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Since the introduction of artificial sweeteners (AS) to the North American market in the

1950s, a growing number of epidemiological and animal studies have suggested that

AS may induce changes in gut bacteria and gut wall immune reactivity, which could

negatively affect individuals with or susceptible to chronic inflammatory conditions such

as inflammatory bowel disease (IBD), a disorder that has been growing exponentially

in westernized countries. This review summarizes the history of current FDA-approved

AS and their chemical composition, metabolism, and bacterial utilization, and provides a

scoping overview of the disease mechanisms associated with the induction or prevention

of inflammation in IBD. We provide a general outlook on areas that have been both largely

and scarcely studied, emerging concepts using silica, and describe the effects of AS on

acute and chronic forms of intestinal inflammation.
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INTRODUCTION

While sweet taste is one of the most desired flavors to mankind, it has been known for many
years that excessive sugar consumption has adverse health effects. Artificial sweeteners (AS), also
known as “non-nutritive” sweeteners, are agents that have a sweetening intensity higher than that of
caloric/“nutritive” sweeteners (e.g., sucrose). Being ∼200–20,000 times more potent than sucrose,
AS are mainly used as a strategy to reduce the caloric/sugar content of foods.

While the Food and Drug Administration (FDA) deems AS to be safe, there is evidence that
AS influence inflammation pathways (1–7). Owing to the potent sweetening effect of most AS
and bitterness/lingering aftertaste, most commercial products contain a commercial proprietary
blend of two or more AS, as well as ingredients to make AS more palatable. Commercial AS also
contain fillers such as maltodextrin comprising 95–99% of the product to add weight and volume,
or anti-caking agents such as silica. While these substances are considered innocuous in small
quantities, several studies indicate that such fillers could also promote intestinal inflammation and
changes in gut microbiota (8–11). Therefore, the variability in chemical composition makes the
association of any potential AS to inflammation difficult to assess.

Preclinical animal studies indicate that some AS studied contribute to the development
or worsening of gastrointestinal inflammation (1–7), while some are reported as having an
anti-inflammatory effect (12). Findings are, however, controversial because of potential conflicts
of interest, as AS manufacturers often sponsor professional organizations to author the studies.
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Herein, we review the history of the FDA approval of AS
and AS metabolism and bacterial utilization, and provide a
scoping overview of the disease mechanisms associated with the
induction or prevention of inflammation in models primarily
relevant to chronic intestinal inflammation.

HISTORY AND CHEMISTRY OF ARTIFICIAL
SWEETENERS

Artificial sweeteners first entered the food industry in the 1800s.
However, since the 2000s, there has been an explosive increase
in their consumption. In the United States, AS consumption is
estimated to have increased by ∼200% in children/adolescents
and 54% in adults between 1999 and 2000, with ∼25% of
children and 41% of adults consuming AS at least once
daily between 2009 and 2012 (13). Consumption of AS may,
however, be more widespread because of their presence in
“lower-calorie” food products as well as medications to improve
palatability. The use of AS-altered diets is even listed in guidelines
for the medical management of patients with inflammatory
bowel disease (IBD) (14). Specifically, the British Society of
Gastroenterology consensus guidelines recommend the use of
Crusha flavoring, which has AS. Such additions to food and
medications seem unjustified owing to rising evidence that AS
affect inflammation pathways. AS have also been shown to exert
physiological effects on glucosemetabolism, appetite stimulation,
and metabolic disease (e.g., type 2 diabetes; T2DM, metabolic
syndrome, obesity) (3, 15–18).

The introduction of AS by the food industry has been
postulated to serve as an etiologic factor associated with the onset,
progression, and severity of IBD (1, 19, 20). That is, the dramatic
increase in IBD prevalence since the early 1990s in Canada,
the USA, and England coincided with sucralose and saccharin
becoming common ingredients in the food supply (Figure 1).
Extrapolating from recent research, long-term consumption of
sucralose appears to have significant adverse effects on the gut,
namely, dysbiosis. Such disruption in the gut microbiota could
be a major contributing factor to IBD that deserves further
mechanistic studies.

In the United States, the FDA has approved eight AS,
which include two AS of natural origin—stevia and monk fruit
extract, and six synthetically derived AS, namely, aspartame,
acesulfame potassium (Ace-K), neotame, saccharin, sucralose,
and advantame. Below, we summarize the chemical composition
and characteristics of FDA-approved AS (Figure 1).

Discovered in 1879, saccharin (1,2-benzisothiazol-3-one-
1,1-dioxide) is FDA-approved for cooking or table use and
for processed foods. Saccharin can be made by oxidizing o-
toluene sulfonamide or phthalic anhydride; however, in 1950,
an improved synthesis method was developed by the Maumee
Chemical Company (Toledo, OH, United States), which involves
diazotization of anthranilic acid to yield saccharin and is
currently used in manufacturing (21). Because of its slight acidic
taste, saccharin is often combined with other sweeteners such as
aspartame and cyclamates. Of note, the FDA banned the use of
cyclamate (E-952) in 1970 because of the detection of bladder

tumors in rodents; however, cyclamate remains approved in over
50 countries (22–24).

Aspartame (N-L-α-aspartyl-L-phenylalanine1-methyl ester) is
a methyl ester of a dipeptide composed of aspartic acid and L-
phenylalanine that was discovered in 1967 (25). Due to its bitter
aftertaste, aspartame is often combined with other sweeteners
(Ace-K, cyclamates, sucralose). The sweetener is not heat-stable.
Of note, aspartame in food with a pH higher than 6 can transform
into diketopiperazine, a carcinogenic compound (26).

Acesulfame potassium (6-methyl-1,2,3-oxathiazine-
4(3H)-one 2,2-dioxide) is the potassium salt of asulfame,
a hydrophilic acidic cyclic sulfonamide that belongs to the
oxathiazinonedioxide class (27). Similar to saccharin and
cyclamate, Ace-K belongs to a chemical class associated with
antimicrobial activity (28). Ace-K was accidently discovered in
1967 and subsequently studied on mice and dogs to determine
its short- and long-term safety. Ace-K is heat-stable, although it
is typically used in candies, beverages, and frozen desserts (25).

Sucralose (1,6-dichloro-1,6-dideoxy-β-D-fructofuranosyl-4-
chloro-4-deoxy-α-D-galactopyranoside) is structurally similar to
sucrose via the replacement of hydroxyl groups with chlorine
in the 4, 1′, and 6′ positions (29). This AS is water soluble and
heat-stable, and it has negligible effects on pH or viscosity (27).

