion buffer were
manipulated sequentially in the absence and presence of simultaneously applied Myrcene. a. Current development graphs (n = 6).
b-f. Extracted current/voltage relationships at the indicated data points.
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as to which of the large number of terpene mole-
cules should be prioritized for exploration in the
context of TRPV1 and nociception.

We evaluated the CBD binding site similarly
(Figure 9(d,e)). A binding pocket partially over-
lapping with that of Myrcene was identified and

(a)

(c)

(d)

(b)

Figure 6. Dose-response of Myrcene in unbuffered internal calcium conditions. Current development graphs for the indicated
doses of Myrcene recorded with unbuffered calcium in the internal solution. a, n = 4. b, n = 5. c, n = 8. d, n = 8.
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the best scoring pose showed a docking score of
−26.5 kcal/mol. In this site, Y554 and R491 are
important, as for Myrcene. The remaining residues
implicated in CBD binding show both similarities
and differences to the Myrcene site. Figure 10(a,b)
compares the implicated residues in binding
Myrcene and CBD across a two-dimensional
representation of the channel’s protein sequence.
Table II presents each implicated residue, its con-
servation or identity between rat and human, loca-
tion to the S4-5 linker, function, effects of
mutagenesis where known, and supporting
references.

Discussion

This study evaluated terpenes found in C. sativa for
their effectiveness in activation of TRPV1. We found
that while mixtures of terpenes were effective in elicit-
ing large calcium influxes in a TRPV1-expression
system, most of this activity was in fact accounted for
by two compounds, Myrcene and Nerolidol. Of these,
Myrcene is themost significant contributor to calcium
influxes. Myrcene responses showed complete depen-
dence upon the presence of TRPV1 and were blocked
effectively by the TRPV1 antagonist Capsazepine.
Myrcene currents shared similar properties to those

evoked by capsaicin, especially in their dependence on
internal and external calcium levels. One distinction,
however, was the lack of transition to the pore-dilated,
non-rectifying, channel open state that is associated
with capsaicin-induced currents [53–55]. Interestingly
we also note this lack of pore dilation in TRPV1
responses to CBD, CBN, and CBD [46]. Myrcene
has been identified as an analgesic in past studies
including those of Traditional Medical System
(TMS) approaches. As a component of Occimum
oils, it has demonstrated anti-neuropathic pain effects
in mice, working in combination with eugenol (a
TRPA1 ligand)[65]. Analgesic oils from other settings
containMyrcene [66–68,69]. ATCM formulation, the
Danggui-Zhiqiao herb-pair, has been indicated for
pain and contains Myrcene [70]. In addition, our
analyses of two Kampo and two TCM formulations
for pain suggest that Myrcene has convergently been
arrived at in numerous TMS (Supplemental Table 1)
[71–74,75,76,77,78]. InWestern studies, Myrcene was
shown to be anti-nociceptive in mice [79].
Interestingly in this study, the mechanism of action
of Myrcene was thought to be via alpha 2-adrenore-
ceptors based on antagonism of the Myrcene effect by
yohimbine and naloxone. There is a connection
between adrenoreceptors andTRPV1,where the adre-
noreceptor activation inhibits TRPV1, possibly via
activation of a TRPV1-inhibiting PKA-mediated

(a) (b)

(c) (d)

Figure 7. Internal calcium impact on Myrcene activation of TRPV1. Current development graphs for the indicated doses of
Myrcene recorded in the internal conditions that set cytosolic calcium to the indicated levels (zero, 180 nM, 620 nM, unbuffered). a,
n = 6, b, n = 4, c and d, n = 6.
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phosphorylation pathway [80]. Further complexity
arises when we consider that naloxone inhibition
may also indicate opioid receptor involvement, and
functional interactions between opioid and TRPV1
receptors have been shown in nociceptive and

neuroprotective pathways [58,81–83]. One key aspect
for further study is the dose-response relationship for
myrcene (and other Cannabis components), and
TRPV1. The doses used in this study are high due to
the solubility issues inherent inworkingwithmyrcene.

(a) (b)

(c) (d)

(e)

Figure 8. Myrcene suppression of subsequent TRPV1 ligand responses.a–d. CBD initiation of TRPV1 conductances in HEK TRPV1.
Cannabidiol (CBD), Cannabividarin, Can nabigerolic Acid, Cannabichromene and Cannabidiolic Acid were found to be effective TRPV1
ligands both in bulk Ca2+ assay and using electrophysiology [46]. a. CBD induction of outwardly rectifying conductance in HEK TRPV1.
b. CBD-induced current is sensitive to application of the TRPV1 inhibitor Capsazepine. c. CBD-induced current is sensitive to washout.
d. Current-voltage relationship for CBD-induced TRPV1.e. Fluo-4 Ca2+ responses in HEK TRPV1 stimulated according to the schema
shown in Table I. All concentrations are in micromolar. For all three protocols, Myrcene was allowed to occupy TRPV1 in the absence
of external Ca2+ (i). For the second recording phase (ii), 1 mM external Ca2+ was restored or Ca2+-free conditions were maintained
and cannabidiol or myrcene were applied. For the third phase (iii), Ca2+ restoration and addition of stimuli were performed for those
samples that saw Ca2+-free conditions in phase 2.
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(e)

