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Abstract: This narrative review provides an overview of current knowledge on the impact of nutri-
tional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs).
Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly
due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation
revealed that the causal links between nutritional changes and craniofacial pain remain unclear.
However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals,
polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines,
and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described
in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins,
minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely
in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the
38 articles published since 2013. Our investigation indicates that current evidence is insufficient to
assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic
intervention in TMDs. Further support from longitudinal and randomized controlled studies and
well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical
intervention and understand their underlying mechanisms in TMDs.

Keywords: chronic pain; diet; nutrition; nutraceuticals; temporomandibular disorders

1. Introduction

Chronic temporomandibular disorders (TMDs) present a range of conditions affecting
deep craniofacial tissues, including the temporomandibular joint (TMJ) and jaw muscles [1].
These disorders are the second most prevalent musculoskeletal chronic pain condition [2].
Traditional medical strategies often rely on pharmacological interventions for chronic TMD
pain management, which vary in efficacy and carry the risk of adverse effects [3,4]. Notably,
guidelines from the American College of Physicians suggest that drugs might not be the
first-line treatment for chronic pain [5]. In recent decades, there has been a growing body
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of evidence highlighting the significance of complementary and integrative approaches
in managing chronic pain [6–11]. These approaches generally involve a diverse range
of treatments categorized by their delivery modes, including mind–body therapy (e.g.,
massage, mindfulness), bioenergetic therapy (e.g., acupuncture) [10,12], and biologically
based therapy (e.g., nutrition).

Among these modalities, dietary patterns have emerged as significant health influ-
encers, playing critical roles in managing chronic diseases, including chronic pain [13,14].
Prioritizing a healthy diet and nutritional interventions remains crucial among modifiable
behaviors. Addressing this complexity necessitates a comprehensive examination of how
nutrients function within the body, particularly in the context of managing chronic pain.

Poor dietary choices, often associated with a Western diet marked by excessive con-
sumption of processed foods, too much added salt, sugar, and unhealthy fats, have been
linked to various chronic pain conditions [15]. For example, an energy-dense diet charac-
terized by a high sugar intake has been positively correlated with chronic back pain [16].
Individuals exhibiting dietary patterns similar to those of the Western diet are more prone
to developing rheumatoid arthritis [17], with high-sugar diets suspected to contribute to its
onset [18]. Additionally, increased dietary salt intake has been associated with non-specific
low back pain, possibly due to posterior lumbar subcutaneous edema [19]. Cross-sectional
surveys indicate that red meat, fish, and legumes are frequently reported to exacerbate
joint pain in rheumatic diseases [20], while excessive consumption of cured meats and
sweetened beverages has been linked to increased psychological distress in fibromyalgia
patients [21]. Similarly, obesity and elevated body fat content are documented to heighten
the risk of fibromyalgia [22]. Furthermore, a high-sucrose diet has been found to expedite
arthritis progression in rheumatoid arthritis models [23].

In contrast to the preceding discussion, dietary modifications (e.g., a plant-based
diet) and specific nutritional approaches offer significant benefits in promoting health and
alleviating chronic pain [24–27]. Furthermore, it has been demonstrated that a range of
constituents in foods can modulate neural functions associated with chronic pain [26–29].
Hence, it is reasonable to hypothesize that alternative nutritional factors are pivotal in
controlling chronic TMD pain.

Given these considerations, although evidence regarding the effects of nutritional ap-
proaches on chronic deep craniofacial pain seen in TMDs is limited, several reports suggest
that such approaches could significantly alleviate painful TMDs [30–32]. This narrative
review article aims to assess the current understanding of the effectiveness of dietary habits
and nutritional approaches for managing painful TMDs. It seeks to explore studies from the
past 25 years and provide an updated investigation into the potential impact of nutritional
approaches on TMDs in both clinical and preclinical settings. Due to existing evidence,
there is particular emphasis on elucidating the effects of specific nutritional compounds, as
shown in Table 1. Importantly, the focus is on compounds derived from ordinary foods such
as vegetables, fruits, and fish. Further, given the scarcity of clinical evidence to evaluate
such hypotheses, exploring preclinical research, particularly in preclinical models, could
provide valuable insights into the effects of nutritional interventions on deep craniofacial
nociception [33,34].

Table 1. List of nutraceuticals. Individual nutraceuticals discussed are shown in parentheses.

Nutraceuticals

Vitamin
Mineral
Polyunsaturated fatty acids
Polyphenols
Isoprenoids
Carotenoid
Lectin
Polysaccharide
Glucosamine
Palmitoylethanolamide

Vitamin D, Vitamin B, Vitamin C
Magnesium, Zinc, Strontium, Sulfur
Omega-3 fatty acids, Docosahexaenoic acid
Quercetin, (-)-epigallocatechin-3-gallate, Resveratrol,
Curcumin
Limonene, Citral
Crocin, Lutein
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2. Methods
2.1. Search Strategy

This review article adheres to the rigorous guidelines set by the Scale for the Assess-
ment of Narrative Review Articles [35]. The exhaustive search for relevant clinical articles
was meticulously conducted using mainly Med-line PubMed, targeting keywords outlined
in Table 2. Only articles written in English and published between January 2000 and
March 2024 were primarily considered for inclusion, with strict exclusion criteria applied
to unpublished results, proceedings papers, personal communications, and conference
reports. During the backward search process, we identified significant papers published
before 2000 or not found in PubMed, which were deemed relevant and therefore included
for analysis. This article primarily focuses on clinical and preclinical evidence highlighting
the nutritional roles in chronic pain associated with TMDs, occasionally comparing these
findings with other chronic pain conditions. Particularly, in preclinical literature, evidence
demonstrating nutritional roles in craniofacial nociceptive responses indicated by behav-
ioral or neural responses is included for discussion. Thus, this narrative review article
focuses less on the molecular mechanisms underlying painful TMDs and craniofacial noci-
ception. Furthermore, it does not include reports in Table 2 from animal models mimicking
pain conditions related to the trigeminal nerves, such as neuropathic pain, headaches, and
toothaches. The screening process was conducted with utmost precision by three reviewers
(K.P., Y.I., and M.H.), while the task of forward and backward searching was expertly
executed by another two reviewers (K.O. and Y.K.). The eligibility of articles was carefully
assessed by two supervisors (K.Y., and N.F.) to maintain the highest standards of quality
and reliability.

Table 2. List of keywords employed in this study. For searching clinical and preclinical studies, the
keyword was selected from categories “a” or “b” and “c”, respectively.

