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L-Carnitine

Summary
Our body produces L-carnitine from the

essential amino acid lysine via a specific

biosynthetic pathway. Healthy individuals,

including strict vegetarians, generally synthesize

enough L-carnitine to prevent deficiency.

However, certain conditions like pregnancy may

result in increased excretion of L-carnitine,

potentially increasing the risk for deficiency.

(More information)

Because of its role in the transport of long-chain

fatty acids from the cytosol to the mitochondrial

matrix, L-carnitine is critical for mitochondrial

fatty acid β-oxidation. (More information)

L-Carnitine supplementation is indicated for the

treatment of primary systemic carnitine

deficiency, which is caused by mutations in the

gene that codes for the carnitine transporter,

OCTN2. (More information)

L-Carnitine is also approved for the treatment of

carnitine deficiencies secondary to inherited

diseases, such as propionyl-CoA carboxylase

deficiency and medium chain acyl-CoA

dehydrogenase deficiency, and in patients with

end-stage renal disease undergoing

hemodialysis. (More information)

Evidence from randomized controlled trials

suggests that L-carnitine or acylcarnitine esters
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may be useful adjuncts to standard medical

treatment in individuals with cardiovascular

disease. (More information)

Routine administration of L-carnitine to people

with end-stage renal disease undergoing

hemodialysis is not recommended unless it is to

treat carnitine deficiency. (More information)

Acetyl-L-carnitine (ALCAR) may help reduce the

severity of chemotherapy-induced peripheral

neuropathy. High-quality evidence is needed to

evaluate whether ALCAR may benefit the

treatment of peripheral neuropathies

associated with diabetes or caused by

antiretroviral therapy. (More information)

There is some low-quality evidence to suggest

that supplemental L-carnitine or ALCAR may be

beneficial as adjuncts to standard medical

therapy of depression, Alzheimer's disease, and

hepatic encephalopathy. (More information)

There is little evidence that L-carnitine

supplementation improves cancer-related fatigue, low fertility, or overall physical health. (More

information)

If you choose to take L-carnitine supplements, the Linus Pauling Institute recommends acetyl-L-

carnitine at a daily dose of 0.5 to 1 g. Note that supplemental L-carnitine (doses, 0.6-7.0 g) is less

efficiently absorbed compared to smaller amounts in food. (More information)

Introduction
L-Carnitine (β-hydroxy-γ-N-trimethylaminobutyric acid) is a derivative of the amino acid, lysine

(Figure 1). It was first isolated from meat (carnus in Latin) in 1905. Only the L-isomer of carnitine is

biologically active (1). L-Carnitine appeared to act as a vitamin in the mealworm (Tenebrio molitor)

and was therefore termed vitamin B (2). Vitamin B , however, is a misnomer because humans and

other higher organisms can synthesize L-carnitine (see Metabolism and Bioavailability). Under

certain conditions, the demand for L-carnitine may exceed an individual's capacity to synthesize it,

making it a conditionally essential nutrient (3, 4).
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[Figure 1 - Click to Enlarge]

Metabolism and Bioavailability
In healthy people, carnitine homeostasis is maintained through endogenous biosynthesis of L-

carnitine, absorption of carnitine from dietary sources, and reabsorption of carnitine by the

kidneys (5).

Endogenous biosynthesis

Humans can synthesize L-carnitine from the amino acids lysine and methionine in a multi-step

process occurring across several cell compartments (cytosol, lysosomes, and mitochondria)

(reviewed in 6). Across different organs, protein-bound lysine is methylated to form ε-N-

trimethyllysine in a reaction catalyzed by specific lysine methyltransferases that use S-adenosyl-

methionine (derived from methionine) as a methyl donor. ε-N-Trimethyllysine is released for

carnitine synthesis by protein hydrolysis. Four enzymes are involved in endogenous L-carnitine

biosynthesis (Figure 2). They are all ubiquitous except γ-butyrobetaine hydroxylase is absent from

cardiac and skeletal muscle. This enzyme is, however, highly expressed in human liver, testes, and

kidney (7).

L-carnitine is primarily synthesized in the liver and transported via the bloodstream to cardiac and

skeletal muscle, which rely on L-carnitine for fatty acid oxidation yet cannot synthesize it (8). The

rate of L-carnitine biosynthesis in humans was studied in strict vegetarians (i.e., in people who

consume very little dietary carnitine) and estimated to be 1.2 µmol/kg of body weight/day (9). The

rate of L-carnitine synthesis depends on the extent to which peptide-linked lysines are methylated

and the rate of protein turnover. There is some indirect evidence to suggest that excess lysine in
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the diet may increase endogenous L-carnitine synthesis; however, changes in dietary carnitine

intake level or in renal reabsorption do not appear to affect the rate of endogenous L-carnitine

synthesis (6).

[Figure 2 - Click to Enlarge]

Absorption of exogenous L-carnitine

Dietary L-carnitine
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The bioavailability of L-carnitine from food can vary depending on dietary composition. For

instance, one study reported that bioavailability of L-carnitine in individuals adapted to low-

carnitine diets (i.e., vegetarians) was higher (66%-86%) than in those adapted to high-carnitine diets

(i.e., regular red meat eaters; 54%-72%) (10). The remainder is degraded by colonic bacteria.

L-carnitine supplements

While bioavailability of L-carnitine from the diet is quite high (see Dietary L-carnitine), absorption

from oral L-carnitine supplements is considerably lower. The bioavailability of L-carnitine from oral

supplements (doses, 0.6 to 7 g) ranges between 5% and 25% of the total dose (5). Less is known

regarding the metabolism of the acetylated form of L-carnitine, acetyl-L-carnitine (ALCAR);

however, the bioavailability of ALCAR is thought to be higher than that of L-carnitine. The results of

in vitro experiments suggested that ALCAR might be partially hydrolyzed upon intestinal absorption

(11). In humans, administration of 2 g/day of ALCAR for 50 days increased plasma ALCAR

concentrations by 43%, suggesting that either ALCAR was absorbed without prior hydrolysis or that

L-carnitine was re-acetylated in the enterocytes (5).