(c) (d)

(a) (b)

Figure 9. Molecular docking of Myrcene at TRPV1. A. Ligand interactions of Myrcene at binding site 4 of TRPV1 (two-dimensional
representation). b. Myrcene docked at binding site 4 of TRPV1 (three-dimensional representation). c. Similarities in chemical moieties
between specific terpenes found in Cannabis and other plant sources. d. Cannabidiol docked at TRPV1 (two-dimensional representation).
e. Two views (upper and lower panels) of Cannabidiol binding pocket in TRPV1 (three-dimensional representation).
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The specific activity and effective dose of myrcene at
TRPV1 is likely to be far lower than our experiments
suggest, and preliminary studies with carrier mole-
cules indicate that this is the case (ALSH,
unpublished).

The complex relationship between intracellular
free calcium levels and the degree of Myrcene activa-
tion may be of interest when we consider how to
leverage Myrcene in analgesic applications. While
for many pain applications there is a focus on orally
bioavailable TRPV1 antagonists, in applications for
indications such as diabetic neuropathy and post-
herpetic pain, topical application of high percentage
capsaicin creams are a standard approach [84].
These rely on chronic agonism of TRPV1 leading

to both desensitization of TRPV1 at the cellular level
and the induction of neuronal cell death via large
influxes of calcium and sodium through the channel
[85,86], but are associated with severely burning
sensations. If these cytotoxic fluxes are indeed
dependent upon the pore-dilation transition of
TRPV1 in response to capsaicin, then Myrcene
may not perform as well as Capsaicin in topical
applications. Alternatively, if Myrcene may be able
to separate excitatory and analgesic effects of TRPV1
application given that it does not inevitably cause
state transition of TRPV1, then it may have advan-
tages in terms of side effect profiles. Moreover,
Myrcene at certain concentrations may be able to
occupy the receptor effectively and cause cellular

(a)

(b)

Figure 10. Residues implicated in Myrcene and Cannabidiol binding to TRPV1 via molecular modeling. Topology of rTRPV1
with residues implicated in Myrcene (a) and Cannabidiol (b) binding highlighted. Table II. Overview of residues implicated in Myrcene
and Cannabidiol binding to TRPV1 using molecular docking relative to prior functional and mutagenesis studies. Non-bonded
contacts are coded orange.

360 C. JANSEN ET AL.

Eric

Eric

Eric

Eric

Eric

Eric

Eric



level desensitization, without appreciable influx.
However, it is not yet clear if this is a scenario that
is likely to occur physiologically.

The relationship between Myrcene activation of
TRPV1 and intracellular calcium levels is also com-
plex. Calcium influx and accumulation in the cytosol
rapidly inactivate Myrcene, and when the cytosol is
unbuffered (an unphysiological situation that is only
found in the patch-clamp) this can effectively pre-
vent manifestation of the current. However, the
population-based assays that we show certainly are
consistent with large fluxes of calcium entering in
response to Myrcene, despite the “free calcium”
patch-clamp scenario showing no appreciable cur-
rent. The basis for these disparate observations may
be complex: (1) The comparison between patch-
clamp conditions and bulk calcium assays may be
“apples to oranges”. Clamping the cytosolic calcium
to 180 nM and 620 nM, respectively, represent “rest-
ing” and “activated” levels of calcium in the cytosol
but do not allow movement around the clamped
level. The implications of the measurable but
decreased Myrcene-induced TRPV1 at 620nM Ca2
+
i are that the current would still be appreciable
during the higher elevation of Ca2+i likely during
cellular activation. “Free” or unbuffered calcium
conditions in the cytosol are not physiological
because the cytosol has significant buffering capacity
from calcium-binding proteins and calcium sinks
[87]. Thus, none of the patch-clamp conditions
exactly mirrors those in the population-based assay,
but we do know that Myrcene can initiate fluxes and
that at certain fixed cytosolic calcium levels that are
within the physiological range of increases in Ca2+i
which occur during cellular activation, Myrcene-
induced currents domanifest. (2)We cannot exclude
that non-TRPV1 conductances may be contributing
to the population-based flux measurements. We
assessed TRPM8, V2, and A1 responses to
Myrcene, and we see only TRPV2 showing a small
Myrcene response (LMNS, HT, unpublished data).
We also assessed whether store-operated calcium
release via the CRAC (Calcium Release Activated
Channel) pathway was occurring, given that
Myrcene is gating store release via TRPV1 that is
present in the ER or Golgi as part of its biosynthesis
and trafficking. HEK wild type cells have small but
measurable CRAC. However, we analyzed the small
current present in Figure 5(a) under zero calcium