Neotame N-[N-(3,3-dimethylbutyl)-l- aspartyl]-L-
phenylalanine 1-methyl ester) was discovered in the 1980s
and is obtained by the reductive alkylation of aspartame,
which is converted into 3,3-dimethylbutraldehyde and thus, is
structurally similar to aspartame (i.e., N-N-(3,3-dimethylbutyl-
L-α-aspartyl-L-phenylalanine-l-methyl ester). Neotame is
moderately heat-stable (25).

Advantame is the most recently approved synthetic AS,
receiving the approval by the FDA as a general- purpose
sweetener and flavor enhancer. Advantame is an N-substituted
derivative of aspartame made from aspartame and vanillin;
however, unlike aspartame, it can be consumed by individuals
with phenylketonureia. Advantame is heat-stable (30).

The two FDA-approved naturally occurring AS include stevia
leaf extract (steviol glycosides) and Luo Han Guo fruit extracts.
Steviol glycosides (including 10 different glycosides) are sweet-
tasting molecules derived from the Stevia rebaudiana plant
(Ateracean family) native to Paraguay and Portugal. Four major
and six less prevalent steviol glycosides have been discovered,
of which stevioside (5–10%) and rebaudioside A (2–5%) are the
most abundant followed by various rebaudiosides (B, C, D, F,
M) (27, 30). All these Steviol glycosides have a central steviol
structure but are conjugated with different sugar residues. The
proposed beneficial properties of steviol glycosides are attributed
to the compounds that comprise this mixture; however, the
presence of which varies based on extraction and processing
methods (30).

Luo Han Guo (Siraitia grosvenorii swingle) fruit extracts
from monk fruit come from a plant native to southern
China and contain varying levels of mogrosides (11-α-hydroxy-
mogrosides), glycosylated cucurbitane-type teriterpenoids which
account for the characteristic sweetness (31, 32).

While all AS share a sweet taste, each is a chemically distinct
compound; thus, the pattern of response of gut microbes and
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FIGURE 1 | Historical timeline of artificial sweeteners approved by the FDA for use in the food industry. (A) timeline of FDA approved AS. (B) Chemical structure and

characteristics of the commonly used AS. ADI, acceptable daily intake; SI, sweetness intensity (relative to sucrose); WO, world (2015/159156 A2). Images, public

domain (https://pubchem.ncbi.nlm.nih.gov).

their effects on the gastrointestinal tract in terms of how they
are transported in the small and large intestines, metabolized and
excreted, differ depending on the sweetener (27).

METABOLISM AND BACTERIAL
UTILIZATION OF ARTIFICIAL
SWEETENERS

The proposed advantage of most non-nutritive AS is that
following ingestion they are not metabolized (33, 34). Some
AS are known to be compound molecules that are amenable
for degradation by bacteria. Some sweeteners, i.e., sucralose,
were originally thought not to be metabolizable. However, mass
spectrometry studies showed that the spectral profile of the
molecule recovered from feces is structurally different from that
which was ingested, indicating that such AS can be metabolized

in the gut, possibly by bacteria. In other cases, AS, such as stevia,
are broken down into simpler molecules that can be metabolized
by the host or bacteria (27). In such scenario, the AS core
molecule, steviol, is absorbed systemically, and then excreted in
urine (27). While AS are known to modulate the gut microbiota,
little is known regarding their effect on viruses and fungi in
the gut. The section below and Figure 2 provide an overview
of absorption-excretion patterns for representative AS and the
influence of gut bacteria.

Over 85% of saccharin is systemically absorbed in the small
intestine. Following absorption from the gastrointestinal tract
(GIT), saccharin binds to plasma proteins and is distributed
throughout the body. Saccharin is then eliminated unchanged
primarily via urination, and the remainder is excreted via
defecation (27, 35). Saccharin absorption varies based on
stomach pH, with low stomach pH (e.g., in humans) increasing
absorption and higher pH (e.g., in mice and rats) decreasing
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FIGURE 2 | Comparison of main routes of absorption, digestion, metabolism, and excretion of representative AS (A,B) illustrate the absorption, digestion,

metabolism, and excretion for (A) saccharin, acesulfame-potassium, sucralose, and (B) aspartame and steviol glycoside.

absorption (27). In vitro, saccharin exerts a dose-dependent effect
on bacteria isolated from the oral cavity (36) and from the GIT
(37, 38), with one in vitro model demonstrating an increase
in Bifidobacteria and a decrease in Firmicutes (39). In animal
studies, saccharin exhibited bacteriostatic and microbiome-
modulating properties (3, 37, 40) favoring anaerobes (37),
consistent with the shift from obligate anaerobes to facultative
anaerobes and aerobes reported in IBD (41). Saccharin-induced
dysbiosis has led to alterations in metabolic pathways linked to
glucose tolerance (3).

The aspartame dipeptide is hydrolyzed by esterases and
peptidases in the gut and broken down into amino acids,
aspartate, phenylalanine, and methanol. These compounds are
absorbed in the duodenum and jejunum and metabolized
via their usual metabolic pathways (35). Thus, negligible
amounts of the intact molecule reach general circulation (27,
42, 43). Notably, the same degradation products (aspartate,
phenylalanine, methanol) are present at higher concentrations
following the ingestion of fruits, vegetables, meats, and dairy.
This is important because in vitro studies, in which aspartame
has been administered, bypass the process of digestion and thus,
do not provide biologically plausible scenarios. While many
studies have described aspartame as inert, some have suggested
some form of hypersensitivity that occurs in a dose-dependent
manner (30). In vivo, aspartame supplementation lowered food
intake and body weight gain, with elevated fasting glucose levels
and impaired insulin-stimulated glucose disposal, independent of
body weight (44).

Acesulfame potassium is almost completely absorbed as an
intact molecule in the small intestine and distributed to the blood
and different tissues (27, 45). Ace-K is excreted in the urine within
24 h with< 1% eliminated in feces (27, 46). Although a negligible
amount of Ace-K reaches the fecal or colonic bacteria (27, 46, 47),

animal studies report Ace-K-induced shifts in the composition
of gut microbiota (48, 49), with consumption during pregnancy
is linked to metabolic/microbiome alterations in progeny (50).
Ace-K has also been shown to inhibit glucose fermentation by
intestinal bacteria (51, 52), and alter bacterial genes involved
in energy metabolism (carbohydrate absorption, metabolism,
fermentation pathways) (48). Such microbial alterations were
correlated with increase in body weight (48). In healthy adult
humans, consumption of Ace-K and aspartate resulted in an
overall decrease in bacterial diversity (53).