Elimination and reabsorption

L-Carnitine and short-chain acylcarnitine derivatives (esters of L-carnitine; see Figure 1) are

excreted by the kidneys. Renal reabsorption of free L-carnitine is normally very efficient; in fact, an

estimated 95% is thought to be reabsorbed by the kidneys (1). Therefore, carnitine excretion by the

kidney is usually very low. However, several conditions can decrease the efficiency of carnitine

reabsorption and, correspondingly, increase carnitine excretion. Such conditions include high-fat,

low-carbohydrate diets; high-protein diets; pregnancy; and certain disease states (see Primary

systemic carnitine deficiency) (12). In addition, when circulating L-carnitine concentration increases,

as in the case of oral supplementation, renal reabsorption of L-carnitine may become saturated,

resulting in increased urinary excretion of L-carnitine (5). Dietary or supplemental L-carnitine that is

not absorbed by enterocytes is degraded by colonic bacteria to form two principal products,

trimethylamine and γ-butyrobetaine. γ-Butyrobetaine is eliminated in the feces; trimethylamine is

efficiently absorbed and metabolized to trimethylamine-N-oxide, which is excreted in the urine

(13).

Biological Activities
Mitochondrial oxidation of long-chain fatty acids

L-Carnitine is synthesized primarily in the liver but also in the kidneys and then transported to

other tissues. It is most concentrated in tissues that use fatty acids as their primary fuel, such as

skeletal and cardiac muscle. In this regard, L-carnitine plays an important role in energy production

by conjugating to fatty acids for transport from the cytosol into the mitochondria (6).
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L-Carnitine is required for mitochondrial β-oxidation of long-chain fatty acids for energy production

(1). Long-chain fatty acids must be esterified to L-carnitine (acylcarnitine) in order to enter the

mitochondrial matrix where β-oxidation occurs (Figure 3). On the outer mitochondrial membrane,

CPTI (carnitine-palmitoyl transferase I) catalyzes the transfer of medium/long-chain fatty acids

esterified to coenzyme A (CoA) to L-carnitine. This reaction is a rate-controlling step for the β-

oxidation of fatty acid (13). A transport protein called CACT (carnitine-acylcarnitine translocase)

facilitates the transport of acylcarnitine across the inner mitochondrial membrane. On the inner

mitochondrial membrane, CPTII (carnitine-palmitoyl transferase II) catalyzes the transfer of fatty

acids from L-carnitine to free CoA. Fatty acyl-CoA is then metabolized through β-oxidation in the

mitochondrial matrix, ultimately yielding propionyl-CoA and acetyl-CoA (6). Carnitine is eventually

recycled back to the cytosol (Figure 3).
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[Figure 3 - Click to Enlarge]

Regulation of energy metabolism through modulation of acyl CoA:CoA
ratio

Free (nonesterified) CoA is required as a cofactor for numerous cellular reactions. The flux through

pathways that require nonesterified CoA, such as the oxidation of glucose, may be reduced if all

the CoA available in a given cell compartment is esterified. Carnitine can increase the availability of

nonesterified CoA for these other metabolic pathways (6). Within the mitochondrial matrix, CAT

(carnitine acetyl transferase) catalyzes the transesterification of short- and medium-chain fatty
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acids from CoA to carnitine (Figure 3). The resulting acylcarnitine esters (e.g., acetylcarnitine) can

remain in the mitochondrial matrix or be exported back into the cytosol via CACT. Free

(nonesterified) CoA can then participate in other reactions, such as the generation of acetyl-CoA

from pyruvate in a reaction catalyzed by pyruvate dehydrogenase (14). Acetyl-CoA can then be

oxidized to produce energy (ATP) in the citric acid cycle.

Other functions in cellular metabolism

In addition to its importance for energy production, L-carnitine was shown to display direct

antioxidant properties in vitro (15). Age-related declines in mitochondrial function and increases in

mitochondrial oxidant production are thought to be important contributors to the adverse effects

of aging. Tissue L-carnitine concentrations have been found to decline with age in humans and

animals (16). The expression of most proteins involved in the transport of carnitine (OCTN2) and

the acylcarnitine shuttling system across the mitochondrial membrane (CPTIa, CPTII, and CAT;

Figure 3) was also found to be much lower in the white blood cells of healthy older adults than of

younger adults (17).

Preclinical studies in rodents showed that supplementation with high doses of acetyl-L-carnitine

(ALCAR; Figure 1) reversed a number of age-related changes in liver mitochondrial function yet

increased liver mitochondrial oxidant production (18). ALCAR supplementation in rats has also

been found to improve or reverse age-related mitochondrial declines in skeletal and cardiac

muscular function (19, 20). Co-supplementation of aged rats with L-carnitine and α-lipoic acid

blunted age-related increases in reactive oxygen species (ROS), lipid peroxidation, protein

carbonylation, and DNA strand breaks in a variety of tissues (heart, skeletal muscle, and brain) (21-

30). Co-supplementation for three months improved both the number of total and intact

mitochondria and mitochondrial ultrastructure of neurons in the hippocampus (30). Although

ALCAR exerts antioxidant activities in rodents, it is not known whether taking high doses of ALCAR

will have similar effects in humans.

Deficiency
Nutritional carnitine deficiencies have not been identified in healthy people without metabolic

disorders, suggesting that most people can synthesize enough L-carnitine (1). Even strict

vegetarians (vegans) show no signs of carnitine deficiency, despite the fact that most dietary

carnitine is derived from animal sources (9). Infants, particularly premature infants, are born with

low stores of L-carnitine, which could put them at risk of deficiency given their rapid rate of growth.

