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Abstract 

Study Objectives:  The “Zeigarnik effect” refers to the phenomenon where future intentions are remembered effectively only as 
long as they are not executed. This study investigates whether these intentions, which remain active during sleep, influence dream 
content.

Methods:  After an adaptation night, each of the 19 participants (10 women and 9 men) received three different task plans in 
the evening before the experimental night, each describing how to perform specific tasks. One of the task plans (completed) was 
then to be executed before the sleep period, another task (uncompleted) was told to be executed in the next morning, and on the 
third task (interrupted) participants were interrupted during the enactment before sleep and told to resume it the next morning. 
Polysomnography and multiple awakenings were conducted, resulting in 86 dream reports, 36 in NREM stage 2, and 50 in rapid eye 
movement sleep. After a traditional rating-based analysis of dream reports yielded inconsistent results, we analyzed the reports using 
a transformer-based assessment of dream incorporation, which quantified the semantic similarity between the dreams and pre-sleep 
tasks.

Results:  The number of dreams showing above-criterion similarity to the respective task was significantly lower for the completed 
than the uncompleted or interrupted tasks (p < .05, χ2 test). This pattern was confirmed through a forced choice approach, where—
based on the similarity of single sentences of the dream reports—each dream report was allocated to one of the three task plans 
(p < 0.01, one-tailed χ2 test).

Conclusions:  Active intentions increase the likelihood of dream content being semantically similar to these intentions.

This paper is part of the Festschrift in honor of Dr. Robert Stickgold. The open-access publishing fee for this paper was contributed by the Furman 
University Sleep Laboratory.
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Statement of Significance

We used an objective AI-based large language model analysis to analyze the semantic similarity of dream reports to task plans par-
ticipants had learned before sleep, and that was either executed before sleep or remained uncompleted and, thus, “active” during 
the subsequent sleep period. We find that the content of the reported dreams was more similar to the task plans that remained 
uncompleted than to task plans completed before sleep. Whereas dreams are well known to incorporate past experiences, these 
findings provide first-time experimental evidence that dreams also incorporate anticipated experiences, i.e. prospective memories 
for future plans.
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Dreams occurring during sleep are known to incorporate memo-
ries of past experiences that occurred in a state of wakefulness, 
with the precise relationship between the waking experience 
and dream content representing one central question in this 
research field [1–4]. How are dreams constructed from waking 
experiences? Dream content appears to be particularly linked 
to new learning, although this idea is controversially discussed 
[2–4]. In fact, novel waking-life experiences have been shown to 
be incorporated into the content of non-rapid eye movement 
(NonREM) dreams, and this incorporation appeared to be spe-
cifically associated with the formation of new memories [5–7] 
suggesting that dreams reflect memory processing during sleep. 
Moreover, dream incorporation is enhanced when the task expe-
rience is highly engaging, e.g. through computer games [8, 9], 
virtual environments [10, 11], or stressful situations [12], i.e. all 
factors known to also enhance learning and the formation of 
new memories. In light of this link to memory formation, dream 
content has been proposed to be influenced by the neuronal 
replay of memory representations during sleep, as a core mech-
anism underlying memory consolidation [7–10, 13, 14]. Such 
influence of ongoing memory processing on dream content may 
extend—beyond the precise replay of cell ensemble firing pat-
terns that occurred during learning—also to the reactivation 
of networks (semantically) connected to the replaying ensem-
bles during sleep [15–19]. It is, however, important to note that 
although memory reprocessing can bias the dream content, the 
dream is rarely a mere replay of an episodic wake experience per 
se, but rather incorporates individual aspects connected to the 
waking experience [20].

Memories in the brain do not merely serve to represent the 
past but to predict the future. A first experimental demon-
stration of this future-oriented aspect of memory has been 
provided by Bluma Zeigarnik in 1927 [21], who showed that par-
ticipants remembered tasks better that were interrupted and 
that remained to be completed in the future than tasks they had 
completed. The effect was explained such that a task that has 
already been started establishes a task-specific “tension” which 
improves accessibility of the relevant task memories, and which 
is only relieved upon completion of the task. The Zeigarnik effect 
has been confirmed and elaborated in numerous recent experi-
ments on the nature of prospective memory for intentions and 
action plans (e.g. [22, 23]). Importantly, this research indicated 
that prospective memories for plans strongly benefit from periods 
of post-encoding sleep [24–28]. Specifically, this benefitting effect 
of sleep was significantly stronger for action plans that remained 
uncompleted before the experimental sleep period (due to an 
experimental interruption of task performance or an instructed 
delayed execution) than for plans that were completed before the 
sleep period [29].