Category Keywords

a. Clinical
“temporomandibular disorder” OR “TMD” OR “temporomandibular joint”
OR “TMJ” OR “masseter muscle” OR “orofacial pain” OR “patient”
OR “clinical”

b. Preclinical
“craniofacial tissue” OR “animal model” OR “Complete Freund’s Adjuvant”
OR “CFA” OR “formalin” OR “mice” OR “rat” OR “nociception”
OR “preclinical model”

c. Exposure

“antioxidant” OR “diet” OR “dietary” OR “dietary supplement” OR
“supplement” OR “fatty acid” OR “fiber” OR “food” OR “mineral” OR
“natural product” OR “nutraceutical” OR “nutrition” OR “supplement” OR
“phytochemical” OR “polyphenol” OR “vitamin” OR “fruits” OR “vegetable”
OR “isoprenoid” OR “carotenoid” OR “lectin” OR “polysaccharide”
OR “glucosamine”

2.2. Quality of Evidence Assessments

Risk of bias was evaluated using the Cochrane Risk of Bias Tool for randomized
controlled trials in clinical articles. Each item was categorized as low, high, or unclear
risk of bias. For pre-clinical articles, the Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) criteria were used [36]. The assessment criteria were evaluated
by three different authors (K.P., Y.H., and K.O.).

3. Results
3.1. Characteristics
3.1.1. Clinical Articles

Twelve randomized controlled trials revealed the roles of nutraceuticals categorized
into four groups on painful TMDs (Table 3). Five studies employed the oral administration
of each nutraceutical solely, while seven studies employed the oral administration of each
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nutraceutical with additional interventions, such as hyaluronic acid injection into the
TMJ [37–43]. Ten of these twelve studies focused on the effects of neutraceuticals on TMJ
pain. One study examined the effects of minerals (magnesium) on myogenic types of TMDs.
The remaining studies examined the effects of vitamin B12 on both muscle and TMJ pain.

Table 3. Clinical studies evaluating the effects of nutraceutical interventions in Temporomandibular
Disorders.

Authors Pain Condition Study
Duration Interventions Groups Outcomes

Vitamins

Gupta et al.,
2022, India

[37]

Axis I group II
TMDs with
vitamin D

levels < 30 ng/mL.

3 months
Vitamin D tablets

60,000 IU once a week
for eight weeks.

1. Splint alone
2. Splint + Vitamin D
supplement

In TMD patients with
vitamin D deficiency, a
significant difference

was seen in VAS score
and maximum mouth
opening between the
splint with vitamin D
supplementation and

the splint with a
placebo drug.

Reis et al.,
2023, Brazil

[38]

Chronic myofascial
pain and

arthralgia.
1 month

Methylcobalamin (B12)
1000 µg/day,

orally.

1. Laser and
B12 placebo
2. Effective laser +
B12 placebo
3. Effective laser + B12

Vitamin B12 facilitates
the inhibitory effects
of laserpuncture in

treating painful TMDs.

Minerals

Refahee et al.,
2022, Egypt

[44]

Myofascial pain
and trigger points

in the
masseter muscle.

6 months

Magnesium sulfate
(MS, 0.41 mMol/mL)

2 mL, trigger
point injection.

1. Saline
2. Magnesium sulfate

MS reduced the facial
pain scores, and the

maximum mouth
opening distance was
higher up to 3 months
in the MS than in the

saline group.

Kiliç, 2021,
Turkey

[39]

Temporomandibular
joint

osteoarthritis
(TMJ OA).

12 months

GCM supplementation,
containing 750 mg GH,

600 mg chondroitin
sulfate, and 350 mg

MSM at 2 × 1 dosage
daily for 3 months.

1. arthrocentesis plus
intraarticular
hyaluronic acid (HA)
injection only
2. arthrocentesis plus
intraarticular HA
injection followed by
3 months of GCM

GCM supplementation
after arthro-centesis
plus intraarticular

hyaluronic acid
injection produced no

additional clinical
benefits or

improvements for
patients with TMJ-OA

compared with
arthrocentesis plus

intraarticular
hyaluronic acid
injection alone.

Glucosamine

Thie et al.,
2001, Canada

[45]

Degenerative joint
Disease of TMJ. 4 months

Glucosamine sulfate
(GS) 500 mg tid for

90 days, orally.

1. Ibuprofen
2. GS

GS decreased TMJ
pain compared with

ibuprofen
administrations.
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Table 3. Cont.

Authors Pain Condition Study
Duration Interventions Groups Outcomes

Damlar et al.,
2014, Turkey

[40]

Internal
derangements

of TMJ
2 months

1500 mg glucosamine
and 1200 mg

chondroitin sulfate (CS)
/day, orally.

1. Tramadol HCl
2. glucosamine and
chondroitin sulfate

A combination of
glucosamine and

chondroitin sulfate
reduced pain

compared with the
tramadol group.

Haghighat
et al., 2013,

Iran
[46]

Painful TMJ, TMJ
crepitation or
limitation of

mouth opening.

3 months
Glucosamine sulfate
(GS) 1500 mg/day,

orally.

1. Ibuprofen
2. GS

GS improved
craniofacial pain and
mandibular opening
distance compared to
baseline and showed
more post-treatment
improvement when

compared
with ibuprofen.

Cahlin et al.,
2011, Sweden

[47]
TMJ OA 6 weeks

Glucosamine sulfate
(GS) 1200 mg/day,

orally.

1. Placebo drug
2. GS

GS showed less
beneficial effects

compared with the
placebo group in

reducing pain
associated with TMJ

osteoarthritis.

Nguyen et al.,
2016, USA

[41]

Capsulitis, disk
displacement, disk

dislocation, or
painful

osteoarthritis
of TMJ

12 weeks

1500 mg of glucosamine
hydrochloride (GH) and
1200 mg of chondroitin

sulfate (CS)/day,
orally.

1. Placebo drug
2. GH + CS

GH-CS reduced
craniofacial pain

compared with the
placebo group.

Cen et al.,
2017
[42]

TMJ OA 1 year

Two tablets of 240 mg
glucosamine

hydrochloride (GH) tid
for 3 months, orally

1. Placebo + HA
injection
2. GH + HA injection

GH with HA injection
decreased craniofacial
pain at 1 month and
one year follow-up

compared to baseline.
One year later, pain
score was reduced,
and IL-6 and IL-1β

levels were lower in
group GH + HA than

in group
placebo + HA.

Yang et al.,
2018, China

[43]
TMJ OA 1 year

Glucosamine
hydrochloride (GH)

1.44 g/day for 3 months,
orally.

1. Placebo +
hyaluronate
sodium injection
2. GH + hyaluronate
sodium injection

GH and hyaluronate
sodium injection

improved maximal
mouth opening

distance and facial
pain intensity

compared to the
placebo + hyaluronate

sodium injection
group in the long-term

follow-up.
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Table 3. Cont.

Authors Pain Condition Study
Duration Interventions Groups Outcomes

Palmitoylethanolamide

Marini et al.,
2012, Italy

[48]

TMJ OA or
arthralgia 2 weeks

Palmitoylethanolamide
(PEA) 300 mg in the

morning and 600 mg in
the evening for 7 days

and then 300 mg twice a
day for 7 more days,

orally.

1. Ibuprofen
2. PEA

PEA improved pain
related to maximum

mouth opening
compared with the
ibuprofen-treated

group.