Sucralose passes primarily unabsorbed through the GI tract
and is recovered structurally unchanged in feces (70–90%) and
urine (14.5%) (27, 33).Mass spectrometry data indicate that some
sucralose molecules are chemically altered as they pass through
the rodent GIT (54, 55), suggesting metabolism and secondary
metabolite production. The small proportion of sucralose that is
absorbed is eliminated mostly unchanged in the urine, although
two glucuonide conjugates of sucralose have been detected
(accounting for ∼2.6 of the administered dose %) following a
single oral dose in healthy volunteers (33). Intriguingly, increases
in body weight, not attributed to food intake, have been reported
in mice administered with Splenda in “low” doses (100 mg/kg
bw/day) but not “high” doses (300, 500, and 1,000 mg/kg)
(56). Human, animal, and in vitro studies suggest that sucralose
reduces bacterial growth (1, 56, 57), may selectively inhibit or
promote bacterial growth (29), and promote intestinal dysbiosis
(33, 49), consistent with the observation that bacteria in a
culture do not utilize sucralose as a carbon source (58, 59).
Sucralose may increase Escherichia coli antimicrobial resistance
and mutation frequency to antimicrobials (60) and inhibit the
bacterial physiology of differentiating filamentous cyanobacteria
and polysaccharide sheath induction (61). Sucralose elicited
strong bacteriostatic effects on Streptococcus species (29, 62)
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because of its ability to prevent sucrose (table sugar) absorption
in most microorganisms (29). Mechanistically, sucralose inhibits
bacterial invertase and sucrose permease, two enzymes unable
to catalyze the hydrolysis or transmembrane transport of
sucralose (29). It is possible that bacterial cells can internalize
sucralose, making them susceptible to the chemical effects of the
compound (63).

Neotameis is metabolized by esterase into de-esterified
neotame and methanol, which are eliminated within 72 h via
urine and feces (64, 65). About 50% of the absorbed neotame
is eliminated in urine as de-esterified neotame, the remaining
passes through the gut and is excreted in feces. A negligible by-
product of neotame metabolism is methanol. Neotame, even at
doses above the ADI, has not shown signs of toxicity (30).

Advantame is mostly converted to ANS9801-acid (de-
esterified advantame) in the gut prior to absorption. Advantame
that is absorbed intact is converted to ANS9801-acid in the
plasma (66). Approximately 90% is excreted in feces and 6.2% in
urine. In feces, more than half of ANS9801-acid is excreted as de-
esterified aspartame, and the remainder is mostly excreted as N-
(3-(3-hydroxy-4-methoxyphenyl)) propyl-L-aspartic acid [which
may be further degraded to 3-(3-hydroxy-4-methoxyphenyl)-
1-propylamine) and phenylalanine] (66, 67). In urine, 2.3% is
excreted as de-esterified advantame, 1.9% as 5-(3-aminopropyl)-
2-methoxyphenyl, and 1% as the aspartic acid analog (67).

Steviol glycosides cannot be hydrolyzed by upper GIT
enzymes or acids (68). In the colon, Bacteroides are the only
bacteria capable of hydrolyzing steviol glycosides to steviol (69–
72). Steviol is resistant to bacterial degradation. While some
is excreted in feces, the majority is absorbed and conjugated
with glucuronic acid in the liver (72, 73). Steviol glucuronide
is then primarily eliminated in human urine (73–75). Of
note, colonic epithelial cell lines (e.g., Caco-2) take up steviol
but not stevioside, suggesting differences in the biological
function/relevance between steviol and stevioside (76). In vitro,
rebaudioside A has been shown to inhibit aerobic bacteria
weakly, in particular coliforms, whereas stevioside inhibits
anaerobic bacteria weakly (72). Overall, stevia appears to modify
the gut microbiota (77).

Mogrosides are mostly degraded in the colon by
digestive enzymes and gut microbiota, which cleave
the glucose molecules as a source of energy (78). The
remaining mogrol and its mono- and diglucosides are then
excreted in feces. In rats, a trace amount of mogrol and
its monoglucoside were identified in the portal blood as
sulfates and/or glucorinide conjugates following a single
ingestion (79).

To add volume to AS, marketed products often contain
maltodextrin (MDX) (or others such as silica or calcium silicate)
as a filler (weight and volume). As a novel strategy to make
the consumption of sugar “safer,” silica has been used recently
as a scaffold for sugar to lower the total caloric content of a
product, making this type of combination an artificial alternative
to AS (80).

A caveat of studying proprietary AS mixtures (e.g., products
containing several AS and/or fillers) is that multiple ingredients
may interact with one another, rendering the studies primarily

relative to the multi-ingredient product tested and generating
information associated with metabolism or inflammation that is
difficult to trace to the specific AS ingredient that we recently
highlighted as a strategy to help draw guidelines on dietary
recommendations for patients with IBD (81).

Local and Systemic Bacterial Metabolites
Several animal studies have demonstrated AS-induced
metagenomics alterations in bacterial genes and the subsequent
bacterial byproducts following AS supplementation. Such
alterations could increase or attenuate the risk of inflammation
in the host, as these mediators could translocate into circulation
and elicit an anti- or pro-inflammatory response.

Tryptophan Metabolism
Tryptophan metabolism via the kynurenine pathways plays
an important role in inflammation and immunity (82–
84). Tryptophan metabolism alterations, following chronic
consumption of sucralose (5) or saccharin (4) at levels equivalent
to FDA-approved human ADI, have been reported in C57BL/6J
mouse gut microbiome. Specifically, in feces, sucralose altered
four compounds that modulate inflammation; L-tryptophan,
quinolinic acid, 2-aminomuconic acid (all increased), and
kynurenic acid (decreased) (5). Of note, quinolinic acid has been
reported as pro-inflammatory, whereas kynurenic acid is anti-
inflammatory and neuroprotective (85). Metabolites of tyrosine
metabolism were also altered, with increases in L-tyrosine and
decreases in p-hydroxyphenylacetic acid and cinnamic acid (5);
the latter is known to suppress the production of reactive oxygen
species (86).

Similar to those treated with sucralose, saccharin-treated mice
exhibited significant increases in quinolinic acid (4), and had
decreased equol production (4), a daidzein metabolite shown
to inhibit lipopolysaccharide (LPS)-induced oxidative stress in
macrophages and suppress inflammatory response in mice (87–
89). Notably, diadzein significantly increased in the saccharin-
treated mice, indicating that saccharin reduced the growth or
decreased the enzymatic activity of metabolizing bacteria (4),
which was consistent with the observed decreased abundance
of Adlercreutzia, a genus that contains equol-producing bacteria
(4, 90).

Short Chain Fatty Acid Synthesis
Short chain fatty acids, primarily acetate, proprionate, and
butyrate, are produced during the bacterial fermentation of
dietary fibers in the colon. Short chain fatty acids act as anti-
inflammatory metabolites in the gut, particularly via regulation
of T-regulatory cells. In IBD, SCFAs are typically reduced in gut
mucosa and feces of patients with IBD patients (91).