One study reported that infants fed carnitine-free, soy-based formulas grew normally and showed

no signs of a clinically relevant carnitine deficiency; however, some biochemical measures related

to lipid metabolism differed significantly from infants fed the same formula supplemented with L-

carnitine (31). Soy-based infant formulas are now fortified with the amount of L-carnitine normally

found in human milk (32).
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Carnitine status

Renal filtration maintains plasma concentrations of free carnitine around 40 to 50 micromoles

(µmol)/L, while plasma concentrations of acetyl-L-carnitine (ALCAR; the most abundant carnitine

ester) are around 3 to 6 µmol/L (8). Regardless of the etiology, plasma concentrations of free

carnitine ≤20 µmol/L and increased acylcarnitine/free carnitine ratios (≥0.4) are considered

abnormal (6). Low carnitine status is generally due to impaired mitochondrial energy metabolism

or to carnitine not being efficiently reabsorbed by the kidneys. The rate of carnitine excretion is not

a useful indicator of carnitine status because it can vary with dietary carnitine intake and other

physiologic parameters. At present, there is no test that assesses functional carnitine deficiency in

humans (6).

Primary systemic carnitine deficiency

Primary systemic carnitine deficiency is a rare, autosomal recessive disorder caused by mutations

(including deletions) in the SLC22A5 gene coding for carnitine transporter protein OCTN2 (organic

cation transporter novel 2) (33). Individuals with defective carnitine transport have poor intestinal

absorption of dietary L-carnitine, impaired L-carnitine reabsorption by the kidneys (i.e., increased

urinary loss of L-carnitine), and defective L-carnitine uptake by muscles (4). The clinical

presentation can vary widely depending on the type of mutation affecting SLC22A5 and the

phenotypic manifestation of the mutation, i.e., age of onset, organ involvement, and severity of

symptoms at the time of diagnosis (34). The disorder usually presents in early childhood and is

characterized by episodes of hypoketotic hypoglycemia (that can cause encephalopathy),

hepatomegaly, elevated liver enzymes (transaminases), and hypoammonemia in infants;

progressive cardiomyopathy, elevated creatine kinase, and skeletal myopathy in childhood; or

fatigability in adulthood (34, 35). The metabolic and myopathic symptoms in infants and children

can be fatal such that treatment should start promptly to prevent irreversible organ damage (34).

The diagnosis is established by demonstrating abnormally low plasma free carnitine

concentrations, reduced carnitine transport of fibroblasts from skin biopsy, and molecular analysis

of the gene coding for OCTN2 (33, 34). Treatment consists of pharmacological doses of L-carnitine

that are meant to maintain a normal blood carnitine concentration, thereby preventing the risk of

hypoglycemia and correcting metabolic and myopathic manifestations (34).

Secondary carnitine deficiency or depletion

Secondary carnitine deficiency or depletion may result from either genetic or acquired conditions.

Hereditary causes include genetic defects in the metabolism of amino acids, cholesterol, and fatty

acids, such as propionyl-CoA carboxylase deficiency (aka propionic acidemia) and medium chain

acyl-CoA dehydrogenase deficiency (36). Such inherited disorders lead to a buildup of organic

acids, which are subsequently removed from the body via urinary excretion of acylcarnitine esters.

Increased urinary losses of carnitine can lead to the systemic depletion of carnitine (6).
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Systemic carnitine depletion can also occur in disorders of impaired renal reabsorption. For

instance, Fanconi's syndrome is a hereditary or acquired condition in which the proximal tubular

reabsorption function of the kidneys is impaired (37). This malfunction consequently results in

increased urinary losses of carnitine. Patients with renal disease who undergo hemodialysis are at

risk for secondary carnitine deficiency because hemodialysis removes carnitine from the blood (see

End-stage renal disease) (38).

One example of an exclusively acquired carnitine deficiency involves chronic use of pivalate-

conjugated antibiotics. Pivalate is a branched-chain fatty acid anion that is metabolized to form an

acyl-CoA ester, which is transesterified to carnitine and subsequently excreted in the urine as

pivaloyl carnitine. Urinary losses of carnitine via this route can be 10-fold greater than the sum of

daily carnitine intake and biosynthesis and lead to systemic carnitine depletion (see Drug

interactions) (39).

Finally, a number of inherited mutations in genes involved in carnitine shuttling and fatty acid

oxidation pathways do not systematically result in carnitine depletion (such that carnitine

supplementation may not help mitigate the symptoms) but lead to abnormal profiles of

acylcarnitine esters in blood (35, 40).

Nutrient interactions

Endogenous biosynthesis of L-carnitine is catalyzed by the concerted action of four different

enzymes (see Metabolism and Bioavailability) (Figure 2). This process requires two essential amino

acids (lysine and methionine), iron (Fe ), vitamin B  in the form of pyridoxal 5’-phosphate, niacin in

the form of nicotinamide adenine dinucleotide (NAD), and may also require vitamin C (ascorbate)

(4). One of the earliest symptoms of vitamin C deficiency is fatigue, thought to be related to

decreased synthesis of L-carnitine (41).

Disease Treatment
In most studies discussed below, it is important to note that treatment with L-carnitine or acyl-L-

carnitine esters (i.e., acetyl-L-carnitine [ALCAR], propionyl-L-carnitine; Figure 1) was generally used

as an adjunct to standard medical therapy, not in place of it. It is also important to consider the fact

that the bioavailability of L-carnitine and acylcarnitine derivatives administered orally is low (~10-

20%) (see Metabolism and Bioavailability). Intravenous administration is more likely to increase

plasma carnitine concentration, yet homeostatic mechanisms tightly control blood concentration

through metabolism and renal excretion: Up to 90% of 2 g of L-carnitine administered

intravenously is excreted into the urine within 12 to 24 hours. Only a fraction of the dose is thought

to enter the endogenous carnitine pool — largely found in skeletal muscle (reviewed in 8).