3.1.2. Preclinical Articles

Thirty-eight articles were assessed. Of these, thirty-three were conducted with rats,
one with mice, and four with both mice and rats (Table 4). Two articles specifically em-
ployed female rats [49,50]. Effects of nutraceuticals on nociception were assessed through
facial pain-like behaviors or neural activities evoked by craniofacial nociceptive stimula-
tion. Models were primarily developed through craniofacial injections of inflammatory
agents, including formalin, complete Freund’s adjuvant (CFA), mustard oil, capsaicin, and
zymosan. Seven studies assessed nociceptive neural activities by quantifying the number
of action potentials in the trigeminal ganglion or trigeminal subnucleus caudalis evoked by
craniofacial stimulation [51–57]. Behavioral and neural responses were compared between
groups treated with vehicle and nutraceutical.

Table 4. Preclinical studies evaluating the effectiveness of nutraceutical interventions in TMD models.

Authors Model Interventions Groups Outcomes

Vitamins

Erfanparast
et al., 2014

[58]

Male rats,
formalin test

Vitamin B12, 1, 2, and
4 mg/kg,

i.p. or peripheral (2.5, 5 and
10 µg/rat) injections.

1. Saline
2. Diclofenac
3. Vitamin B12
4. Vitamin B12 + Diclofenac

Vitamin B12 reduced facial
pain-like behavior.
Co-treatments with

vitamin B12 and diclofenac
facilitated antinociceptive

effects.

Erfanparast
et al., 2017

[59]

Male rats,
formalin test

Vitamin B12, 0.5 µL
intra-hippocampal

injection.

1. Saline
2. Naloxone
3. Vitamin B12
4. Vitamin B12 +Naloxone

Vitamin B12 reduced facial
pain-like behaviors

associated with
laserpuncture intervention.

Minerals

Cavalcante
et al, 2013

[60]

Male rats,
carrageenan-
induced TMJ
inflammation

Magnesium chloride
(MgCl2),

10, 30, and 90 mg kg/day,
orally.

1. Naive (no carrageenan)
2. Carrageenan + Vehicle
3. Carrageenan + MgCl2

MgCl2 reduced facial
pain-like behaviors evoked
by mechanical threshold.

Srebro et al.,
2018
[61]

Male rats,
formalin test

Magnesium sulfate (MS),
0.005–45 mg/kg,

s.c.

1. Naïve (no formalin)
2. Formalin + Vehicle
3. Formalin + MS

MS reduced facial
pain-like behaviors.

Srebro et al.,
2023
[62]

Male rats,
formalin test

Magnesium sulfate (MS),
5, 15 mg/kg, s.c.

1. Saline
2. Cromoglycate
3. MS
4. MS + Cromoglycate

MS reduced
formalin-induced facial

pain-like behaviors.
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Table 4. Cont.

Authors Model Interventions Groups Outcomes

Alves et al.,
2017
[63]

Male rats,
zymosan-

induced TMJ
inflammation

Strontium, 0.5, 5, or
50 mg/kg, orally.

1. Naïve (no zymosan)
2. Zymosan
3. Zymosan + Indomethacin
4. Zymosan + Strontium
ranelate

Strontium reduced the
facial pain-like behaviors

evoked by
mechanical threshold.

Fatty acids

Marana et al,
2022
[49]

Female rats, type
II bovine collagen

(CII)
+CFA-induced

rheumatoid
arthritis (RA)

Omega-3 FAs,
300 mg/kg/day,

orally.

1. Naïve (non-RA)
2. ovariectomized rats (OVX)
3. OVX + RA
4. OVX + Omega-3 FAs

Omega-3 FAs reduced TMJ
damage and increased

proinflammatory
cytokine levels.

Ceotto et al.,
2022
[64]

Male rats, CII
+CFA-induced RA

Omega-3 FAs,
85 mg/kg/day,

orally.

1. Naïve (non-RA)
2. RA
3. RA + Omega-3 FAs
4. RA + Omega-3 FAs
+Aspirin

Omega-3 FAs reduced TMJ
damage identified and

increased various
cytokines.

Barbin et al.,
2020
[65]

Rats, Sex: not
described,

CFA-induced
facial

inflammation

Omega-3 FAs,
300 mg/kg/day,

orally.

1. Naïve (no CFA)
2. CFA + Saline
3. CFA + dexamethasone
4. CFA + Omega-3 FAs

Omega-3 FAs reduced TMJ
damage identified by
histo-morphometric

analysis. Differences in the
level of IL-1 beta,

TNF-alpha, and IL-10
between control and CFA

groups were found.

Nakazaki
et al., 2018

[66]

Male rats,
CFA-induced TMJ

inflammation)

Docosahexaenoic acid
(DHA), 328 mg/kg,

i.p.

1. Naïve (no CFA)
2. CFA + Saline
3. CFA + DHA

DHA reduced mechanical
behavioral sensitivities and

neural activities in the
trigeminal subnucleus

caudalis.

Polyphenols

Sashide et al.,
2024
[51]

Male rats,
CFA-induced

facial
inflammation

Quercetin, 1–10 mM,
local injection.

1. Before quercetin injection
2. After quercetin injection

Quercetin reduced facial
stimulation-evoked neural
activities in the trigeminal

ganglion (TG).

Toyota et al.,
2023
[52]

Male rats, naïve Quercetin, 1, 10 mM,
local injection.

1. Before quercetin injection
2. After quercetin injection

Quercetin reduced facial
stimulation-evoked
nociceptive neural
activities in the TG.

Liu et al., 2024
[53]

Male rats, LPS
into the TG

Quercetin, 10 mM,
trigeminal ganglion

(TG) injection.

1. Naïve (no LPS)
2. LPS + Saline
3. LPS + Quercetin

Quercetin reduced
mechanical

hyperalgesia-like behaviors
in rats with the intra-TG

injection of LPS.

Itou et al.,
2022
[54]

Male rats,
CFA-induced
whisker pad
inflammation

Quercetin, 50 mg/kg,
i.p.

1. Naïve (no CFA)
2. CFA + Saline
3. CFA + Diclofenac
4. CFA + Quercetin

Quercetin reduced
mechanical

hyperalgesia-like behaviors
and neural activities in the

trigeminal
subnucleus caudalis.
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Table 4. Cont.

Authors Model Interventions Groups Outcomes

Uchino et al.,
2023
[55]

Male rats, naïve
(-)-epigallocatechin-3-gallate

(EGCG), 1, 10 mM,
local injection.

1. Before EGCG injection
2. After EGCG injection

EGCG reduced neural
activities in the trigeminal
subnucleus caudalis region

evoked by mechanical
stimulation to the

facial skin.

Shimazu et al.,
2016
[56]

Male rats, naïve Resveratrol (RSV), 1–10 mM,
local injection.

1. Before RSV injection
2. After RSV injection

Resveratrol suppresses the
excitability of the

trigeminal subnucleus
caudalis neurons.

Ma et al., 2020
[67]

Male rats,
CFA-induced

facial
inflammation

Resveratrol (RSV), 40 mg/kg
or 80 mg/kg,

i.p.