external conditions and this current does not have
the physiological signature of CRAC, which has
a very positive (+60mV) Erev and is highly inwardly
rectifying (Figure 5(c)). (3) SinceMyrcene does initi-
ate store release it is possible that a significant com-
ponent of the population-based calcium responses
are attributable to release rather than influx. Figure 3
(j) supports this, meaning that Myrcene is indeed an
effective TRPV1 ligand and in cells with significant
intracellular TRPV1 (i.e. in an over-expression con-
text) this leads to intracellular calcium release. The
fact that this release is not driving ICRAC is likely
related to the fact that specialized high threshold
InsP3-sensitive stores and STIM1 coupling are
needed for CRAC initiation [88,89]. A remaining
open question will be to assess relative importance
of store release and influx in an endogenous TRPV1
expression system where there may be less signifi-
cant accumulation of immature or maturing TRPV1
in biosynthesis and trafficking compartments.

TRPV1 and, and other nociceptive TRPs (A1, V2)
are redox sensors [56]. Hyperoxia is sensed by the
reduction state of specific Cysteine residues [56].
A commonality of many of the small molecule ligands
for these channels that are derived from plant sources
is their ability to react with channel Cysteines in elec-
trophilic Michael additions. TRPV1 has a lower range
of redox sensitivity [57] than, for example, TRPA1, but
some ligands such as allicin affect this channel via
covalent modification of the redox-sensing Cysteine
residues [90–92]. Similarly, in TRPA1, cysteines form
covalent adducts with activating reactive electrophiles
(e.g.,mustard oil, unsaturated aldehydes,maleimides).
However, some ligands for these channels donotwork
through covalent interaction and some work through
covalent interactions with one channel target but not
another[48]. Future experiments will need to defi-
nitely define whether Myrcene participates in this
evolutionarily conserved sensing of electrophilic
small molecules [93–95], through investigation of
Myrcene effects on TRPV1 proteins that have been
mutated to lack key Cysteine targets. However, our
preliminary molecular docking data suggest the
Myrcene is interacting hydrophobically, non-
covalently, and in a manner not strongly dependent
on reactive cysteines. Tyr 554 is implicated in the
binding site we identify, which has also been impli-
cated in capsaicin binding [59] and is part of the S4-S5
loop between the 4th and 5th transmembrane domains
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of TRPV1 [61]. The Myrcene binding site we identify
will need to be confirmed by mutagenesis but has
a number of interesting features. We note also that
we cannot exclude that more than one binding site
(especially given the variability in current develop-
ment onset times that we occasionally observe) may
exist in TRPV1 for Myrcene. The chemical moiety in
Myrcene that is contacted byR491 andY554 is a group
that is shared by a number of other terpenes found in
Cannabis and other plant sources. Given that other
terpenes have dramatically different structures than
this group (cf. humulene, not shown) the presence/
absence of this moiety may help discriminate and
prioritize screening for indications such as analgesia
that involve TRPV1. Themodeling of binding pockets
at scale (multiple cannabinoids or terpenes across
multiple TRPs)may be of significant utility in categor-
izing and prioritizing likely activators, desensitizers,
inhibitors or allosteric modulators prior to expensive
in vitro and in vivo testing. Since it seems likely that
complex mixtures of cannabinoids and terpenes are
likely to be of therapeutic importance, understanding
which are likely to interact, compete or synergize also
be facilitated by this approach. Our data show that
Myrcene and CBD share elements of a binding site
and can influence one another physiologically, for
example.

If Myrcene indeed explains some of the analgesic
effects ofC. sativa preparations, it will be important to
determine whether it can substitute for the THC-
containing plant in terms of effectiveness and whether
it may act additively or synergistically with major or
minor, non-THC, cannabinoids in effective mixtures.
In particular, it may be of interest to explore canna-
binoids/terpenes/other secondary metabolites that
affect receptors such as TRPA1 and TRPM8, extend-
ing the potential efficacy of amixturemultiple sensory
neurons types. Our data suggest that several minor
cannabinoids in fact discriminate between TRPV1,
TRPA1, and TRPM8 [46]. Given that toxic by-
products emerge in some recreational practices that
may bleed into the medical marijuana industry, mov-
ing these and other products into a regulated supply
chain of purified and certified compounds is impor-
tant [96]. Supply chain issues and reliable sourcing of
large quantities of the “entourage” compounds [25]
may challenge their application medically if their effi-
cacy becomes proven. For Myrcene at least, engi-
neered production at scale in bacteria may be

possible [97]. It will also be important to assess the
side effect and adverse effect profile of Myrcene [98–
102] and to assign its documented effects in pain and
other potential indications (ischemia/reperfusion
injury [103], osteoarthritis [104], peptic ulcer [105],
anti-oxidant [106]) to TRPV1 or other possible recep-
tors. In this regard, network pharmacological analysis
may be of assistance (see Supplemental Table III).
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