Type 2 diabetes mellitus

2+
6
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Several small clinical trials have explored whether supplemental L-carnitine could improve glucose

tolerance in people with impaired glucose metabolism. A potential benefit of L-carnitine in these

patients is based on the fact that it can (i) increase the oxidation of long-chain fatty acids which

accumulation may contribute to insulin resistance in skeletal muscle, and (ii) enhance glucose

utilization by reducing acyl-CoA concentration within the mitochondrial matrix (see Biological

Activities) (42). A meta-analysis of five trials in participants with either impaired fasting glucose,

type 2 diabetes mellitus, or nonalcoholic steatohepatitis found evidence of an improvement in

insulin resistance with supplemental L-carnitine compared to placebo (43). Another meta-analysis

of four randomized, placebo-controlled trials found evidence of a reduction in fasting plasma

glucose concentration and no improvement of glycated hemoglobin concentration in subjects with

type 2 diabetes mellitus supplemented with acetyl-L-carnitine (ALCAR) (44). A third meta-analysis of

16 trials suggested that supplementation with (acyl)-L-carnitine may reduce fasting blood glucose

and glycated hemoglobin concentrations, but not resistance to insulin (45). In a recent double-

blind, randomized, placebo-controlled trial, the effect of ALCAR was examined in 229 participants

treated for type 2 diabetes mellitus, hypertension, and dyslipidemia (46). ALCAR supplementation

(1 g/day for 6 months) had no effect on systolic or diastolic blood pressure, markers of kidney

function (i.e., glomerular filtration rate and albuminuria), markers of glucose homeostasis (i.e.,

glucose disposal rate, glycated hemoglobin concentration, and a measure of insulin resistance),

and blood lipid profile (i.e., concentrations of triglycerides, lipoprotein (a), LDL-cholesterol, HDL-

cholesterol, and total cholesterol) (46).

Cardiovascular disease

In the studies discussed below it is important to note that treatment with L-carnitine or propionyl-

L-carnitine was used as an adjunct (in addition) to appropriate medical therapy, not in place of it.

Myocardial infarction

Myocardial infarction (MI) occurs when an atherosclerotic plaque in a coronary artery ruptures and

obstructs the blood supply to the heart muscle, causing injury or damage to the heart (see the

page on Heart Attack). Several clinical trials have explored whether L-carnitine administration

immediately after MI diagnosis could reduce injury to heart muscle resulting from ischemia and

improve clinical outcomes. An early trial in 160 men and women diagnosed with a recent MI

showed that oral L-carnitine (4 g/day) in addition to standard pharmacological treatment for one

year significantly reduced mortality and the occurrence of angina attacks compared to the control

(47). In another controlled trial in 96 patients, treatment with intravenous L-carnitine (5 g bolus

followed by 10 g/day for three days) following a MI resulted in lower concentrations of creatine

kinase-MB and troponin-I, two markers of cardiac injury (48). However, not all clinical trials have

found L-carnitine supplementation to be beneficial after MI. For example, in a randomized, double-

blind, placebo-controlled trial in 60 participants diagnosed with an acute MI, neither mortality nor

echocardiographic measures of cardiac function differed between patients treated with

intravenous L-carnitine (6 g/day) for seven days followed by oral L-carnitine (3 g/day) for three
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months and those given a placebo (49). Another randomized placebo-controlled trial in 2,330

patients with acute MI, L-carnitine therapy (9 g/day intravenously for five days, then 4 g/day orally

for six months) did not affect the risk of heart failure and death six months after MI (50).

A 2013 meta-analysis of randomized controlled trials found that L-carnitine therapy in patients who

experienced an MI reduced the risks of all-cause mortality (-27%; 11 trials; 3,579 participants),

ventricular arrhythmias (-65%; five trials; 229 participants), and angina attacks (-40%; 2 trials; 261

participants), but had no effect on the risks of having a subsequent myocardial infarction or

developing heart failure (51). Because about 90% of oral L-carnitine supplements is unlikely to be

absorbed, one could ask whether the efficacy is equivalent between protocols using both

intravenous and oral administration and those using oral administration only (8). This has not been

examined in subgroup analyses.

Heart failure

Heart failure is described as the heart's inability to pump enough blood for all of the body's needs

(see the page on Heart Failure). In coronary heart disease, accumulation of atherosclerotic plaque

in the coronary arteries may prevent heart regions from getting adequate circulation, ultimately

resulting in cardiac damage and impaired pumping ability. Myocardial infarction may also damage

the heart muscle, which could potentially lead to heart failure. Further, the diminished heart’s

capacity to pump blood in cases of dilated cardiomyopathy may lead to heart failure. Because

physical exercise increases the demand on the weakened heart, measures of exercise tolerance

are frequently used to monitor the severity of heart failure. Echocardiography is also used to

determine the left ventricular ejection fraction (LVEF), an objective measure of the heart's pumping

ability. An LVEF of less than 40% is indicative of systolic heart failure (52).

An abnormal acylcarnitine profile and a high acylcarnitine to free carnitine ratio in the blood of

patients with heart failure have been linked to disease severity and poor prognosis (53-55).

Addition of L-carnitine to standard medical therapy for heart failure has been evaluated in several

clinical trials. A 2013 meta-analysis of 17 randomized, placebo-controlled studies in a total of 1,625

participants with heart failure found that oral L-carnitine (1.5-6 g/day for seven days to three years)

significantly improved several measures of cardiac functional capacity (including exercise tolerance

and markers of the left ventricle function), yet had no impact on all-cause mortality (56).