1. Naïve (no CFA) +
Dimethyl sulfoxide (DMSO)
2. Naïve (no CFA) + RSV
3. CFA + DSMO
4. CFA + RSV

Resveratrol increased the
CFA-decreased mechanical

withdrawal threshold.

Takehana
et al., 2017

[57]
Male rats, naïve Resveratrol, 2 mg/kg,

i.v.
1. Before RSV injection
2. After RSV injection

Resveratrol reduced
neurotransmission of the

trigeminal nucleus caudalis
neurons evoked by

mechanical stimulation.

Mittal et al.,
2009
[50]

Male and female
rats, formalin test

Curcumin, 25, 50, 100, 200,
400, and 600 mg/kg,

i.p.

1. DMSO
2. Curcumin
3. Diclofenac + Curcumin

Curcumin reduced facial
pain-like behaviors.

Luca et al.,
2014
[68]

Male mice,
formalin test

Curcumin, 120 mg/kg,
orally.

1. Vehicle
2. Curcumin

Curcumin reduced facial
pain-like behaviors.

Wu et al., 2017
[69]

Male rats,
formalin test

Curcumin, 50 mg/kg,
i.p.

1. Naïve (no formalin)
2. Formalin
3. Formalin + Amiloride
4. Formalin + Curcumin

Curcumin reduced facial
pain-like behaviors.

Yeon et al.,
2010
[70]

Male rats,
capsaicin test

Curcumin, 5, 25, or
50 mg/kg,

i.p.

1. Naïve (no capsaicin)
2. Naïve (no capsaicin)
+ Curcumin
3. Capsaicin + Vehicle
4. Capsaicin + Curcumin

Curcumin reduced
capsaicin-induced thermal
hyperalgesia-like behaviors

in rats.

Isoprenoids

Pereira et al.,
2022
[71]

Male rats,
formalin test

Limonene (LIM), 50 mg/kg,
orally.

1. Naïve (no formalin)
2. Formalin
3. Formalin + Morphine
4. Formalin + LIM
5. Formalin + LIM/HPβCD

Limonene reduced TMJ
pain-like behaviors.

Santos et al.,
2023
[72]

Male rats,
formalin test or

CFA-induced TMJ
inflammation

Citral, 100 and 300 mg/kg,
orally.

1. Formalin + Tween80
2. Formalin + Citral
1. Naïve (no CFA) + Tween80
2. CFA + Tween80
3. CFA + Citral

Citral reduced
formalin-induced orofacial
nociceptive behavior and

mechanical
hyper-nociception in

CFA-induced TMJ
inflammation.
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Table 4. Cont.

Authors Model Interventions Groups Outcomes

Santos et al.,
2022
[73]

Male mice and
rats, formalin,
mustard oil,

cinnamaldehyde,
menthol, and
capsaicin tests

Citral, 0.1, 0.3, or 1.0 mg/kg,
orally.

1. Naïve (non-inflamed)
2. Inflamed + vehicle
3. Inflamed + Citral

Citral reduced TMJ- or
masseter muscle-evoked
pain-like behaviors via
TRPV1, TRPM3, and
TRPM8 mechanisms.

Carotenoids

Tamaddonfard
et al., 2015

[74]

Male rats,
capsaicin test

Crocin, 10 and 40 µg/rat,
Intra-fourth

ventricle injection.

1. Capsaicin + Saline
2. Capsaicin + Morphine
3. Capsaicin + Crocin
4. Capsaicin + Morphine
+ Crocin

Intra-fourth ventricle
administration of crocin
reduced facial pain-like

behavior independent of
opioid mechanisms.

Shimazu et al.,
2019
[75]

Male rats,
mustard

oil-evoked
inflammation

Lutein, 10 mg/kg,
i.p.

1. Naïve (no mustard oil)
2. Mustard oil
3. Mustard oil + Lutein

Lutein reduced facial
pain-like behaviors and
c-Fos responses in the

trigeminal caudalis and
upper cervical dorsal horn.

Syoji et al.,
2018
[76]

Male rats,
CFA-induced
inflammation

Lutein, 10 mg/kg,
i.p.

1. Naïve (no CFA)
2. CFA
3. CFA + Lutein

Lutein reduced mechanical
hyperalgesia-like behaviors

via the Cox-2
signaling cascade.

Lectins

Rivanor et al.,
2018
[77]

Male rats,
formalin or

carrageenan or
capsaicin test

Lectin, 0. 1, 1, or 10 mg/kg,
i.v.

1. Naïve (non-inflamed)
2. Inflamed + Saline
3. Inflamed + Lectin

Lectin from green seaweed
Caulerpa cupressoides

reduced orofacial pain-like
behaviors.

Rivanor et al.,
2014
[78]

Male rats,
Zymosan

Lectin,
0.1, 1, or 10 mg/kg,

i.v.

1. Naïve (no zymosan)
2. Zymosan + Saline
3. Zymosan + Indomethacin
4. Zymosan + Lectin

Lectin from the green
seaweed Caulerpa

cupressoides reduced
mechanical

hyper-nociception.

Leite et al.,
2022
[79]

Mice and rats,
Sex: not

described,
capsaicin,

formalin test

Lectin,
0.25, 0.5, 1, 10 mL/kg, i.p.

1. Naïve (non-inflamed)
2. Inflamed + Saline
3. Inflamed + Lectin

Parkia platycephala lectin
reduced orofacial pain-like

behavior.

Alves et al.,
2018
[80]

Male rats,
formalin test

Lectin,
0.001–0.1 mg/kg,

i.v.

1. Naïve (no formalin)
2. Formalin
3. Formalin + Morphine
4. Formalin + Lectin

Lectin from Abelmoschus
esculentus reduced
orofacial pain-like

behavior.

Freitas et al.,
2016
[81]

Male rats,
zymosan-

induced TMJ
inflammation

Lectin,
0.01–1 mg/kg,

i.v.

1. Naïve (no zymosan)
2. Zymosan + Saline
3. Zymosan + Indomethacin
4. Zymosan + Lectin

Lectin from Abelmoschus
esculentus reduced

mechanical
hyperalgesia-like

behaviors.

Damasceno
et al., 2016

[82]

Mice and rats,
Sex: not

described,
formalin,
capsaicin,

glutamate test

Frutalin,
0.25, 0.5, or 1 mg/kg,

i.p.

1. Naïve (non-inflamed)
2. Inflamed + Saline
3. Inflamed + Frutalin

Frutalin reduced facial
pain-like behaviors via

nitrogenic oxide
mechanisms.
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Table 4. Cont.

Authors Model Interventions Groups Outcomes

Polysaccharides

Araújo et al.,
2017
[83]

Male rats,
formalin test

Sulfated polysaccharide
(SP), 0.03, 0.3 or 3.0 mg/kg,

s.c.