Animal studies have demonstrated AS-induced alterations in
SCFA synthesis. In vivo, sucralose increased the number of SCFA-
related genes, especially in the presence of a high-fat (saturated)
diet (92). In another study, aspartame elevated circulating
SCFAs, particularly propionate (44), a highly gluconeogenic
substrate that has been suggested to explain the negative
effects of aspartame on insulin tolerance. Neotame changed
the composition of gut microbiota (it decreased Firmicutes and
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increased Bacteroidetes), reduced alpha-diversity, and decreased
bacterial genes involved in butyrate synthesis (93). Other studies
have shown changes in gut microbial butyrate and pyruvate
production as a result of Ace-K (48). In vitro, steviol incubation
in the BISI-phase-2 system, a model that simulates human
intestinal microbial environment, reduced Bifidobacteria and
levels of ammonia, increased pH, and negatively influenced
SCFA ratio (39). In rats, low-dose Stevia rebausiana reduced
dopamine transporter mRNA and nucleus accumbens tyrosine
hydroxylase levels, and increased levels of SCFAs acetate and
valerate (77). Such findings indicate that AS interact with
the gut and peripheral tissues/immune responses via bacterial
SCFA production.

Bacterial Genes Involved in Energy Metabolism
Acesulfame potassium has been shown to exert gender-
specific effects on fecal metabolite profiles in CD1 mice (48).
Specifically, Ace-K-treated males had increased body weight
gain (vs. females), and exhibited increased Bacteroides with
significant changes inAnaerostipes and Sutterella. Corresponding
to increased Bacteroides, Ace-K promoted genes involved
in carbohydrate absorption, metabolism, and fermentation
pathways in male mice. In contrast, Ace-k-treated females
exhibited a decrease in Lactobacillus, Clostridium, unassigned
Ruminococcaceae genus, and Oxalobacteraceae genus, and
increased the abundance of Mucispirillum, with a decrease
in many of the genes involved in energy metabolism and
carbohydrate absorption or transport such as lactic acid,
succinic acid, and 2-Oleoylglycerol. By comparison, males had
significantly higher concentrations of pyruvic acid, a metabolite
central to energy metabolism (48). The mechanism of action
underpinning these gender differences is unclear, since most
rodent studies house several animals per cage, and it is unknown
to what extent cage effects may influence data in gender-specific
diet studies (94).

Effect on Intestinal Epithelial Cells
Artificial sweeteners can directly modulate the composition and
function of the microbiota, although the mechanism of action
by which AS modify the gut microbiota is not fully understood.
One possible mechanism of action is the secretion of defensins,
which are known to modulate the gut microbiome. Alternatively,
AS can modulate epithelial cells that are in close contact with
the lumen. In Caco-2 cells, which are found on the wall of the
intestine, AS (saccharin, sucralose, and aspartame) administered
at physiological concentrations easily achieved by diet (100
uM) differentially increased biofilm formation, and the bacterial
ability to adhere to, invade, and kill mammalian gut epithelial
cells (95). Additionally, all the three sweeteners caused gut
bacteria pathogens E. coli and Enterococcus faecalis to invade
Caco-2 cells, with the exception of saccharin, which had no
significant effect on E. coli invasion (95).

Metabolic and Inflammatory Effects of AS
Depend on the Diet
The extent to which specific bacteria are selectively modified
by AS reflects diet composition, for instance, the presence of

dietary saturated fat (92). In Wistar rats fed either with a high-
fat diet (HFD) or a standard rodent diet supplemented with
sucralose, steviol glycoside, or a caloric sweetener (e.g., sucrose),
gut microbiota were differentially modified by both the type of
sweetener and the fat content of the diet, explaining up to 48.5%
of microbiota variation (92). While steviol glycoside resulted in
the lowest number of LPS synthesis genes and produced the
highest serum IL-10 compared with other AS, mice fed either
with steviol+HFD, sucrose+HFD, or sucralose+HFD had the
highest number of LPS synthesis genes. Thus, the effect of an AS
depends on the diet composition, and this modulates the effects
of AS on inflammation (92).

The same concept applies to food intake (gm/day consumed),
for which studies have reported AS-induced alterations, either
increasing or decreasing caloric intake (96). This is important,
since the effects on colonic microbiota, as reported by studies,
may be attributed to changes in food intake, rather than the
actual AS tested. Overall, an AS-supplemented diet may modify
bacterial functionality with subsequent by-products that directly
or indirectly trigger/modify inflammation locally in the gut or
systemically in other organs, for example, the liver.

HOST GENETICS MEDIATES ARTIFICIAL
SWEETENER EFFECTS

Several lines of evidence suggest that the effect of AS on
inflammation and severity of response to AS relative to gut
microbial changes (or other outcomes, i.e., glucose intolerance)
depends on the genetic susceptibility of the host. For instance,
in a recent study, a 6-week intake of Splenda, supplemented
at the maximum dose recommended by the FDA (3.5 mg/ml),
had significant outcomes on ileitis (increased myeloperoxidase,
MPO, activity, penetration of gut bacteria in gut wall) in
mice prone to IBD (SAMP1/YitFc; SAMP), but not in healthy
control AKR/J mice despite changes being observed in the gut
microbiome (1). This study illustrates that changes in the gut
microbiotamay reflect AS consumption, but such changes are not
necessarily correlated with IBD unless the consumer has genetic
susceptibility. Similar discrepancies in the effect of AS relative
to different mouse lines have been reported (97). Specifically,
Splenda and stevia-treated CD1 mice had higher percentage
of lymphocytes in Peyer’s patches compared with Balb/c mice
(97), whereas lymphocyte proportions were increased in sucrose-
treated Balb/c mice but reduced in CD1 mice (97).

Such variability across lines has also been reported for glucose
tolerance. Overall, diabetic mouse models have demonstrated
that AS exert anti-hyperglycemic effects in rodents (98, 99).
However, similar studies using “healthy” mouse lines (e.g.,
Balb/c, C57BL/6J, CD1) that were supplemented with stevia or
sucralose have revealed AS-induced glucose intolerance, insulin
resistance, and significantly elevated HbA1clevels (a marker
reflecting over 3 months of average blood glucose levels) (2, 3,
100, 101).

Many studies have investigated the effects of AS in vitro,
using multiple available human cell lines. In human cancer cell
lines, differences in the effect of steviol in attenuating the release
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of TNFα-mediated IL-8 (an important mediator of the innate
immune reaction) were observed, with steviol having the most
robust effect on the T84 cell line compared with that of the Caco-
2 and HT29 cells (102). It is important to highlight that in vitro
data using human cell lines introduce a confounder due to genetic
differences that exist from the individual source of the cell lines.
Moreover, every cell line has a different epigenetic make-up, is
already specialized, and exhibits a particular phenotype.