Evidently, memory shares its distinct prospective orientation 
with dreams which have been considered “the brain’s offline 
efforts to distill projections of the future” [30]. This shared pro-
spective focus might be the factor biasing dream content toward 
the acutely processed memories. Specifically, we propose that 
dreams incorporate more elements from task plans made during 
wakefulness, if the respective task is not yet completed and the 
intention to complete the plan is kept active across sleep. To test 
this, participants were given three different task plans before 
sleep. One plan was completed before the experimental sleep 
period (completed). Of the remaining two plans, one was never 
started by the participants before sleep, as they were informed 
it would need to be completed the next morning (uncom-
pleted). The other plan was started but interrupted before sleep, 

with participants instructed to finish it the following morning 
(interrupted).

Crucially, we used an objective approach to analyze the sim-
ilarity between the task plans and the dream reports resulting 
from multiple awakenings during the postacquisition sleep 
period. Recently, strong efforts have been made to objectively 
analyze dreams [31–37], with particularly impressive results 
from neural decoding approaches in which machine-learning 
models predict the reported dream contents based on measured 
brain activity [38]. Here, we deployed a large language model to 
match objectively a dream report with the respective task plans, 
with the results from this objective analysis confirming that the 
obtained dream reports were on average more similar to the 
uncompleted and interrupted task plans than to the completed 
task plan.

Methods
Participants
A total of 20 young, healthy participants aged between 19 and 29 
years (M = 24.15 ± 3.08) took part in the study, including 11 female 
and 9 male participants. All participants were native German 
speaking, non-smokers, and reported not to suffer from any neu-
rological or psychiatric conditions. They did not take any medica-
tions (except oral contraceptives), iron, or vitamin supplements. 
Individuals reporting difficulties to fall or stay asleep, nightmares, 
or other sleep disorders were also excluded. All participants 
reported to follow a regular sleep/wake schedule with >6 hours of 
sleep per night and no shift work, night duties, or long-distance 
flights with jet lag in the 6 weeks prior to the experiment. Only 
participants were included who assessed themselves as individ-
uals “dreaming on occasion” and normally having at least “fairly 
good recall” of their dreams.

Participants spent one adaptation night in the sleep lab before 
the experimental night, in order to familiarize them to sleeping 
with EEG electrodes. Data from one participant were excluded 
from the analysis because of too poor sleep quality, reducing the 
sample to a total of N = 19 participants. Before the start of each 
experimental night, the current well-being and health of the 
participants were assessed, including whether they had experi-
enced any unusual kind of stress, and had refrained from nap-
ping, alcohol, and caffeine on that day before the experimental 
night. Participants gave written informed consent and were paid 
for participation. The study was approved by the local ethics com-
mittee of the University of Tübingen.

Design and procedures
The study followed a within-subject design, examining the cor-
respondence of dream reports obtained in a single experimental 
night to each of three different task plans with different execu-
tion status (completed, uncompleted, and interrupted). The task 
plans were entitled “Setting the table,” “Tidying the desk,” and 
“Getting ready to leave.” The first two scripts were derived from 
another study [39], while the third one was newly developed for 
the purpose of this study. Each task plan was assigned to one 
of the three execution statuses. Participants learned the scripts 
for all task plans in the evening and performed them either 
afterward (for the completed and interrupted conditions) or in 
the next morning (uncompleted). The assignment of task plans 
to the execution status conditions was balanced across condi-
tions (completed – C, interrupted – I, uncompleted – U) distrib-
uting as follows: “Setting the table” (C = 7; I = 7; U = 6), “Tidying 
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the desk” (C = 6; I = 6; U = 8), “Getting ready to leave” (I = 7; C = 
7; U = 6). Also the order of execution status conditions for the 
tasks to be performed in the evening was balanced across par-
ticipants such that the “completed-interrupted” order occurred 
nine times and the “interrupted-completed” order occurred 11 
times. During the nocturnal sleep period, dream reports were 
gathered during awakenings from either rapid eye movement 
(REM) sleep or NREM stage 2. The participants were informed 
that the experiment investigated the effect of sleep on memory 
for specific task plans and that awakenings for dream reporting 
would occur.

The experimental procedure is illustrated in Figure 1A. All sub-
jects reported to the laboratory at 8:00 pm. First, a questionnaire 
regarding participant data was completed to ensure all experi-
mental inclusion criteria were met. Then, EEG electrodes were 
attached, and the participants completed the Stanford Sleepiness 
Scale (SSS) and a mood questionnaire, followed by the Regensburg 
Word Fluency Test (RWT) and a Vigilance Task (VT), both assess-
ing executive cognitive functions.