1. Naïve (no formalin)
2. Formalin
3. Formalin + Sulfated
polysaccharide

SP from the red seaweed
Solieria filiformis reduced
facial pain-like behaviors,

inhibited the plasma
extravasation and

inflammatory cytokines
release, and increased the
β-endorphin release in the

trigeminal caudalis.

Souza et al.,
2019
[84]

Male mice or rats,
formalin test

Sulfated polysaccharide
(SP), 5, 10 mg/kg,

orally

1. Naïve (no formalin)
2. Formalin
3. Formalin + Sulfated
polysaccharide

SP from the marine algae
Hypnea

pseudomusciformis
reduced orofacial pain-like

behaviors.

Rodrigues
et al., 2014

[85]

Male rats,
zymosan-evoked
TMJ inflammation

Sulfated polysaccharide
(SP), 1, 3 and 9 mg/kg,

s.c.

1. Naïve (no zymosan)
2. Zymosan + Saline
3. Zymosan + Indomethacin
4. Zymosan + Sulfated
polysaccharide

SP from the green seaweed
Caulerpa cupressoides var.

lycopodium reduced
mechanical

hyperalgesia-like
behaviors.

Palmitoylethanolamide

Bartolucci
et al., 2018

[86]

Male rats,
CFA-induced

facial
inflammation

Palmitoylethanolamide
(PEA), 10 mg/kg,

i.p.

1. Naïve (no CFA)
2. Naïve (no CFA) + PEA
3. CFA + Vehicle
4. CFA + PEA

PEA reduced facial
hyperalgesia-like behaviors

after TMJ inflammation.

Abbreviations: i.p., intraperitoneal injection; i.v., intravenous injection; s.c., subcutaneous injection; TG, trigeminal
ganglion.

3.2. Risk of Bias Assessment
3.2.1. Clinical Articles

The risk of bias assessment for each article is described in detail in Table S1. No article
was identified as having a high risk of bias.

3.2.2. Preclinical Articles

The risk of bias assessment for each preclinical article is detailed descriptively in
Table S2. Seven articles (18.4%) displayed a high risk of bias, while 33 articles (86.8%) had
more than six out of ten items classified as “unclear”. In the text, no articles described the
issues related to items, including the domain of allocation concealment, random housing,
and random outcome assessment.

3.3. Effect of Interventions—Outcomes
3.3.1. Clinical Articles

Ten out of twelve articles documented the beneficial effects of each nutraceutical in
improving painful TMDs. However, two reported limited effects of them on osteoarthritis-
type TMDs [39,47].

3.3.2. Preclinical Articles

As shown in Table 4, all articles demonstrated inhibitory effects on craniofacial no-
ciception indicated by decreases in pain-like behaviors or neural activities in response
to craniofacial stimulation. The number of articles assessing each nutraceutical varied
from one (palmitoylethanolamide) to twelve (polyphenol). Methodologically, different
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types of models with different pain assessments were conducted. Eighteen articles as-
sessed the effects of nutraceuticals on acute facial pain-like behaviors evoked by formalin
(twelve articles), capsaicin (two articles), or several agents (four articles). Twenty articles
evaluated the effects of nutraceuticals on persistent facial pain-like behaviors in inflamma-
tory pain models, such as CFA (ten articles), zymosan (four articles), and others. These
variations in the assessment of each nutraceutical’s efficacy make it challenging to precisely
analyze their beneficial effects on pain, including determining appropriate doses, sample
sizes, treatment durations, and differences in efficacy between nutraceuticals. However, all
articles revealed the inhibitory roles of nutraceuticals on craniofacial nociception.

4. Discussion
4.1. Characteristics of Dietary Habits and Nutritional Intakes in Painful TMDs

Recent research sheds light on the promising role of nutritional strategies in man-
aging chronic pain conditions [87–90]. These approaches not only present a potentially
cost-effective alternative to conventional medical treatments but also demonstrate a safer
profile [91]. Moreover, they align with a patient-centered approach to treating chronic
pain [8,92]. Emerging evidence suggests that specific dietary patterns exhibit beneficial ef-
fects on health promotion. For example, with a notable emphasis on a plant-based diet [26],
recognized for its preventive and therapeutic impacts on diverse chronic diseases such
as diabetes [93], cardiovascular diseases [94], and depression [95], the benefits extend to
chronic pain as well. Notably, Mediterranean, vegetarian, vegan, or high-protein diets have
shown efficacy in alleviating chronic pain associated with fibromyalgia [88,96], rheumatoid
arthritis [97], musculoskeletal pain [98,99], low back pain [16], and headaches [100,101].

On the other hand, compared to the aforementioned chronic pain, the impact of dietary
habits and regimens on TMDs, particularly the alleviating effects on painful TMDs, remains
less clear. Before considering dietary and nutritional approaches for patients with TMDs,
evaluating their nutritional status and habits is crucial. Furthermore, neurobiologically,
the concepts discussed above, except headache, are based on chronic pain related to spinal
pain mechanisms, while there remains uncertainty regarding their applicability to painful
TMDs. Evidence indicates that TMDs involving trigeminal pain systems regulating deep
craniofacial nociception exhibit distinct neural nociceptive features compared to spinal
pain systems [1,33,102]. Thus, there is a need to assess the current knowledge of the
nutritional roles in managing painful TMDs. In light of our above discussion, it is crucial to
emphasize the distinctive attributes of TMDs, particularly their correlation with masticatory
dysfunction and chronic pain in the deep craniofacial tissues. These factors exert a more
pronounced influence on eating behaviors in TMD patients experiencing chronic pain
compared to individuals with chronic pain in areas outside the orofacial region [103,104].
As a result, changes in dietary patterns, coupled with potential nutrient deficiencies, could
lead to notable changes in trigeminal nociceptive mechanisms, potentially affecting the
management of painful TMDs. Preclinical studies provide supporting evidence for this
notion. For example, trigeminal inputs associated with chewing hard foods, as opposed
to soft foods, have been implicated in reducing hindpaw nociception [105]. Furthermore,
masticatory function might play inhibitory roles in nociception by activating descending
pain controls [106], while dysfunctions in those controls are well documented in TMD
patients [1,33]. This suggests that modifications in dietary behaviors, leading to changes
in trigeminal systems, could induce functional alterations in the central nervous system
beyond the trigeminal systems to some extent. Furthermore, these findings underscore the
unique characteristics that differentiate the underlying mechanisms of TMDs from those
of other pain conditions, particularly in terms of their nutritional implications. Hence, a
possible link exists between painful TMDs and dietary modifications; however, they do
not definitively establish a causal relationship. In other words, these observations could
elucidate how TMDs influence dietary habits and masticatory function, yet they do not
address the impact of specific dietary regimens or their constituents on TMD pain.
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It is possible that alterations in dietary patterns and nutritional intake, potentially
leading to deficiencies of specific nutrients, could contribute to the onset or aggrava-
tion of TMDs [32]. TMD patients often adapt their diets by cutting food into smaller
pieces [103], and those experiencing chronic masticatory pain consume raw whole fruit less
frequently [107]. Studies using the Test of Masticating and Swallowing Solids (TOMASS)
reveal that TMD patients take longer to consume certain foods [108]. Reports indicate that
TMD patients might eliminate specific foods like meat, apples, and bread, favoring softer
cooking methods for vegetables and meat [109,110], potentially leading to deficiencies
in certain nutrients. Furthermore, myogenic TMDs could be linked to reduced dietary
fiber intake, which is prominently found in plant-based foods [111]. On the other hand,
a recent study demonstrated that the macro-nutritional status—such as levels of energy,
protein, carbohydrate, and fat—of individuals with TMDs is similar to that of healthy
individuals, although this study evaluated only the amount of macronutrients using 24 h
dietary recall methods [108]. While at this stage it is difficult to draw strong statements
about the differences in dietary habits and nutritional status in daily life with painful TMDs,
these findings suggest that micronutrients rather than macronutrients might be essential
for regulating deep craniofacial nociception. The following section elucidates the existing
knowledge regarding the impact of several nutrients on painful TMDs. It also examines
preclinical evidence from animal models of deep craniofacial pain [33].