Angina pectoris

Angina pectoris is chest pain that occurs when the coronary blood supply is insufficient to meet the

metabolic needs of the heart muscle (as with ischemic heart disease; see the page on Angina

Pectoris) (57). In a prospective cohort study in over 4,000 participants with suspected angina

pectoris, elevated concentrations of certain acylcarnitine intermediates in blood were associated

with fatal and non-fatal acute myocardial infarction (58). In early studies, the addition of oral L-

carnitine or propionyl-L-carnitine to pharmacologic therapy for chronic stable angina modestly
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improved exercise tolerance and decreased electrocardiographic signs of ischemia during exercise

testing in some angina patients (59-61). Another early study examined hemodynamic and

angiographic variables before, during, and after administering intravenous propionyl-L-carnitine

(15 mg/kg body weight) in men with myocardial dysfunction and angina pectoris (62). In this study,

propionyl-L-carnitine decreased myocardial ischemia, evidenced by significant reductions in ST-

segment depression and left ventricular end-diastolic pressure (62). No recent and/or large-scale

studies have been conducted to further examine the potential benefit of L-carnitine or propionyl-L-

carnitine in the management of angina pectoris.

Intermittent claudication in peripheral arterial disease

In peripheral arterial disease, atherosclerosis of the arteries that supply the lower extremities may

diminish blood flow to the point that the metabolic needs of exercising muscles are not sufficiently

met, thereby leading to ischemic leg or hip pain known as claudication (see the page on

Intermittent Claudication in Peripheral Arterial Disease) (63). Several clinical trials have found that

treatment with propionyl-L-carnitine improves exercise tolerance in some patients with

intermittent claudication. In a double-blind, placebo-controlled, dose-titration study, 1 to 3 g/day of

oral propionyl-L-carnitine for 24 weeks was well tolerated and improved maximal walking distance

in patients with intermittent claudication (64). In a randomized, placebo-controlled study of 495

patients with intermittent claudication, 2 g/day of propionyl-L-carnitine for 12 months significantly

increased maximal walking distance and the distance walked prior to the onset of claudication in

patients whose initial maximal walking distance was less than 250 meters (m), but no effect was

seen in patients who had an initial maximal walking distance greater than 250 m (65). More recent

trials have associated oral propionyl-L-carnitine supplementation (2 g/day for several months) with

improved walking distance and claudication onset time (66, 67), as well as with higher pain-free

walking distance and higher ankle-brachial index (a diagnostic measure of peripheral arterial

disease) (68). Two 2013 systematic reviews of interventions concluded that the modest benefit of

propionyl-L-carnitine on walking performance was equivalent or superior to that obtained with

drugs approved for claudication in the US (e.g., pentoxyphylline, cilostazol) yet inferior to

improvements seen with supervised exercise interventions (69, 70).

End-stage renal disease

L-Carnitine and short/medium-chain acylcarnitine molecules are removed from the circulation

during hemodialysis. Both L-carnitine loss into the dialysate and impaired synthesis by the kidneys

contribute to a progressive carnitine deficiency in patients with end-stage renal disease (ESRD)

undergoing hemodialysis (71). The low clearance of long-chain acylcarnitine molecules leads to a

high acylcarnitine-to-L-carnitine ratio that has been associated with a higher risk of cardiovascular

mortality (72). Carnitine depletion in patients undergoing hemodialysis may lead to various

conditions, such as muscle weakness and fatigue, plasma lipid abnormalities, and refractory

anemia. A 2014 systematic review and meta-analysis of 31 randomized controlled trials in a total of

1,734 patients with ESRD found that L-carnitine treatment — administered either orally or
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intravenously — resulted in reductions of serum C-reactive protein (a marker of inflammation and

predictor of mortality in patients undergoing hemodialysis) and LDL-cholesterol, although the latter

was not deemed to be clinically relevant (73). There was no effect of L-carnitine on other serum

lipids (i.e., total and HDL-cholesterol, triglycerides) and anemia-related indicators (i.e., hemoglobin

concentration, hematocrit, albumin, and required dose of recombinant erythropoietin) (73).

The US National Kidney Foundation did not recommend routine administration of L-carnitine to

subjects undergoing dialysis yet encouraged the development of trials in patients with select

symptoms that do not respond to standard therapy, i.e., persistent muscle cramps or hypotension

during dialysis, severe fatigue, skeletal muscle weakness or myopathy, cardiomyopathy, and

anemia requiring large doses of erythropoietin (74, 75).

Finally, the use of L-carnitine (10-20 mg/kg body weight given as a slow bolus injection) is approved

by the US FDA to treat L-carnitine deficiency in subjects with ESRD undergoing hemodialysis (76).

Peripheral neuropathy

Antiretroviral-related peripheral neuropathy

The use of certain antiretroviral agents (nucleoside analogs) has been associated with an increased

risk of developing peripheral neuropathy in HIV-positive individuals (77, 78). Small, uncontrolled,

open-label intervention studies have suggested a beneficial effect of acetyl-L-carnitine (ALCAR) in

patients with painful neuropathies. An early uncontrolled study found that 10 out of 16 HIV-

positive subjects with painful neuropathy reported improvement after three weeks of intravenous

or intramuscular ALCAR treatment (79). Results from another uncontrolled intervention in 21 HIV-

positive patients suggested that long-term (two to four years) oral ALCAR supplementation (1.5

g/day) may be a beneficial adjunct to antiretroviral therapy to improve neuropathic symptoms in

some HIV-infected individuals (80, 81). Additionally, two small studies in participants presenting

with antiretroviral-induced neuropathy found significant reduction in subjects' mean pain intensity

with oral ALCAR (1-3 g/day) for 4 to 24 weeks, but no effect on objective neurophysiological

parameters was found (82, 83).

A double-blind, placebo-controlled trial in 90 HIV-positive patients with symptomatic distal

symmetrical polyneuropathy found no benefit of intramuscular injection with 1 g/day of ALCAR for

two weeks in the intention-to-treat analysis, but there was some pain relief in the group of 66

patients who completed the trial (84). Large-scale, controlled studies are needed before any

conclusions can be drawn.

Diabetic peripheral neuropathy

Peripheral nerve dysfunction occurs in about 50% of people with diabetes mellitus, and chronic

neuropathic pain is present in about one-third of people with diabetic peripheral neuropathy (85).