After performance on these tests, the participants learned 
the action sequences for the three task plans as described in 
[41]. The plans were entitled “Desk tidying,” “Getting ready to 
leave,” and “Setting the table.” Each task plan comprised an 
action sequence of five subtasks (Supplementary Figure 1). For 
Desk tidying the subtasks were (1) opening a file, (2) filing doc-
uments, (3) sharpening a pencil, (4) sorting index cards, and (5) 
stacking articles. For Getting ready to leave, the subtasks were 
(1) shutting down the computer, (2) closing the window, (3) put-
ting on a coat, (4) putting on a backpack, and (5) switching off 
the light; and for Setting the table, the subtasks were (1) spread-
ing out the tablecloth, (2) distributing tableware, (3) polishing 
glasses, (4) folding napkins, and (5) lighting candles. The sub-
tasks were presented sequentially on a computer screen, with 
the title of the task plan displayed above each subtask. Every 
subtask was shown for 6 seconds in a fixed order. Following this 
sequential presentation, the task title and all five subtasks were 
presented together for 30 seconds to allow participants to con-
solidate the information. This process was repeated three times 

Figure 1. Experimental procedure and analysis. (A) Experimental procedure for an example participant who completed the task plan “Tidying the 
desk” before sleep, and was told to execute the task plan “Getting ready to leave” the next morning. On the “Table setting” task plan he/she was 
interrupted when implementing it before sleep and asked to complete it the next morning. Right: sleep profile for subsequent nighttime, indicated 
6 awakenings for oral dream report collection. (B) Analysis of dream reports based on a traditional rating-based analysis of dream reports, where 
two human raters were asked to rate the similarity of dream reports to the task plans, relying on a standardized scale by Schredl [40]. The similarity 
score, here, combined points given for the rated overall similarity between a dream report and a specific task plan (0–8 points), and points given for 
the rated similarity of the reports with core elements of the respective task plans (0–22 points). (C) Analysis of dream reports based on an AI large 
language model (GermanBERT): dream reports were transcribed into written texts and filler words and grammatical errors were removed. Reports 
were then either automatically summarized or split into sentences. Semantic similarities between task plan descriptions and dream reports were 
then determined through contextual embedding and calculating cosine similarities. Summarized dream reports passing the 0.85 criterion threshold 
and maximum values of dream reports split into sentences, respectively, were counted for each execution status condition.

http://academic.oup.com/sleepadvances/article-lookup/doi/10.1093/sleepadvances/zpae088#supplementary-data
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for each task plan, with one complete cycle through the three 
plans constituting a learning trial.

After the initial learning phase, an immediate recall test was 
performed where each task title was presented, and the partici-
pant was asked to recall (verbally) the five subtasks of the plan 
in the correct order. It was ensured that the participants memo-
rized the exact wording and order of the subtasks. If they did not 
achieve 100% correct recall on all three task plans during two 
consecutive recall tests, additional learning trials were conducted.

The second (and following) learning trials followed the same 
procedure as the first, but with each task plan being presented 
only once. On average, participants required 2.9 ± 0.9 learning 
trials (range 2–5) to meet the recall criterion. To enhance task 
involvement, the participants were informed that they would 
receive an additional 15 € for correctly recalling all three task 
plans (5 € per plan).

After learning, the participants were informed which two task 
plans were to be performed in the evening and which one in the 
morning. Plans were executed under observation and evaluation 
by the experimenter, with the participant not being allowed to ask 
any questions while performing the task plans.

The materials used to execute the plans were prepared before-
hand. Once the participant had performed on the first plan in the 
evening he/she left the room so that the materials could be reset 
for the next task plan. For the interrupted condition, the experi-
menter interrupted the execution of the task plan after the par-
ticipant had completed the first subtask. Under the pretext that 
an error had occurred, the participant was instructed to perform 
this task the next morning. After performing the two task plans, 
the participants went to bed.

For the experimental sleep interval, lights were turned off at 
the participant’s habitual bedtime. After about 3 hours of sleep 
or latest at 2:00 am, the first awakening occurred. It was ensured 
by visual inspection of the ongoing polysomnographic recordings, 
that before an awakening the sleep stage was stable for at least 
10 minutes. Awakenings were done up to six times per night, from 
NREM stage 2 and REM sleep to cover both NonREM and REM 
sleep-associated dreams [42–45]. Subsequent awakenings always 
were carried out after the participant had regained sleep for at 
least 30 minutes. For awakening, lights were turned on and the 
participant was addressed by their name and asked to sit up and 
put on a headset for voice recording. A standard set of questions 
followed: (1) Tell me everything that was going through your mind 
before you were woken up. (2) Can you remember any details? 
(3) And further? (4) Was it a dream or a thought? and (5) Was it 
pleasant, unpleasant, or neutral? Question 3 was repeated unless 
the participant explicitly reported not having any further mem-
ory. Lights were turned off for the participant to return to sleep 
once no further details came into their mind. The participant was 
awakened the next morning at about his/her usual wake-up time. 
The SSS, mood questionnaire, RWT, and VT were performed a sec-
ond time about 30 minutes after awakening.