Further exemplifying the role of genetics and host gut
microbiota composition, Suez et al. showed that AS consumption
(saccharin) induced dysbiosis and glucose intolerance in
some (“responders”) but not all healthy volunteers (“non-
responders”) (3). Moreover, the effects on glucose intolerance
were transferrable via the microbiota to germ-free mice, but only
from donors identified as “responders” (3). The findings highlight
not only the role of AS-induced alterations to the gut microbiota
in the development of metabolic alterations, but also the effect of
host genetics, which is recognized for its modest role in shaping
the host microbiome (103).

ARTIFICIAL SWEETENERS ON DIGESTIVE
INFLAMMATION OUTCOMES

Studies focused on the inflammatory potential of stevia have
yielded inconsistent results. Discrepancies may reflect the
type/dosage/purity of the tested compound and host genetics
(104), as discussed above. For instance, stevioside (50, 100
mg/kg body weight) for 7 days prior to dextran sodium
sulfate (DSS) colitis induction, a widely used model of IBD
that exhibits symptoms similar to that of ulcerative colitis,
significantly lowered clinical signs of colitis (body weight,
disease activity, colon length, histology) in Balb/c mice (12).
In contrast, the long-term administration of the commercial
product SweetLeaf (4.20 mg/ml stevia), a mixture of stevia
leaf extract, silica and inulin, for 18 weeks significantly
elevated liver enzyme levels (alanine aminotransferase, ALT;
aspartate aminotransferase, AST), kidney function enzymes
(urea, creatinine), and histological inflammation in Balb/c albino
mice (2). Since the gut microbiota may impact the overall effect,
it is important to note that microbiome composition was not
evaluated in either study (2, 12).

The gut-liver axis refers to the bidirectional relationship,
which stems from the integration of signals derived from diet,
genetics, and environmental factors, between the gastrointestinal
tract and its microbiota, and the liver,. A number of
animal studies have reported saccharin to exert hepatotoxic
effects (4, 105), wherein short-term administration resulted in
transaminitis (elevation in ALT, AST, and ALP) (106) and long-
term exposure promoted hepatic inflammation (4). Saccharin
also promoted the overexpression of key oncogenes such as H-ras
while reducing expression p27, a tumor suppressor gene (107).
Saccharin has also been reported to promote gut taxa previously
associated with pro-inflammatory effects (3, 4, 45, 90, 108–111).

The long-term consumption of aspartame has been shown to
induce liver degeneration, necrosis, fibrosis, and mononuclear
cell infiltration, mediated in part through an imbalance in

redox homeostasis and adipocytokine dysregulation in rodents
(107, 112–114). Prolonged aspartame consumption increases
methanol and its metabolites, which are associated with
oxidative stress. In a folate-deficient mouse model (which
mimics humanmethanol metabolism), aspartame-mediated liver
damage resulted from aspartame-derived metabolites (115).

In rodents, sucralose elicited adverse effects on gut
tissue/barrier via the alteration of host microbiota and related
metabolites and impaired inactivation of digestive proteases. In
Sprague-Dawley rats, 12-week sucralose (Splenda; sucralose +

maltodextrin) administration induced inflammatory lymphocyte
infiltration, epithelial scarring, and mild depletion of goblet
cells (56). As mentioned, in SAMP mice (genetically susceptible
to IBD), Splenda (3.5 mg/mL, 6 weeks) resulted in significant
deleterious outcomes on ileitis, an effect not observed in the
healthy control AKR/J line (1). Other sucralose-containing
commercial products, such as Sweetal (sucralose + sorbitol),
significantly elevated liver enzyme levels (ALT, AST) and kidney
function enzymes (urea, creatinine) in Balb/c albino mice
after 18 weeks (administered 5 h/day in drinking water; 5.2
mg/ml sucralose) (2). Similar in vivo pro-inflammatory effects
[hepatic mediators (5), severity of chemically-induced colitis
(6, 57)] following pure sucralose supplementation have also been
reported (5, 6, 57).

The current data regarding Ace-K on inflammation, hepatic
or gut, are limited. Ace-K-treated C57BL/6J mice (150 mg/kg,
0.06%w/v, 6 weeks) exhibited increased lymphocyte recruitment
to intestinal microvessels, expression of inflammatory cytokines
(TNFα, IFNγ, IL1β), and endothelial/trafficking adhesion
molecules (ICAM-1, VCAM-1, MAdCAM-1) (116). Not much is
known about the effect of neotame on inflammatory outcomes.
Long-term consumption has been associated with low body
weight and body weight gain, albeit this was allometrically
consistent with changes in food consumption (117).

Bacterial Lipopolysaccharide, Flagella, and
Toxins
The impact of different AS on the composition of the gut
microbiota has been extensively reviewed elsewhere (15, 35). LPS,
flagella, and fimbriae are bacterial attributes that can, in parallel,
trigger several similar inflammatory mediators and induce
intestinal inflammation (118, 119), and promote disruptions in
the integrity of the gut barrier (120, 121). LPS is an endotoxin
from the outer membrane of the gram-negative bacterial cell
wall, which increases intestinal permeability and stimulates
the monocyte and macrophage production of inflammatory
mediators associated with IBD, such as TNFα, IL-1β, IL-6, and
reactive free radical nitric oxide (NO) (3, 92, 122, 123). In general,
during homeostasis, the host is exposed to low levels of LPS, but
the excessive production and release of LPS signs of inflammation
may occur via the expansion of gram-negative bacteria, which
can be affected by AS.

Increases in LPS and bacterial pathways of LPS biosynthesis
have been reported for most AS, such as stevia (2, 92),
sucralose (2, 5, 92), saccharin (3, 4), and Ace-K (48). In
C57BL/6J mice, saccharin (0.3 mg/ml—eq. ADI, 6 months)
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enriched six LPS biosynthesis orthologs a flagellar assembly
ortholog, and six multidrug resistance, 11 fimbrial, and 23
bacterial toxin orthologs (4). Saccharin also decreased anti-
inflammatory compounds such as palmitoleoyl ethanolamide
(PEA), N,N-Dimethylsphingosine and linoleoyl ethanolamide
(LEA) (4), and the latter was reported to reduce LPS-
induced inflammation in macrophages (88). In another long-
term study, sucralose enriched bacterial genes related to LPS
synthesis and multiple genes associated with flagella protein
synthesis, fimbriae synthesis, and bacterial toxin genes such as
shiga toxin subunits and toxic shock syndrome in C57BL/6J
mice, (5). In CD1 mice, Ave-K treatment (37.5 mg/kg/day, 4
weeks) significantly increased multiple genes encoding flagella
components (FlgA, FlgH, FlgI, FliL proteins) and two genes
participating in LPS biosynthesis and LPS-export genes, namely,
glycosyltransferase and UDP-perosamine 4-acetyltransferase
(48). Ace-K also increased bacterial toxin synthesis gene and
thiol-activated cytolysis.