Advanced stages of diabetic peripheral neuropathy can lead to recurrent foot ulcers and infections,
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and eventually amputations (86). A 2019 systematic review (87) identified three placebo-controlled

interventions that examined the effect of oral supplementation with acetyl-L-carnitine (ALCAR; 1.5-

3.0 g/day for one year) in individuals with diabetic peripheral neuropathy (3, 88). Low-quality

evidence suggested a lower level of pain with ALCAR, as measured with a visual scale analog. Low-

quality evidence from another trial that compared the effect of ALCAR (1.5 g/day) with that of

methylcobalamin (1.5 mg/day) for 24 weeks suggested no difference between treatments

regarding the extent of functional disability (using the Neuropathy Disability Scale) or measures of

symptom quality and severity (using the Neuropathy Symptom Scale) (89).

Chemotherapy-induced peripheral neuropathy

A few randomized, double-blind, placebo-controlled trials have examined whether ALCAR might

help prevent or treat chemotherapy-induced peripheral neuropathy. A trial in 150 participants with

either ovarian cancer or castration-resistant prostate cancer found no evidence that ALCAR (1g

every 3 days) given with the anticancer drug sagopilone (for up to six cycles of treatment) reduced

the overall risk of peripheral neuropathy compared to a placebo (90). However, ALCAR reduced the

risk of high-grade sagopilone-induced neuropathy (90). In contrast, another trial in 409 women with

breast cancer found that ALCAR (3 g/day for 24 weeks) increased anticancer drug (taxanes)-induced

peripheral neuropathy and decreased measures of functional status compared to placebo (91). A

follow-up study reported that the negative impact of 24-week treatment with ALCAR was still

observed at week 52; however, no  differences between ALCAR and placebo were apparent at week

104 (92). Finally, one trial in 239 participants already suffering from chemotherapy-induced

peripheral neuropathy reported a reduction in the severity of neuropathic symptoms with ALCAR

(3 g/day for eight weeks) compared to placebo (93). Improvements in electrophysiological

parameters were also observed with ALCAR treatment (93).

The results from these trials are conflicting and thus difficult to interpret. The efficacy of ALCAR in

the prevention and treatment of chemotherapy-induced peripheral neuropathy remains to be

established (94).

Depression

A 2018 meta-analysis identified 12 randomized controlled trials, including 791 participants, that

examined the effect of ALCAR on symptoms of depression (95). Evidence from nine trials suggested

a reduction in depressive symptoms with ALCAR (3 g/day for a median 8 weeks) compared to a

placebo. Three trials that compared ALCAR treatment (1-3 g/day for 7-12 weeks) and

antidepressant medications found ALCAR was as effective as antidepressants in treating

depressive symptoms (95). Another meta-analysis of trials that compared the safety profile of

antidepressants found evidence of fewer adverse effects, and consequently, better adherence to

treatment with ALCAR compared to placebo and in contrast to classical pharmaceutical agents (96).

Alzheimer's disease
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The metabolomic profiling of acylcarnitine molecules showed variations in serum concentrations of

subjects along the continuum from cognitively healthy to affected by Alzheimer's disease (97).

Changes in the blood concentrations of specific acylcarnitines in subjects with either subjective

memory complaints, mild cognitive impairment, or Alzheimer's disease, compared to cognitively

healthy peers may reflect changes in the transport of fatty acids into the mitochondria and/or

impairments in energy production. Several clinical trials conducted in the 1990s  examined the

effect of acetyl-L-carnitine (ALCAR) treatment on the cognitive performance of patients clinically

diagnosed with Alzheimer's disease. Early, small trials suggested a beneficial effect of ALCAR with

respect to cognitive decline (98-100), whereas later, larger trials found little-to-no effect compared

to placebo (101-103). However, a 2003 systematic review highlighted differences in methodologies

between early and later studies that make it difficult to compare results (104). Nevertheless, the

pooled analysis of 16 trials suggested improvements in the summary measure of patients' global

functioning (assessed with the Clinical Global Impressions [CGI-I] scale) after 12 and 24 weeks of

(but not after 52 weeks) of ALCAR treatment (1-3 g/day) and in cognitive performance (assessed

with the Mini-Mental State Examination [MMSE] scale) after 24 weeks (but not at 12 or 52 weeks)

(104). A 2003 meta-analysis of 21 trials found that ALCAR was superior to placebo in several

psychometric tests assessing global patient functioning, attention, memory, and some intellectual

functions (105).

Hepatic encephalopathy

Hepatic encephalopathy refers to the occurrence of a spectrum of neuropsychiatric signs or

symptoms in individuals with acute or chronic liver disease (106). Subclinical hepatic

encephalopathy may not feature any symptoms beyond abnormal behavior on psychometric tests

or symptoms that are nonspecific in nature. In contract, overt hepatic encephalopathy can present

with disorientation, obvious personality change, inappropriate behavior, somnolence, stupor,

confusion, and coma (106). Changes in mental status are thought to be caused by the liver failing to

detoxify neurotoxic compounds like ammonia. A 2019 systematic review of five placebo-controlled

trials conducted by one group of investigators examined the effect of acetyl-L-carnitine (ALCAR) in

398 participants with cirrhosis and portal hypertension (high blood pressure in the portal vein) and

presenting with either subclinical or overt hepatic encephalopathy. ALCAR was either administered

orally (4 g/day for 90 days) in four trials or intravenously (4 g/day for three days) in one trial. ALCAR

was found to significantly reduce blood ammonium concentration compared to placebo. However,

none of the trials reported on serious adverse outcomes, including mortality. Additionally, the

evidence was too limited to assess the impact on quality of life or mental and physical fatigue.