Polysomnographic recordings
Throughout the night, the EEG was recorded from six channels 
(F3, F4, C3, C4, P3, and P4) referenced to two electrodes attached 
to the mastoids (M1 and M2) using a BrainAmp DC amplifier 
(BrainProducts, Munich, Germany). The ground electrode was 
placed on the forehead. Impedances were always kept below 
5 kOhm. Additionally, vertical and horizontal eye movements 
were measured (VEOG and HEOG) as well as an electromyogram 
(from two electrodes placed on the chin). Signals were band-pass 

filtered between 0.3–30 Hz (EEG and EOG signals) and 5–150 Hz 
(EMG signal), sampled at 500 Hz and stored for offline analyses. 
Visual scoring of 30-second polysomnographic records followed 
the criteria outlined by Rechtschaffen and Kales [46].

Dream report analysis
Audio-recorded dreams were transcribed into written texts before 
analysis. To quantify the extent to which the task plans at the dif-
ferent execution states were incorporated into the dream reports, 
we analyzed the semantic similarity between dreams and respec-
tive task plans. These similarity analyses were performed in two 
different ways, first using a traditional approach based on sub-
jective ratings and, second, based on an AI large language model.

For the rating-based approach, two colleagues, sleep experts 
with no special experience in the assessment of dreams, were 
asked to rate the dream reports according to a standardized scale 
derived from a previous report by Schredl [40]. The first part of the 
scale required to rate the general extent of alignment between 
the reported dream and the specific task plans between 0 and 8 
(indicating no vs. high correspondence). The second part of the 
scale aimed at a similarity rating based on the occurrence of cer-
tain core elements characterizing the task plans. For this, for each 
task plan, 11 core elements, i.e. objects, and activities that char-
acterized the plan, were selected. The rating required to assign, 
for each of these core elements, a score between 0 and 2 with 
0 indicating that the element did not occur in a dream report, 
1 indicating that the element occurred metaphorically or indi-
rectly, and 2 indicating that the element was directly named in 
the dream report, with the sum of the 11 scores defining the sim-
ilarity between the dream report and the respective task plans. 
Raters were blinded as to the execution state conditions and as 
to whether a dream was reported after a NonREM or REM sleep 
awakening.

For the second analysis (illustrated in Figure 1B), we used 
a large language model to objectively quantify the extent of 
dream incorporation. Dream incorporation was measured by the 
degree of semantic similarity between the task plans and the 
dream reports. Semantic representations of the task plans and 
dream reports were extracted using the transformer-based rep-
resentational model Bidirectional Encoder Representations from 
Transformers (BERT) [47], a natural text embedding model capa-
ble of quantifying semantic textual similarity [48]. Specifically, we 
used the German version (GermanBERT) [49] which is pretrained 
on written German texts, i.e. German Wikipedia articles, German 
OpenLegalData, and German news articles. The parameters of the 
model were trained by (1) splitting the input texts, i.e. the dream 
reports and task plans, into tokens representing semantic units 
(words, subwords) of the input texts, (2) masking some tokens 
and feeding back the corrupted sentence (with masked tokens) 
as input into the model, and (3) asking the model to reconstruct 
the original tokens.

Since BERT was pretrained on written language, the transcripts 
of the dream reports were additionally edited to remove filler 
words and to correct grammatical errors. Similarly, the task plans 
were prepared for these analyses by transforming the description 
of subtasks in bullet points into full sentences. Then, each dream 
report was summarized automatically using a BERT model fine-
tuned for text summarization (https://huggingface.co/mrm8488/
bert2bert_shared-german-finetuned-summarization) before giv-
ing it as input to the GermanBERT. The GermanBERT encoder 
embeddings (vectors that take into account single text units and 
respective semantic relationships to other units) were used as a 

https://huggingface.co/mrm8488/bert2bert_shared-german-finetuned-summarization
https://huggingface.co/mrm8488/bert2bert_shared-german-finetuned-summarization
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representation of the dream. While these embeddings are influ-
enced by sentence length and parts of speech, this information is 
not explicitly encoded in the embeddings. We then encoded each 
of the five subtasks in each of the three task plans into embed-
dings following the same procedure (without prior summariza-
tion). Cosine similarity between the embeddings was calculated 
resulting in a similarity score for each dream report with each 
action of the task plans, for which then the maximum similar-
ity score for each task is chosen. Cosine similarity measures how 
closely aligned two vectors are, regardless of their magnitude, by 
calculating the cosine of the angle between them. In our study, 
we used cosine similarity to quantify the semantic relatedness 
between dream reports and task descriptions, with scores rang-
ing from −1 (opposite meaning) to 1 (identical meaning). Because 
similarity cosine values for the dream reports fell into a more 
limited range at the higher end of the scale [50], we thresholded 
cosine values using only values greater or equal to 0.85 to focus 
the analysis on dreams with high similarity scores. We then com-
pared the number of dream reports with the above criterion sim-
ilarity scores for a given task plan, between the execution status 
conditions completed, interrupted, and uncompleted.