Lipopolysaccharide is a phosphorylated glycolipid and
its structural similarity to some host-derived lipids (e.g.,
phosphatidic acid, ceramide) dictates that LPS and cholesterol
share common trafficking and disposal pathways in vivo
(124). High-density lipoproteins (HDLs) are also known to
neutralize LPS via the presence of LPS-binding protein in
HDLs (124). Of note, significant elevations in LPS have been
accompanied by reductions in circulating HDL following long-
term sucralose or stevia supplementation in BALB/c albino
mice (2).

In other cases, while the effect of AS on LPS was not
evaluated, it could be presumed that the expansion of gram-
negative bacteria (outer membrane composed of LPS) could
be associated with greater inflammation susceptibility. For
example, saccharin, sucralose, aspartame, and Ace-K were
shown to promote pro-inflammatory, gram-negative taxa
such as Bacteroidetes (5, 48) and Enterobacteriaceae (44). On
the other hand, some studies have found Splenda to increase
Proteobacteria abundance after 6 weeks of supplementation
(1), while some have reported dose-dependent reductions
in total anaerobes after 12-weeks, such as Bacteroides, but
no effect on Enterobacteriaceae has been reported (56).
At higher doses (> 100 mg/kg/d), Splenda significantly
reduced the numbers of total aerobes, an effect that
perpetuated 12-weeks after Splenda cessation, suggesting
that anaerobes do not recover following long-term sucralose
supplementation (56).

Less is known on the impact of advantame or neotame
administration on composition of the gut microbiota.
In one study, neotame treatment (4 weeks) enriched
Bacteroidetes abundance, amino acid metabolism, LPS
biosynthesis, antibiotic biosynthesis, and folate biosynthesis
pathways (93).

Bile Acid Metabolism
Colonic bacteria are able to convert primary bile acids into
secondary bile acids via deconjugation, dehydroxlation, and
dehydrogenation. Bile acids facilitate the absorption of fat and
fat-soluble vitamins, maintain cholesterol homeostasis, and serve

as signaling molecules via binding to the nuclear receptor
FXR and TGR5, a G-protein coupled receptor associated with
metabolic regulation, which includes inflammatory response,
cancer and liver regeneration (125).

Several studies have demonstrated AS-induced changes in bile
acid homeostasis and metabolism, although results have varied.
For instance, sucralose, but not Ace-K, at dosages equivalent to
the maximum ADI (15 mg/kg/day in drinking water), increased
hepatic cholesterol and cholic acid levels, and the ratio of
secondary/primary bile acids after 8 weeks in C57BL/6Jmice (49).
By comparison, daily gavage with Ace-K (37.5 mg/kg/day) for 4
weeks increased fecal cholic acid but decreased deoxycholic acid
in CD1 mice (48).

Sucralose has altered the bile acid profile in vivo. In
C57BL/6J mice, 6-month sucralose supplementation (1.5
mg/ml in drinking water) increased 3-oxo-4,6choladienoic
acid and reduced 3a,7b,12a-trihydroxyoxocholanyl-glycine,
3b,7a-dihydroxy-5-cholestenoate, and lithocholic acid (5). In
another study, 6-week sucralose supplementation at the same
dosage in C57BL/6 mice prior to colitis induction reduced the
deactivation of digestive proteases mediated by deconjugated
bilirubin (6). Other studies on rats have shown that sucralose or
saccharin (6 weeks) significantly increased fecal chymotrypsin
and trypsin, and decreased β-glucuronidase, an enzyme required
for the deconjugation of conjugated bilirubin (57, 126).

Intestinal Permeability and Inflammation
Pathways
Tight Junction Proteins
Few studies have investigated the effect of AS on tight junction
protein integrity. The intestinal barrier and epithelial cell
homeostasis are maintained by an equilibrium between cell
proliferation and death, and the paracellular space, which is
modulated by tight junction proteins (primarily occludins,
claudins, zonulin-1, junctional-adhesion molecules) that control
the movement and circulation of intestinal contents (water,
nutrients, electrolytes) across the epithelium into the lamina
propria (127).

In vitro, the administration of aspartame to Caco-2 cells
induced ROS production leading to increased permeability and
internalization of claudin-3 (7). These effects were reversed by
the overexpression of claudin-3, indicating its key role in the
regulation of AS-induced intestinal permeability (7). A similar
study showed that in gut epithelial cells, AS exposure increased
apoptosis and permeability across the intestinal epithelium (7).
In vivo, sucralose supplementation (1.5% in water) decreased
colonic occludin abundance, an effect that was exacerbated when
the supplementation was combined with a high-fat diet (92). In
an AOM/DSS mouse model, 6-week sucralose supplementation
(1.5 mg/ml) prior to AOM/DSS treatment increased mucosal
occludin, claudin-1, and claudin-4 (vs. mice that were not
supplemented) (6).

Sweet Taste and Bitterness Receptors in the Gut
Sweet taste receptors are composed of a heterodimer of
taste 1 receptor member 2 (T1R2) and taste 1 receptor
member 3 (T1R3) (128). AS bind to human and rodent
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G protein-coupled sweet taste receptors T1R2/T2R3 present
in the oropharynx and enteroendicrine cells of the gut and
pancreas (129, 130), and to the human bitter taste receptors
T2R43 and T2R44 (131). These receptors are involved in
nutrient sensing and appetite modulation, glucose homeostasis,
and gut motility (132). In the mammalian gut, T1R2 and
T1R3 are present in the small intestine and control the
release of peptide hormones such as glucagon-like peptide-
1 (GLP-1), glucagon, peptide YY (PYY), neuropeptide Y,
and cholecystokinin (CCK) (128, 133–139). More recently,
T1R3 has also been implicated for its role in modulating
epithelial integrity (7). Of note, the activation of toll-like
receptors (TLRs) is crucially sensitive to cellular cholesterol,
and conversely, TLR activation modulates disposal pathways for
cellular cholesterol (124). This is important considering that
AS have been shown to increase liver cholesterol and serum
low-density lipoprotein (LDL) levels but decrease the level of
HDL (2).