Cancer-related fatigue

Fatigue is not uncommon in people who have undergone chemotherapy and survived cancer, with

fatigue symptoms depending on the specific type of cancer and treatment. Cancer-related fatigue

can persist well beyond the end of chemotherapy and be associated with cognitive and functional

decline, insomnia, depression, and a reduction in the quality of life (107). A 2017 systematic review
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and meta-analysis identified 12 intervention studies that assessed the effect of L-carnitine or

ALCAR on cancer-related fatigue (reported as a primary or secondary outcome) in cancer survivors

(108). Three studies had no control arm, eight studies were open-label, and eight studies included

fewer than 100 participants. Overall, only three studies were deemed of good quality. The meta-

analysis of these three randomized, double-blind, placebo-controlled trials found no effect of L-

carnitine (0.25-4 g/day for 1 week to 3 months) or ALCAR (3 g/day for 6 months) on the level of

cancer-related fatigue (108).

Infertility

L-Carnitine is concentrated in the epididymis, where sperm mature and acquire their motility (109).

An early cross-sectional study of 101 fertile and infertile men found that L-carnitine concentrations

in semen were positively correlated with the number of sperm, the percentage of motile sperm,

and the percentage of normal appearing sperm in the sample (110), suggesting that L-carnitine

may play an important role in male fertility. One placebo-controlled, double-blind, cross-over trial

in 86 subjects with fertility issues found that supplementation with L-carnitine (2 g/day) for two

months improved sperm quality, as evidenced by increases in sperm concentration and motility

(111). In another placebo-controlled trial conducted by the same group, similar improvements in

sperm motility were observed in participants supplemented with 2g/day of L-carnitine and 1 g/day

of acetyl-L-carnitine (ALCAR) for six months (112). In both trials, the effect of carnitine was greater

in the most severe cases of asthenozoospermia (reduced sperm motility) at baseline (111, 112).

Another placebo-controlled, double-blind, randomized study in 44 men with idiopathic

asthenozoospermia found an increase in sperm motility in those given ALCAR alone (3 g/day) or

ALCAR (1 g/day) plus L-carnitine (2 g/day) compared to those given L-carnitine alone (2 g/day) or a

placebo (113). However, a pooled analysis of the two trials that employed ALCAR found no

significant effect of ALCAR and L-carnitine on sperm concentration, motility, and morphology (114).

Evidence from larger scale clinical trials is still needed to determine whether L-carnitine and ALCAR

could play a role in the treatment of male infertility.

Physical health

Frailty

Frailty is a syndrome prevalent among geriatric populations and characterized by a functional

decline and a loss of independence to perform the activities of daily living. Frailty in individuals may

include at least three of the following symptoms: unintentional weight loss, exhaustion (poor

endurance), weakness (low grip strength), slowness, and physical inactivity (115). It is believed that

early stages of frailty are amenable to interventions that could avert adverse outcomes, including

the increased risk of hospitalization and premature death (116). The suggestion that carnitine

deficiency may lead to frailty through mitochondrial dysfunction (117) has been examined in one

trial. This randomized, double-blind, placebo-controlled trial in 58 older adults identified as "pre-

frail" found an decrease in a Frailty Index score and an improvement in the hand grip test in
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individuals supplemented with L-carnitine (1.5 g/day) over 10 weeks but not in those given a

placebo (118). However, there was no difference in Frailty Index and hand grip test scores between

supplemental L-carnitine and placebo groups.

Skeletal muscle wasting

Loss of skeletal muscle mass is associated with a decrease in muscle strength and occurs with

aging (119), as well as in several pathological conditions (120-122). Based on preclinical studies, it

has been suggested that L-carnitine supplementation could limit the imbalance between protein

anabolism (synthesis) and catabolism (degradation) that leads to skeletal muscle wasting (42). A

randomized, double-blind, placebo-controlled trial in 28 older women (ages, 65-70 years) found no

effect of L-carnitine supplementation (1.5 g/day for 24 weeks) on serum pro-inflammatory cytokine

concentrations, body mass and composition (lean [fat-free] mass and skeletal muscle mass), or

measures of skeletal muscle strength (123). In contrast, a retrospective cohort study in patients

with cirrhosis found a reduced rate of skeletal muscle loss over at least six months in those who

were administered L-carnitine (N=35; mean dose, 1.02 g/day) compared to those who were not

(124). Of note, supplementation with L-carnitine was given in patients with cirrhosis to control

hyperammonemia (N=27), to reduce muscle cramps (N=6), or to prevent carnitine deficiency (N=2).

One major limitation of this study beyond its retrospective design is that patients who received L-

carnitine had a significantly different clinical presentation; in particular, liver dysfunction was

significantly more severe in these patients than in those who were not supplemented (124).

Muscle cramps

Muscle cramps are involuntary and painful contractions of skeletal muscles. Two uncontrolled

studies conducted in participants with cirrhosis found that L-carnitine supplementation was safe to

use at doses of 0.9 to 1.2 g/day for eight weeks (125) and 1 g/day for 24 weeks (126) and might be

considered to control the frequency of cramps. However, whether supplemental L-carnitine can be

efficacious to limit the incidence of muscle cramps in patients with cirrhosis remains unknown. An

open-label, non-randomized trial in 69 patients with either type 1 or type 2 diabetes mellitus found

a reduction in the incidence of muscle cramps and an improvement in the quality of life of those

prescribed 0.6 g/day of L-carnitine for four months compared to controls (127). In contrast, there is

little evidence to date to suggest that supplemental L-carnitine could reduce muscle cramps in

patients undergoing hemodialysis (128). Well-designed trials are necessary to examine whether L-

carnitine could be helpful in the management of cramps.

Physical performance

Interest in the potential of L-carnitine supplementation to improve athletic performance is related

to its important roles in energy metabolism. A number of small, poorly controlled studies have

reported that either acute (dose given one hour before exercise bout) or short-term (two to three

weeks) supplementation with L-carnitine (2 to 4 g/day) supported energy production,

cardiorespiratory fitness, and endurance capacity during physical exercise (reviewed in 129).
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However, in a double-blind, placebo-controlled trial in 32 healthy adults, propionyl-L-carnitine (1

g/day or 3 g/day) for eight weeks did not improve aerobic or anaerobic exercise performance (130).