In a further sentence-wise analysis, we split the written dream 
reports into single sentences. Based on GermanBERT, we then cal-
culated the cosine similarity score for each sentence of a dream 
report and each subtask of a task plan. The resulting maximum 
similarity value for each dream report was then used to allocate 
the dream report to one of the three execution status conditions 
according to a forced choice procedure.

Statistical analyses
Similarity scores for dream reports were generally analyzed using 
analyses of variance (ANOVA) including repeated measures fac-
tors representing the executive status conditions (completed, 
interrupted, and uncompleted) and the sleep stage (NREM stage 
2, REM) prior to the obtained report, with subsequent post-hoc 
t-tests used to specify the significance of pairwise comparisons. 
Pearson’s correlation coefficients were used to assess interrater 
reliability in the analyses based on subjective ratings. Given that 
similarity scores for the dream reports with the above criterion 
similarity in the AI language model-based analyses were not uni-
formly distributed among execution status conditions and task 

plans, we focused on the statistical analysis of these scores on 
nonparametric testing using χ2tests. Prior to testing, the number 
of dream reports above the criterion in each execution status 
condition and for each task plan was additionally divided by the 
total number of dream reports obtained for each execution con-
dition and task plan. The χ2 test was also used to detect deviations 
from equal distributions of dream reports collected in different 
sleep stages, conditions, and tasks. The level of significance was 
set to p = .05 for all statistical tests, and p = .01, in case of directed 
one-tailed testing of hypotheses.

Results
Dream report acquisition
A total of 117 awakenings were performed, equally distributed 
across REM sleep and NREM stage 2, i.e. 59 (50.4%) awakenings 
were performed in REM sleep and 58 (49.6%) awakenings in NREM 
stage 2 sleep (p = .926, χ2 test). A dream was recalled in 86 (73.5%) 
of the awakenings. Of these 86 dream reports, 51 (59.3%) were 
collected after REM sleep awakenings and 35 (40.7%) after NREM 
stage 2 sleep awakenings, resulting in a trend toward more dream 
reports collected after REM sleep than NREM stage 2 awakenings 
(p = 0.084, χ2 test). Since participants’ ability to recall dreams at 
each awakening differed, the number of dream reports was not 
evenly distributed among task plans and execution status condi-
tions (Table 1). SSS sleepiness scores averaged (mean ± standard 
deviation) 3.1 ± 0.85 in the evening before sleep, and 2.5 ± 0.76 in 
the next morning. Performance scores on the RWT averaged 16.4 
± 4.81, in the evening, and 16.6 ± 4.32 in the next morning.

Dream incorporation assessed by subjective 
ratings
The two raters only moderately agreed on their ratings of the 
dream reports. Although significant, both correlations between 
their ratings of the general similarity between task plans and 
dream reports as well as correlations of their judgments based 
on the occurrence of core elements of the task plans (objects, 
activities) in the individual dreams were only of medium size 
(0.52 < r < 0.65, p < .01, Pearson’s correlation). ANOVA performed 
on ratings collapsed across both raters did not reveal any signifi-
cant difference in similarity ratings between any of the execution 

Table 1.  Total number of dream reports for the task plans and execution status conditions, across all awakenings (top) and separately 
for awakenings from REM sleep and NREM stage 2 sleep

All reports Completed Uncompleted Interrupted ∑

  Setting the table 34 25 27 86

  Tidying the desk 20 37 29 86

  Getting ready to leave 32 24 30 86

  ∑ 86 86 86 258

Reports in REM

  Setting the table 19 16 16 51

  Tidying the desk 13 21 17 51

  Getting ready to leave 19 14 18 51

  ∑ 51 51 51 153

Reports in NREM stage 2

  Setting the table 15 9 11 35

  Tidying the desk 7 16 12 35

  Getting ready to leave 13 10 12 35

  ∑ 35 35 35 105
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status conditions or awakenings from REM or NREM stage 2 (all 
p > .67 for respective ANOVA factors). Values collapsed across gen-
eral similarity ratings and core element-based ratings indicated 
for one of the rater's highest dream incorporation for the com-
pleted task plans (1.02 ± 0.20), medium for uncompleted plans 
(0.98 ± 0.20), and lowest for interrupted task plans (0.80 ± 0.17) 
whereas for the other rater, values were highest for the inter-
rupted task plans (1.20 ± 0.22), medium for completed plans 
(0.78 ± 0.14) and lowest for the uncompleted tasks (0.70 ± 0.15). 
The overall insufficient agreement between our raters is consist-
ent with a great body of findings in this field of dream content 
analysis [51, 52] and led us to switch to an AI-based approach.