4.2. Nutraceutical, Nutrition, and Painful TMDs

Nutraceutical, a term commonly used, has attracted considerable interest among
individuals aiming to self-manage their chronic pain using readily accessible supple-
ments [27,112]. Several analogous nutraceutical terms are found, such as functional foods,
nutritional, and dietary supplements. Currently, the definition of nutraceutical varies
between researchers and even countries. Therefore, the distinction between these terms is
beyond the scope of this article. Recent reports, including meta-analyses, have emphasized
various nutraceuticals emerging as viable options for managing a wide range of chronic
pain conditions, such as osteoarthritis [113], neuropathy [114], fibromyalgia [115], irritable
bowel syndrome [116], and headache [117]. On the other hand, our literature search reveals
less comprehensive elucidation on the roles of nutraceutical interventions in TMDs. As
conclusive statements to draw the efficacy of each nutraceutical are premature due to
limited evidence, we discuss articles that explore the role of nutraceuticals in chronic pain
conditions, including TMDs, in the following sections.

4.2.1. Vitamins

Vitamins are a group of organic compounds such as four fat-soluble vitamins (A, D, E,
K) and nine water-soluble vitamins (B and C). Multiple clinical studies have revealed serum
levels of specific vitamins and their supplementary impacts on chronic TMD pain. Our
literature search found two clinical and two preclinical articles evaluating the direct effects
of vitamins D and B12 on painful TMDs and craniofacial pain-like responses in preclinical
models. Indeed, other studies indicated a significant possibility of the influence of vitamin
D on TMDs. This focus is likely derived from the prevalence of articles that explore the
correlation between vitamin D and bone metabolism in the TMJ but not pain, which is
beyond our aims. Such findings are particularly relevant in the context of painful conditions
like osteoarthritis [118–123]. Subsequently, we discussed the current knowledge of reports
that assessed the roles of other vitamins, including vitamin B complex and vitamin C [124].

1. Vitamin D

Vitamin D deficiency has been implicated in the development of musculoskeletal
disorders, leading to reduced bone density, muscle weakness, and chronic pain [125,126].
Several articles have suggested a potential association between vitamin D deficiency and
an increased risk of developing painful TMDs [118,122]. However, research findings on its
serum levels in TMD patients have been inconsistent. Some studies have demonstrated
decreased levels [37,119,120], while others have found less significant change [121,127,128].
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The reasons for these discrepancies are unclear; however, decreased levels of vitamin D
have been observed in various types of TMDs, including intra-articular disorders [37,121]
and extra-articular disorders such as myogenic TMDs [127]. These findings could be
consistent with observations of vitamin D deficiency in other conditions, such as fibromyal-
gia [125] and osteoarthritis [129]. Furthermore, polymorphisms in the vitamin D receptor
have been linked to disc degeneration-related pathologies, such as osteoarthritis [130].
However, their susceptibility to TMJ internal derangement, TMJ osteoarthritis, and pain
remains uncertain [131]. These findings suggest that the development of painful TMDs
associated with vitamin D is primarily attributed to the level of vitamin D itself rather than
the processing of its ligand reception at least. Emerging reports have demonstrated the
beneficial effects of vitamin D supplementation on various types of chronic pain. However,
the findings have been inconsistent. For example, a previous cohort study and a recent
systematic review have demonstrated that vitamin D supplementation significantly re-
lieves chronic pain in conditions such as rheumatoid arthritis and fibromyalgia [132–134].
Conversely, other randomized controlled trials have found minimal effects of vitamin D
supplementation on musculoskeletal pain [135]. Despite such inconsistencies, Lombardo
et al. suggested that the potential benefits of vitamin D supplementation in alleviating
chronic musculoskeletal pain and fibromyalgia might be observed in individuals deficient
in vitamin D [134]. Consistent with the reports above, Kui et al. [122] indicated that patients
suffering from TMDs with deficient levels of vitamin D are likely to benefit from vitamin D
supplementation. A randomized controlled trial demonstrated that the beneficial effects of
splint therapy combined with vitamin D supplementation on painful TMDs were evident
in patients with lower serum levels of vitamin D [37].