An intervention study compared the effect of L-carnitine supplementation (2 g/day for 12 weeks)

on plasma and skeletal muscle carnitine concentrations and physical performance between 16

vegetarian and 8 omnivorous male participants (131). At baseline, plasma carnitine concentration

was about 10% lower in vegetarian compared to omnivorous participants. However, the content

carnitine in skeletal muscle, phosphocreatine, ATP, glycogen, and lactate, as well as measures of

physical performance during exercise were equivalent between vegetarians and omnivores. While

L-carnitine supplementation normalized plasma carnitine concentration in vegetarians to that

observed in omnivores, there was no effect on energy metabolism and physical performance

compared to no supplementation and between vegetarians and omnivores (131).

Sources
Biosynthesis

The normal rate of L-carnitine biosynthesis in humans ranges from 0.16 to 0.48 mg/kg of body

weight/day (4). Thus, a 70 kg (154 1b) person would synthesize between 11 and 34 mg of carnitine

per day. This rate of synthesis, combined with efficient (95%) L-carnitine reabsorption by the

kidneys, is sufficient to prevent deficiency in generally healthy people, including strict vegetarians

(132).

Food sources

Meat, poultry, fish, and dairy products are the richest sources of L-carnitine, while fruit, vegetables,

and grains contain relatively little L-carnitine. Omnivorous diets have been found to provide 23 to

135 mg/day of L-carnitine for an average 70 kg person, while strict vegetarian diets may provide as

little as 1 mg/day for a 70 kg person (8). Between 54% and 86% of L-carnitine from food is

absorbed, compared to 5%-25% from oral supplements (0.6-7 g/day) (13). Non-milk-based infant

formulas (e.g., soy formulas) should be fortified so that they contain 11 mg/L of L-carnitine. Some

carnitine-rich foods and their carnitine content in milligrams (mg) are listed in Table 1.

Table 1. L-Carnitine Content of Selected Foods

Food Serving L-Carnitine (mg)

Beef steak 3 ounces* 81

Ground beef 3 ounces 80 

Pork 3 ounces  24 

Canadian bacon 3 ounces  20 

Milk (whole) 8 fluid ounces (1 cup)  8 
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Fish (cod) 3 ounces  5 

Chicken breast 3 ounces  3 

Ice cream 4 ounces (½ cup)  3 

Avocado 1 medium  2 

American cheese 1 ounce  1 

Whole-wheat bread 2 slices  0.2 

Asparagus 6 spears (½ cup) 0.2

*A three-ounce serving of meat is about the size of a deck of cards.

Supplements

Intravenous L-carnitine

Intravenous L-carnitine is available by prescription only for the treatment of primary and

secondary L-carnitine deficiencies (76).

Oral L-carnitine

Oral L-carnitine is available by prescription for the treatment of primary and secondary L-carnitine

deficiencies (76). It is also available without a prescription as a nutritional supplement;

supplemental doses usually range from 0.5 to 2 g/day.

Acetyl-L-carnitine

Acetyl-L-carnitine (ALCAR) is available without a prescription as a nutritional supplement. In

addition to providing L-carnitine, it provides acetyl groups that may be used in the formation of the

neurotransmitter, acetylcholine. Supplemental doses usually range from 0.5 to 2 g/day (133).

Propionyl-L-carnitine

Propionyl-L-carnitine is not approved by the US FDA for use as a drug to prevent or treat any

condition. It is, however, available without prescription as a nutritional supplement.

See Figure 1 for the chemical structures of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine.

Safety
Adverse effects

In general, L-carnitine appears to be well tolerated; no toxic effects have been reported in relation

to intakes of high doses of L-carnitine. L-Carnitine supplementation may cause mild

gastrointestinal symptoms, including nausea, vomiting, abdominal cramps, and diarrhea.

Supplements providing more than 3 g/day may cause a "fishy" body odor. Acetyl-L-carnitine
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(ALCAR) has been reported to increase agitation in some Alzheimer's disease patients (133).

Despite claims that L-carnitine or ALCAR might increase seizures in some individuals with seizure

disorders (133), these are not supported by any scientific evidence (134). Only the L-isomer of

carnitine is biologically active; the D-isomer may actually compete with L-carnitine for absorption

and transport, thereby increasing the risk of L-carnitine deficiency (4). Supplements containing a

mixture of the D- and L-isomers (D,L-carnitine) have been associated with muscle weakness in

patients with kidney disease. Long-term studies examining the safety of ALCAR supplementation in

pregnant and breast-feeding women are lacking (133).

Drug interactions

Pivalic acid combines with L-carnitine and is excreted in the urine as pivaloylcarnitine, thereby

increasing L-carnitine losses (see also Secondary carnitine deficiency). Consequently, prolonged

use of pivalic acid-containing antibiotics, including pivampicillin, pivmecillinam, pivcephalexin, and

cefditoren pivoxil (Spectracef), can lead to secondary L-carnitine deficiency (135). The

anticonvulsant valproic acid (Depakene) interferes with L-carnitine biosynthesis in the liver and

forms with L-carnitine a valproylcarnitine ester that is excreted in the urine. However, L-carnitine

supplements are necessary only in a subset of patients taking valproic acid. Risk factors for L-

carnitine deficiency with valproic acid include young age (<2 years), severe neurological problems,

use of multiple antiepileptic drugs, poor nutrition, and consumption of a ketogenic diet (135).

There is insufficient evidence to suggest that nucleoside analogs used in the treatment of HIV

infection (i.e., zidovudine [AZT], didanosine [ddI], zalcitabine [ddC], and stavudine [d4T] or certain

cancer chemotherapy agents (i.e., ifosfamide, cisplatin) increase the risk of secondary L-carnitine

deficiency (135).
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