Assessment of dream incorporation by an 
AI-based large language model approach
Here, we determined the semantic similarity of dream reports by 
applying a large language model (GermanBERT) to transcripts of 
the reports (Figure 1B). Cosine similarity scores were calculated 

for the whole texts, indicating the similarity between a dream 
report and one of the three task plans. For all task plans, sim-
ilarity scores ranged between 0.54 and 0.90, with maximum 
frequencies in the 0.84–0.90 range (Figure 2A), with this distri-
bution indicating that a minimum similarity (of around 0.54) to 
each of the three task plans is basically reached by any of the 
dream reports. The direct comparison between task plans, on the 
other side, indicated that the task plan “Setting the table” yielded 
distinctly higher similarity scores than the two other task plans 
(F(1.040,88.43) = 116.9, p < .0001, for ANOVA main effect of task 
plan), with this effect being independent of the execution status 
condition the task plan was assigned to (p = .49 for respective 
interaction effect with execution status factor, Figure 2B). This 
finding points to an a priori difference in our task materials, with 
a higher likelihood for the “Setting the table” plan to be similar to 
a dream report than for the other two plans.

Given that the frequency distribution of similarity scores 
(Figure 2A) indicated that each dream report shows at least a 

Figure 2. Whole-text similarity analysis of dream reports. (A) Frequency distribution of dream report similarity scores for each of the three task 
plans. (B) Mean ± SEM similarity scores for the task plans across execution status conditions. Note, that the generally enhanced number of reports 
with similar to the “Setting the table” task. Asterisks indicate p < .05, for ANOVA across the three task plans (straight line) and for (unpaired) two-sided 
t-tests between task plans (brackets). (C) Number of dream reports with similarity scores ≥0.85 across all task plans and separately for each task plan. 
To account for differences in the general similarity scores between the task plans, numbers for the separate plans were normalized by dividing the 
number of reports with ≥0.85 similarity with the total number for the respective plan. Asterisks indicate p < .05 two-tailed χ2 test, for the comparison 
across all three execution status conditions (straight line) and for pairwise comparisons between conditions (brackets).
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minimum similarity to any of the three task plans (of around 
0.54), we focused our analyses on only the dream reports exhibit-
ing substantial similarity to one of the tasks, adopting a criterion 
similarity score of ≥0.85. Indeed, we assumed that higher similar-
ity scores are associated with a higher probability that this simi-
larity was related to specific features of one of the three task plans. 
Note, although the ≥0.85 criterion is arbitrary, virtually the same 
results were obtained with lower criteria, up to ≥0.75. Comparing 
each dream report with each of the three task plans, we revealed 
that out of all 86 dream reports, 29 reached a semantic simi-
larity score ≥0.85 to the task plan assigned to the uncompleted 
execution status condition, 24 dream reports reached the ≥0.85 
criterion for the interrupted tasks, and 20 for the completed task 
plans. Although descriptively this pattern concurred with our 
hypothesis of an increased incorporation into dream reports of 
contents from uncompleted and interrupted task plans in com-
parison with completed task plans, it did not reach significance 
(χ2(2,73) = 1.67, p = .4439, for the comparison between execution 
state conditions), which we hypothetically attributed to the fact 
that our task plans showed a priori differences in the likelihood of 
being highly similar to a dream report with the highest likelihood 
for the “Setting the table” task plan (Figure 2B). Indeed, analyzing 
separately similarity scores for the different task plans, we found 
that significantly more dream reports were semantically similar 
to the “Desk tidying” and “Getting ready to leave” task plans when 
they were uncompleted (Desk tidying—24, and Getting ready to 
leave—46) or interrupted (Desk tidying—31, and Getting ready to 
leave—27) compared to being completed (Desk tidying—5, Getting 
ready to leave—25; Desk tidying: χ2(2,60) = 18.10, p < .001; and 
Getting ready to leave: χ2(2,98) = 8.23, p < .05; for the comparison 
across all three execution state conditions, see Figure 2C for pair-
wise comparisons). On the other hand, for the “Setting the table” 
task plan no such pattern was obtained (χ2(2,99) = 2.24, p > .30). We 
found no comparable differences between the execution status 
conditions in separate analyses of dream reports obtained after 
REM sleep awakenings (all p > .36) or after NREM stage 2 sleep 
awakenings (all p > .33, χ2 test). Moreover, an exploratory control 
analysis of word counts for dream reports with the highest sim-
ilarity to task plans revealed no significant differences between 
the execution status conditions (p = .5052, F(2,28) = 0.7053).