Of importance is variants in taste receptor genes, which
exist between and within vertebrate species, that result in
functional receptor changes or altered expression levels
may be associated with metabolic conditions (140). Variants
can also affect the perception of sweetness (e.g., aspartame
perceived as sweet by humans but not rodents) (141). Even
a single amino acid change can affect the functionality
of the sweet taste receptor, and in turn, its ability for
ligand binding. For instance, a common variant in rodent
strains reduces the affinity of the T1R3 subunit for sugars
(142, 143).

Via binding to receptors, AS regulate various processes such
as glucose transport and insulin secretion (144, 145), although
findings appear to vary based on mouse line. For instance,
in male Sprague Dawley rats, saccharin impaired glucose
homeostasis and GLP-1 release (146). In another study, saccharin
elicited the most profound effects on glucose intolerance when
compared with sucralose or aspartame in C57Bl/6 WT mice
(3). In CD1 mice, short- and long-term (6, 12 weeks) stevia
supplementation in drinking water (4.16 mg/mL) increased,
body weight, insulin, leptin, glycemia, and the secretion of
GIP but did not affect food intake (100). In contrast, in
Zucker diabetic fatty rats, a rat model of Type 2 diabetes
that harbors a missense mutation in the leptin receptor gene,
stevia and sucralose had no effect on glucose levels; while in
male Wistar rats and B6 mice, stevia, sucralose, and Ace-K
supplementation had no effect on plasma GIP-1 or GIP (147).
Of note, the key enzyme responsible for aspartame metabolism,
aminopeptidase A, is expressed predominantly in the mid to
distal sections of the small intestine (148), suggesting that
proximal regions of the small gut are indeed exposed to un-
metabolized aspartame, which is able to bind to the sweet
taste receptor T1R3 expressed in these regions (149). The
presence of key taste reception signaling components in different
distributions in Paneth cells, which contain amino acid taste
receptor components, suggests that Paneth cells have distinct
sensing roles, and that they may be involved in the response to
AS (145).

Despite in vitro reports of T1R3 being key to the observed
cellular effects (7, 37), the findings need to be confirmed
using in vivo permeability models to establish physiological
relevance. For example, saccharin supplementation (0.1 mg/mL)
in a chemically induced colitis C57BL/6jRj wild-type mouse
model elicited no effect on t1r2 and t1r3 expression, or on
the taste-receptor-associated neurotransmitter cck or pyy mRNA
levels in gut tissue when compared to non-treated mice (20).
These differential effects, compared with those reported in
vitro, may be, in part, due to microbiota change alterations in
host cells.

Tumor Necrosis Factor-Alpha, Toll-Like
Receptor, and NF-κB
Toll-like receptor pathways play an important role in activating
innate immune response, and its activation by LPS triggers
the activation of the NF-κB pathway and the transcription
of pro-inflammatory genes such as TNFα (119, 150). NF-κB
is a transcription factor downstream of the mitogen-activated
protein kinase (MAPK) signaling pathway that induces the
production of inflammatory cytokines such as TNFα, IL-
1β, and IL-6, as well as the expression of pro-inflammatory
enzymes such as cyclooxygenase-2 (COX-2) and inducible
nitric-oxide synthase (iNOS), all of which are involved in the
pathogenesis of IBD. Enhanced generation of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), which
can activate metallothionein expression and in turn NF-κB
activation, is also reported in the intestine during IBD.

In vitro studies suggest that the immunomodulatory effect
of steviol glycoside and its related compounds involve NF-κB
signaling. These effects however, appear to vary based on the
type and dosage of the compound tested. For example, in the
human monocytic cell THP-1, stevioside (at 1mM) suppressed
the LPS-induced production of inflammatory mediators TNFα
and IL-1β, and mildly suppressed NO release by interfering with
the IKKβ and NF-κB signaling pathways, but steviolat 100µM
did not (104). Notably, the administration of stevioside alone, in
the absence of LPS, elicited a small increase in TNFα secretion
partially mediated through TLR4 (104). In another study using
RAW264.7 cells, stevioside was shown to dose-dependently exert
anti-inflammatory activity by inhibiting NF-κB activation and
MAPK signaling and the expression of TNFα, IL-6, and IL-
1β in LPS-stimulated cells (151). Similarly, in another study,
stevioside administration resulted in significant reduction of
TNFα, nitrates, and ROS production compared with RAW264.7
cells treated with LPS alone (12).

In line with in vitro evidence, animal studies demonstrated
an anti-inflammatory effect of stevioside. In a mouse model
of Staphylococcus aureus-induced mastitis, stevioside reduced
inflammatory cell infiltration and the expression of TNFα, IL1-
β, and IL-6 via the TLR2, NF-κB, and MAPK signaling pathways
(152). Similarly, in male Balb/c mice, supplementation with
stevoside, at either high (100 mg/kg BW) or low (50 mg/kg
BW) dose for 7 days prior to DSS colitis induction significantly
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lowered colonic TNFα levels and attenuated the NF-κB and
MAPK signaling pathways (12).

Rodent studies have also reported the increased expression of
TLR4, TNFα, and NF-κB following sucralose supplementation
(6, 92). In a DSS-colitis C57BL/6 mouse model, sucralose
treatment increased the expression of TNFα, TLR4, and Myd88
but decreased the expression of IL-10 and IκBα (6).

Peroxisome Proliferator-Activated
Receptor (PPAR)-Alpha
Peroxisome proliferator-activated receptor (PPAR)-alpha is a
ligand-activated transcriptional factor that regulates fatty acid
beta oxidation gene expression and is a major regulator of energy
homeostasis. PPARα is a predominantly expressed tissue with a
high level of fatty acid catabolism such as in liver, heart, muscle,
and intestine (153). PPARα agonists have been shown to exert
anti-inflammatory and anti-thromobotic activities in both the
vascular wall and the liver (154).

In male Wistar rats, sucralose (1.5%) exerted the highest effect
on stimulating PPARα expression and CPT-1 compared with
other sweeteners (sucrose, fructose, glucose, steviol glycosides,
brown sugar, honey, and steviol glycoside+sucrose), and to that
of untreated mice (plain water) (92). The effect of sucralose
on PPARα expression was suggested to explain the increased
formation of ketone bodies and gluconeogenesis, which in turn
increased glucose and insulin levels and glucose intolerance, as
seen in sucrose-fed mice (92). While PPARα activators have been
shown to regulate obesity in rodents, these effects are influenced
by estrogen and, thus, are exerted with specific dimorphism
(155). In this regard, more studies on both male and female
animals are required.