2. Vitamin B complex and C

Our literature search revealed that one clinical and two preclinical articles investigated
the influences of vitamin B on painful TMD and craniofacial nociception. No clinical
and preclinical evidence evaluating the effects of Vitamin C on painful TMDs is found.
Vitamin B complex (Bs) encompasses a group of eight essential water-soluble vitamins: B1
(thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin),
B9 (folate), and B12 (cobalamin). We found the reports elucidating on the role of vitamin
Bs, except vitamins B1, 3, 5, and 7, in nociception in clinical and preclinical settings of
TMDs because those of other vitamin B have not been identified in our literature search.
In the context of TMDs, clinical studies have shown variations in serum levels of these
vitamins among patients. One study [123] found that TMD patients commonly exhibit
deficiency in vitamin B12, while vitamin B9 levels remain unaffected. Conversely, another
study [124] observed that TMD patients with a history of implant surgery showed deficien-
cies in vitamins B1, B6, and B12, as well as in vitamin C. However, those studies did not
determine the association of chronic pain with the levels of each vitamin. Regarding other
chronic pain conditions, a study reported a significant association between myofascial pain
syndrome and reduced serum levels of vitamin B12, while levels of vitamin B9 remained
unaffected [136]. Notably, the study also revealed a negative correlation between vitamin
B12 levels and psychological distress, which plays a crucial role in exacerbating chronic
pain [136]. These findings indicate the potential impact of vitamin B12 on myofascial pain
syndrome and psychological distress. Additionally, in the cases of trigeminal pain sys-
tems, riboflavin (vitamin B2) and vitamin B6 have shown efficacy in preventing migraine
headaches [137–139], and vitamins B6, B9 and B12 have been closely linked to secondary
burning mouth syndrome [140]. Further, the web-based dietary search revealed that low
levels of vitamin B12 intake might be associated with non-specific chronic pain [141]. In-
terestingly, while individuals are aware that vitamin B12 deficiency correlates with lower
consumption, relying solely on meat is insufficient to prevent such deficiency [141]. It
is well known that vitamins B6 and B12 are primarily obtained naturally through the
consumption of various animal products, including meat, poultry, fish, and eggs, while
vitamin B9 is found in dark green leafy vegetables (such as spinach and kale), legumes (like
lentils and beans), citrus fruits and juices, avocado, and nuts.
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Clinical research highlights the association between deficiencies in vitamin Bs and the
development or alleviation of chronic pain conditions, particularly neuropathic
pain [114,142–145]. Karaganis et al. commented that while most beneficial outcomes
were reported against baseline measures, few positive comparisons were made against the
placebo group [144]. Further, there is a report suggesting that vitamin B12 might not have
beneficial effects on neuropathic pain [146], while methylcobalamin, the activated form of
vitamin B12, could alleviate diabetic neuropathy, low back pain, and neuralgia [147]. The
existing clinical literature concerning vitamin B supplementation’s efficacy in managing
painful TMDs is somewhat scarce. However, one study has indicated that the use of vitamin
B12 supplementation might enhance the inhibitory effects of photobiomodulation tech-
niques, such as laser therapy and acupuncture, despite the study’s small sample size [38].
Consequently, preclinical studies could provide valuable insights into the potential con-
tributions of vitamin B. One research group has delved into the effects of vitamin B12 on
orofacial nociception through the orofacial formalin test in two separate reports [58,59]. In
the first study, systemic administration of vitamin B12 demonstrated inhibition of orofacial
formalin-induced nocifensive behaviors [58]. Notably, vitamin B12 exhibited enhanced
antinociceptive effects when administered systemically alongside diclofenac. In the second
study, intra-hippocampal administration of vitamin B12 also reduced orofacial nocifensive
behaviors, potentially mediated by its involvement in opioid mechanisms [59]. Further-
more, despite the use of different orofacial pain models, consistent results have been
observed regarding the beneficial effects of vitamin B, containing B1, B6, and B12, in allevi-
ating the impacts on orofacial nocifensive behaviors in rats with chronic constriction injury
of the infraorbital nerve [148].

Vitamin C, also known as ascorbic acid, is also a water-soluble vitamin that cannot be
synthesized in the human body and is found prominently in fruits and vegetables. Clinical
studies have demonstrated the association between vitamin C deficiency and chronic spinal
pain conditions, including musculoskeletal pain, cancer-related pain, and orthopedic post-
surgical pain [149]. In the case of TMDs, our literature search has not yielded reports
demonstrating the impact of altered vitamin C levels on painful TMDs. This absence of
findings could be interpreted in light of several observations. Firstly, vitamin C deficiency
has been noted in elderly hospitalized patients, with trauma and surgery known to cause a
significant reduction in serum vitamin C levels [150]. It is widely acknowledged that in
many cases of TMDs, extensive surgery or obvious trauma is not apparent. Mehra et al. [124]
reported vitamin C deficiency in TMD patients; however, these patients were not typical
cases of TMDs, as they underwent implant surgery. Secondly, a retrospective study has
revealed that a significant deficiency of serum vitamin C level was more likely to be seen in
males than females [151], whereas TMD patients are well documented to be predominantly
female [152]. Thirdly, although deficiency of vitamin C level (<11 µmol/L) is relatively rare
in developed countries like the United States (6%) [153,154], it is unclear if this is the case for
painful TMDs. As aforementioned, specific features of TMDs, like masticatory dysfunction,
might hinder the intake of a vitamin C-rich diet, such as fruits and vegetables [107,109,110].
At present, the effects of vitamin C supplementation on TMDs remain unknown. However,
there is substantial evidence suggesting that vitamin C effectively inhibits the response
of various proinflammatory biomarkers, including interleukins and tumor necrosis factor,
as well as counteracting oxidative stress conditions [29,149,155,156]. These factors are
thought to be potentially associated with TMD pathology. Furthermore, vitamins C and
D are also documented to have antioxidant and anti-inflammatory properties, capable of
reducing reactive oxygen species production and inflammation [29]. Additionally, in cases
of pain related to the trigeminal nervous system, supplementation with vitamin C has
demonstrated efficacy in alleviating other forms of orofacial pain, such as pain induced by
the third molar extraction [157].
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4.2.2. Minerals

The relationship between minerals and chronic pain varies depending on the specific
minerals and types of chronic pain conditions involved. Several studies have examined
these complexities within TMDs [119,123,124,128]. These investigations have primarily
focused on serum levels of minerals such as magnesium (Mg), zinc (Zn), and calcium
(Ca), yet their findings have shown inconsistencies. For instance, TMDs characterized
by TMJ disk displacement with reduction exhibited similar levels of Mg compared to
healthy controls [119,128], while TMDs following implant surgery displayed lower Mg
levels than controls [124]. Similarly, while some studies reported lower levels of Ca in
certain TMD cases [119], others found them comparable to healthy controls [128]. However,
these studies overlooked myogenic types of TMDs, potentially limiting the scope of their
conclusions. Additionally, they did not evaluate the correlation between these minerals and
painful TMDs, further restricting the comprehensiveness of their findings. Furthermore, a
cross-sectional study revealed that patients with TMDs displayed significantly lower serum
levels of potassium despite being within the normal range compared to healthy controls.
The association of potassium levels with painful TMDs remains unclear [123]. Potassium,
primarily sourced from fruits and vegetables, might be challenging for TMD patients
to consume, potentially correlating with TMD development. Despite limited evidence,
several reports suggest that changes in mineral levels, possibly due to dietary customs
and behaviors, might play a role in TMDs. These studies further highlight the potential
roles of mineral supplementation in the treatment of painful TMDs. Our literature search
based on one clinical and four preclinical articles demonstrated the inhibitory impacts of
painful TMDs and craniofacial nociception; however, this current understanding might
not allow us to provide strong evidence of the treatment efficacy of mineral interventions.
In the following section, we discuss the involvement of magnesium, zinc, strontium, and
sulfur in TMDs and craniofacial pain conditions, as several reports support the hypothesis
of their relationship.

1. Magnesium (Mg)

Mg, as a known calcium channel blocker, has garnered significant attention for its
potential to alleviate various neurological diseases, including chronic pain [158]. The
Western-type diet contains less Mg, whereas green vegetables such as spinach are major
sources of this mineral [159]. Studies indicate that Mg plays a protective role against
excessive neural excitation, which can lead to excitotoxicity [159]. Accordingly, evidence
indicates the alleviating effects of magnesium on conditions such as migraine [160], fi-
bromyalgia [158], low back pain [161], and visceral pain [89]. Local administration of Mg
sulfate could prevent spinal sensitization, as indicated by increased glial activation in a rat
model of incisional pain [162].