To further validate our large language model-based approach, 
in a second analysis, we made use of a forced choice method 
where dream reports were allocated to one of the three exe-
cution status conditions after a sentence-wise comparison of 
dream reports and task plans (Figure 1B). This forced choice 
approach appeared to be also favorable against the backdrop 
that the similarity scores of an individual dream report for the 
three different task plans were generally rather close to each 
other, i.e. showed relatively low variability in comparisons 
with the high variability of similarity scores among the differ-
ent dream reports (averaged across task plans; F(1,83) = 0.0014, 
p < .002, for a direct comparison between respective variances). 
This sentence-wise analysis revealed similarity scores rang-
ing between 0.78 and 0.90 for each of the three task plans, 
with maximum frequencies around 0.86 (Figure 3A). Similarity 
scores again significantly differed for the three task plans (F(2, 
249) = 8.7, p < .0005, for ANOVA main effect of task plan), with 
this effect being independent of the execution status condition 
the task plan was assigned to (F(4, 249) = 0.64, p = .63, for ANOVA 
task plan × execution status interaction). When we assigned 
each dream report to the execution status condition with the 
highest similarity score for this dream report, we found that the 
lowest number of dream reports, i.e. 20 reports, were assigned 

to the completed condition, the number of assigned reports was 
intermediate (28 reports) for Uncompleted task plans, and high-
est for interrupted task plans (38 dream reports (χ2(2,86) = 5.678, 
p < .01, one-tailed χ2 test, for the comparison across all three 
conditions, Figure 3B and C).

Discussion
In this study, we explored whether intentions for future actions 
influence dream content. Employing an AI-based large language 
model analysis, we show that task plans that have not been com-
pleted before sleep and, hence, remain active during sleep, influ-
ence the content of a dream to a greater extent than tasks that 
are completed before sleep. Specifically, tasks whose execution 
was interrupted before sleep or whose execution was anticipated 
for the morning after sleep produced dream reports of greater 
semantic similarity to these tasks than task plans that were com-
pleted before sleep. Whereas firm evidence has been accumu-
lated that dreams incorporate past experiences [10, 12, 33, 53], 
especially if they are emotional [54–56], our findings provide first-
time experimental evidence that dreams also incorporate antici-
pated experiences, i.e. future plans.

In psychological terms, our findings relate to the well-known 
Zeigarnik effect [21] or the intention–superiority effect [39] 
which describes the phenomenon that a planned action is better 
retained in memory or in a heightened state of activation as long 
as the plan is not executed [57–59]. It is assumed that a “tension” 
sometimes carrying also an emotional tone [52], drives ongoing 
processing of memory representations connected to the plan, as 
long as it is not executed. This tension and associated process-
ing of plan-related representations is not necessarily conscious, 
and we here provide evidence that it extends into sleep biasing 
the content of dream reports. This conceptual view is in line with 
multiple studies showing that sleep promotes problem solving 
on tasks that remained unsolved before sleep, probably due to a 
subliminal ongoing processing of the problem [2, 60, 61]. Indeed, 
the incorporation of experienced content into dreams has like-
wise been linked to an ongoing reprocessing of respective mem-
ory representations that not only supports the consolidation of 
respective memory but simultaneously, expresses itself in dream 
reports that are semantically biased toward the reprocessed 
memory contents [3, 5, 9, 10, 20].

Studies of prospective memories for plans and intentions have 
indicated a greater benefit for such memories of uncompleted 
plans from slow wave sleep (SWS) than REM sleep [26]. Hence, 
assuming a direct link between processes of memory consolida-
tion and dreaming, one might expect that dream reports after 
awakening from SWS show a greater similarity to the uncom-
pleted task plans than reports after REM sleep awakenings. The 
present data remain inconclusive in this regard for two rea-
sons. First, rather than in SWS, we awakened the participants in 
NREM stage 2 sleep during which the reprocessing of the to-be- 
consolidated memory representations might be less intense than 
in SWS, though evidence for such difference is mixed [62–64]. 
Second, our analyses relied on a rather small number of dream 
reports. The data set, hence, did not provide sufficient statistical 
power for reliable analyses on subsets separating dream reports 
between awakenings from NREM stage 2 and REM sleep, consider-
ing the size of f = 0.48 (G*Power version 3.1.9.7) for the effect of the 
plan execution status on dream report similarity for our analysis 
across all (NREM stage 2 and REM sleep) dream reports.