Cytochrome P450-Xenobiotic
Detoxification
In Sprague Dawley rats, Splenda exerted a dose-dependent effect
on the expression of intestinal p-glycoprotein and intestinal
cytochrome P-450 (CYP), which are involved in xenobiotic
detoxification in the gut and the liver. That is, Splenda enhanced
the expression level of P-gp at dosages of 300, 500, and
1,000 mg/kg/d, and enhanced CYP3A4 (1,000 mg/kg/d) and
CYP2D1 (500 and 1,000 mg/kg/d) expression (56). It is possible
that the enhanced expression of P-gp and CYP at higher
concentration affects the bioavailability of Splenda; thus, less
Splenda is absorbed at higher concentrations, resulting in both
more pronounced effects on the gut microbiota and differences
in weight.

Oxidative Stress
Oxidative stress is an important regulator of claudin-3 and is
associated with LPS-induced permeability.

Animal studies have reported an antioxidant effect following
stevioside treatment (156). In DSS-colitis male Balb/c mice,
high and low doses of stevioside (100 and 50 mg/kg body
weight) decreased the expression of pro-inflammatory enzymes
COX-2 and iNOS, decreased the levels of MPO activity (maker
of neutrophil infiltration), and restored the activities/levels of
antioxidant enzymes (SOD, CAT, GST, and GSH) in colon tissue

when compared with non-supplemented DSS-colitis mice (12).
The expression of HO-1, which is an index of cyto-protective
and antioxidant enzymes, was also increased in stevioside-treated
groups (12).

Saccharin supplementation (0.3mg/ml, 6months) in C57BL/6
mice elevated hepatic nitric-oxide synthase (NOS) and TNFα
(4). In comparison, sucralose supplementation (0.1 mg/ml, 6
months) elevated the expression of pro-inflammatory mediators
in the liver, namely, matrix metalloproteinase 2 (MMP-2) and
iNOS (5). Notably, catalase and catalase-peroxidase, two bacterial
anti-oxidative genes known to respond to ROS and by themselves
can stimulate pro-inflammatory cytokines (157), were also found
to be enriched in sucralose-supplemented groups (5).

In male Wistar albino rats, aspartame (40 mg/kg/day, 90
days) significantly increased serum lipid peroxidation and nitric
oxide concentrations with concomitant decrease in serum levels
of primary scavenging enzymes superoxide dismutase, catalase,
glutathione peroxidase, and glutathione (GSH) (158).

Intracellular Adhesion Molecule (icam-1)
and Immunoglobulins
Short-term saccharin supplementation (drinking water, 0.1
mg/ml), either before or after the induction of acute or
chronic DSS-induced colitis, significantly decreased the mRNA
levels (vs. controls) of colonic intracellular adhesion molecule
(icam-1), a key regulator of inflammatory signaling, (20) via
NF-κB activation (159). Saccharin-supplemented mice also
exhibited reduced serum protein level of KC, a neutrophil
recruiting cytokine that is induced by inflammatory stimuli in
immune and epithelial cells (160, 161), suggesting that saccharin
lowered the expression of inflammatory markers and did not
induce inflammation.

The effect of AS on Immunoglobulins (Ig) has also
been examined. Balb/c mice supplemented with either stevia
(4.2 mg/ml stevia given as SweetLeaf) or sucralose (5.2
mg/ml sucralose given as Sweetal) for 18 weeks resulted in
increased levels of different immunoglobulins (IgG, IgE, and
IgA) compared with supplemented controls (received normal
drinking water) (2).

Artificial Alternative Using Sugar-Silica as
a Substitute to AS, and Its Effect on
Intestinal Inflammation
Sugar has been used as the gold standard for comparing the
sweetening efficacy of AS to enable the activation of sweet
perception with less calories per unit of food. As an artificial
alternative to AS, others have recently proposed to reduce the
amount of sugar required to activate the sweet taste receptors in
the tongue by combining sugar with silica in special structural
reversible binding. With this alternative, proponents suggest
that the use of diluted sugar will provide sufficient sweetening
power with less molecules of sugar, lowering the caloric content
of meals. A logical concern is the uncertainty that exists
surrounding the effect of the use of silica on intestinal health and
inflammation. Silica is a broad term that encompasses various
forms of silicon (Si, a semimetal in the periodic table of elements)
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compounds that exist in nature. Some forms of silica are used
as (i) food additives (silicon oxide, SiO2, PubChem ID 5461123,
anti-caking powder), (ii) silica gel desiccant to absorb moisture
(packages labeled with warning “do not eat”), and (iii) some
forms are widely present in nature as crystalline silica (mineral
found in sand, stone, concrete, and mortar).

As with other AS, proprietary formulations of sugar-silica as
a carrier compound (80, 162) make the interpretation of health
effects challenging. Of concern is that the oral consumption of
small particles of silica dioxide (< 100 nm) has been shown
to exacerbate DSS colitis in a size-dependent manner (163).
Specifically, daily intake of 10-nm-sized SiO2 nanoparticles
exacerbated colitis in wild-type C57BL/6J mice, whereas 30-
nm nanoparticles had no colitic effect. Mechanistic studies
showed that the severity of colitis induced by 10-nm particles
was prevented when mice were deficient in apoptosis-associated
speck-like protein containing a C-terminal caspase recruitment
domain CARD (PYCARD gene, or ASC) (164), indicating that
small SiO2 nanoparticles aggravate colitis through activation
of the PYCARD inflammasome (163). Regarding microbiome
composition, summary indicators of diversity at the genus level
(principal component analysis and rarefaction curves based on
chao1 index) were reported to be similar between the SiO2-
fed and control mice (at 3 mg/kg/day); however, no complete
data of microbiome analysis were presented to infer the effect
in detail. With aggravating changes in inflammasome and colitis,
gut microbiome alterations are expected, as shown for AS.
On metabolism, studies have shown that the metabolism of Si
is complex depending on the size of the molecule and may
have various effects on health. Once ingested, silicon reacts
systemically with other molecules such as those of trace elements
(zinc, copper, iron) (165) and lipids in the gut and blood
(166). Taken together, SiO2 should be used cautiously given the
potential impact on human health.

CONCLUSIONS

Overall, the data illustrate that the effect of AS on inflammation
is multifactorial and depends on various factors such as dosage,
type of compound, and host genetics. Of increasing relevance to
patients with chronic digestive inflammatory disorders, evidence
suggests that AS may induce pro-inflammatory changes in gut
bacteria and gut wall immune reactivity, which could negatively
affect individuals with or susceptible to chronic inflammatory
conditions. However, there is a need to further reproduce these
findings in various mouse lines, across different diets, and
different artificial sweeteners in the context of the fillers used in
commercial products (e.g., maltodextrin).

Studying the causal effect of individual dietary ingredients
(e.g., AS) is challenging, given that most commercial products
contain a commercial proprietary blend of two or more AS, as
well as ingredients, to add weight and volume and/or make AS
more palatable. Nevertheless, findings from commercial products
are desirable and may be more readily translatable to humans.
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