Our finding of an incorporation of uncompleted task plans 
into dream reports appears to be especially noteworthy in 
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that it derives from an objective large language model-based 
machine-learning approach, i.e. an approach which, except for a 
most recent study [65], has so far not been used for dream content 
analyses. This large language model-based approach overcomes 
the weakness of traditional analyses of dream reports based 
on subjective ratings which are notoriously unreliable suffer-
ing from modest inter-rater agreements [66, 67]. Here, using two 
independent raters to classify dream reports according to their 
similarity to the different task plans, we also found only rather 
low interrater reliability and, consequently no distinct differences 
in similarity between dream reports and task plans. Conceivably, 
we could have strengthened inter-rater reliability by a more 
intense prior training of our raters on “sham reports” including 
the discussion of discrepant scores between raters [67]. Perhaps, 
we could have also enhanced our ratings if—like in other studies 
[68, 69]—we had additionally asked our participants themselves 
to rate the similarity of their dream reports with the task plans. 
Exclusively relying on ratings by other persons, our analyses did 
not yield any conclusive results.

Nevertheless, although objective, our large language- model-
based machine-learning approach bears several limitations, 
altogether calling for further confirmation of our main findings. 
First of all, we applied the large language model-based approach 
post-hoc, and only after the subjective ratings turned out to 
be unreliable. Related to this, our task plans were not particu-
larly tailored for a large language model-based analysis of their 
semantic similarities. Basically, the task plans turned out to be 
too similar to each other, resulting in a large overlap between the 
task plans with respect to their similarity to the dream reports. 
While we adopted our task plans from a foregoing study [39] 
targeting the persistent activation of intentions in memory, task 
plans with greater semantic differences in the activities, objects, 
and contexts might have increased the differences in similarity 
between plans and dream reports. Interestingly, the “Setting the 
table” plan yielded significantly higher similarity scores than 
the two other task plans, suggesting that certain activities may 
be more prone to dream incorporation than others. Obviously, 
future studies adopting new task plans should rule out such a 

Figure 3. Single sentences-based similarity analysis of dream reports. (A) Frequency distribution of dream report similarity scores for each of the 
three task plans. (B) Similarity scores for each of the 86 dream reports for the tasks plans assigned to the completed, uncompleted, and interrupted 
condition in the respective session. Solid lines connect scores for the same dream report. (C) The number of dream reports with maximum similarity 
score, for each execution status condition. Each dream report was allocated to the execution status condition showing the maximum similarity score 
for this report. p < .05 one-tailed χ2 test, for the comparison across all three conditions (straight line) and for pairwise comparisons between execution 
status conditions (brackets).
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priori differences in task plans before experimental use. Such 
future studies should also overcome other limitations of our 
study arising, e.g. from a rather crude assessment of sleep lack-
ing occipital recordings which may be particularly important 
for a precise sleep scoring assessment and therefore relevant in 
analyses of (visual) dreams.

Our large language model-based approach, using GermanBERT 
as an embedding extractor, revealed significant differences in 
dream report similarity that confirmed our a priori hypotheses, 
supporting the validity of this approach. However, statistical sig-
nificance per se does not necessarily imply that this approach is 
also the most valid and optimal. It is to emphasize, however, that 
we could in principle (internally) replicate our findings here, using 
two different approaches, i.e. a text-based and a sentence-based, 
strategy of detecting similarity between dream reports and 
plans, in combination with a statistical assessment of different 
target parameters (number of above-criterion similarity reports 
vs. forced choice allocation of the maximum similarity report). 
This mutual confirmation further corroborates the validity of our 
approach, although there may be other more optimal strategies 
for detecting semantic similarity. An example is BERTScore [50] 
which is a language generation evaluation metric based on BERT 
contextual embeddings. In contrast to our approach, in which we 
compute cosine similarities between embeddings of task plans 
and dream reports, it computes the similarity on a token level, 
taking into account their context via contextual embeddings, i.e. 
a strategy potentially allowing for more fine-grained comparisons 
between dream reports and task plans. Generally, the use of large 
language models for analyzing dream content is in its beginnings 
but, eventually, may turn out a promising tool also for other top-
ics of dream research such as the differentiation of reports of 
dreams versus more or less emotional wake experiences as well 
as the differentiation of dream reports among individuals, with 
potentially important therapeutical implications. Whatever the 
case, GermanBERT administered to the present data set revealed 
results confirming our a priori hypotheses. Nevertheless, our 
approach and findings require further confirmation and external 
validation, ideally through application to other similar data sets, 
although other validation strategies are conceivable.

Supplementary Material
Supplementary material is available at SLEEP Advances online.
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