Studies assessing the impact of mineral interventions on TMDs are limited; however,
several reports suggested that dietary magnesium might play a role in painful TMDs. A
randomized clinical study demonstrated that local injection of Mg is an effective treatment
for myofascial trigger points of the masseter muscle, leading to pain reduction and im-
provements of maximum mouth opening [44]. Likewise, a preclinical study revealed that
oral administration of Mg prevented the development of orofacial pain-like behaviors in
TMJ-inflamed rats, mimicking the conditions of TMDs, and further, treatment with Mg
resulted in a decrease in phosphorylation of NR1 protein, one of the subunits of NMDA
receptors [60]. Of note, changes in neural mechanisms related to NMDA receptor-mediated
nociceptive processing could be essential to increase deep craniofacial nociception [163,164].
Similarly, two preclinical studies demonstrated that systemic administration of Mg reduced
formalin-evoked facial pain-like behaviors [61,62]. Conversely, Mg deficiency caused
increases in spontaneous facial pain-like behaviors in TMJ arthritis rats [60].

2. Zinc (Zn)

Zn has been investigated for its potential in treating various chronic pain conditions
and could reduce nociceptive responses in preclinical models, possibly due to its anti-
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inflammatory properties [114]. In cases of orofacial pain, Zn supplementation therapy
could alleviate the burning sensation associated with Burning Mouth Syndrome (BMS)
patients [165]. However, it is noteworthy that over 94% of examined BMS patients exhibited
normal serum Zn levels [166]. Additionally, studies indicate that administering Zn did not
ameliorate symptoms such as oral burning sensation and discomfort in patients with oral
lichen planus [167]. Patients with chronic myofascial pain displayed normal and lower
levels of Zn in blood serum and intracellular stores (in erythrocytes), respectively [168].
This discrepancy in Zn levels suggests a potential link between Zn metabolism and the
development or exacerbation of chronic pain. Our literature search did not yield evidence
supporting the supplemental effects of Zn on TMDs. Despite a report with a small sam-
ple size (n = 23), Zn deficiencies observed in TMDs suggest that Zn might impact the
management of painful TMDs [124].

3. Strontium

Strontium is found naturally in many foods, such as fish, vegetables, grains, and dairy
products. Evidence suggested that strontium could exhibit inhibitory impacts on chronic
pain conditions, potentially due to the positive effects of bone metabolisms [169,170]. For
example, strontium injection can relieve pain in patients with painful bone metastases in a
previously irradiated site [171]. While the roles of strontium on painful TMDs are lacking,
in preclinical studies using TMD pain, systemic administration of strontium ranelate, a
drug usually prescribed to treat osteoporosis, has shown potential in reducing pain-like be-
haviors. Interestingly, the antinociceptive effects of strontium ranelate observed in the TMJ
inflammatory pain model might be attributed to the reduction in inflammatory cytokines,
such as TNF-alpha, rather than a decrease in local inflammation [63]. These findings high-
light the potential for exploring the effects of strontium in managing craniofacial pain,
including TMDs.

4. Sulfur

Sulfur, a mineral found in our bodies and available in our diets, is primarily derived
from proteins in various foods [172]. Sulfur sources that could affect chronic diseases
include sulfur amino acids, methylsulfonylmethane, sulfur dioxide, and hydrogen sulfide.
While the roles of these sulfur compounds in chronic pain are unclear, several reports
suggested potential insights. For example, sulfur amino acids like cysteine, as part of
protein structures, act as antioxidative metabolic intermediates such as glutathione [172].
Interestingly, therapy using hot springs containing the radioactive gas radon has increased
glutathione levels in the brain, providing protective antioxidative functions against brain
injury [173]. These findings support the notion that sulfur amino acids might exert antinoci-
ceptive effects; however, evidence on pain relief in TMDs is lacking.

Methylsulfonylmethane (MSM) is a notable organic sulfur-containing compound
widely used as a dietary supplement for various conditions, such as pain, inflammation,
and arthritis [174]. A randomized controlled trial indicated that a 12-week MSM regimen
could improve knee quality of life, including pain [175]. However, another randomized
controlled trial found no significant difference between MSM supplementation and placebo
for knee osteoarthritis pain [176]. These inconsistent findings might be due to differ-
ences in pathologies of chronic pain. In the case of TMDs, one report revealed that MSM
supplementation could have less beneficial effects on pain in osteoarthritis of the TMJ [39].

4.2.3. Polyunsaturated Fatty Acids

Fatty acids are categorized depending on their length and degree of saturation into
saturated fatty acids (FAs), monounsaturated FAs, and polyunsaturated FAs. Polyunsatu-
rated FAs are divided into omega-3 and omega-6 FAs [177]. These FAs are indispensable
for human health and show promise as natural remedies for chronic disorders [178–180],
which are abundantly found in certain fish, nuts, and seeds.

Research has highlighted the contrasting roles of omega-6 and omega-3 FAs [181].
Notably, omega-3 FAs have been shown to alleviate chronic pain across various conditions,
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including musculoskeletal pain [27,98], low back pain [182], osteoarthritis [183], rheuma-
toid arthritis [184], and headaches [185]. Moreover, several studies have investigated the
potential causal relationship between omega-3 FAs and chronic pain, revealing that in-
creased circulating omega-3 FA levels might reduce the risk of low back pain [186] and
pelvic pain [187]. Consistent with those clinical reports, omega-3 FAs exerted antinocicep-
tive effects in various preclinical models [188,189]. Additionally, eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA), major polyunsaturated FAs, can act as substrates
for the synthesis of specialized pro-resolving lipid mediators (SPMs) like resolvins, pro-
tectins, and maresins [190]. While these SPMs play a pivotal role in resolving inflammation
by facilitating the clearance of inflammatory cells and debris, resolvin D1 could decrease
hyperexcitability of nociceptive neurons in the trigeminal subnucleus caudalis in the facial
inflammation rats [191].

In contrast, omega-6 FAs, enriched in the Western-style diet, are often regarded as
detrimental to health promotion due to their potential to elevate levels of various proin-
flammatory substances such as prostaglandins, inflammatory cytokines, and inflammatory
eicosanoids [192]. A randomized clinical trial with a diet low in omega-6 FAs and high
in omega-3 FAs displayed decreased pain frequency and intensity in chronic headache
patients [193]. A cross-sectional study found that a lower omega-6 to omega-3 FA ratio is
linked to clinical and experimental pain responses in knee pain [194]. Recently, Sanders
et al. suggested that omega-6 FAs could promote a generalized upregulation of nocicep-
tive processing. They showed that omega-6 FAs were negatively associated with lower
mechanical nociceptive thresholds in nociplastic pain conditions [182]. Preclinical studies
supported the pronociceptive roles of nociception. Boyd et al. demonstrated that omega-6
FA intakes could induce persistent mechanical and thermal nociceptive hypersensitivity in
the hindpaw due to neural changes in primary afferent nerves associated with elevated
phospholipase A2-mediated lipid release. Of interest, pronociceptive changes could be
rescued by intakes of omega-3 FAs [195].

Consequently, this article will delve into the influence of omega-3 FAs on painful
TMDs. The physiological mechanisms of omega-3 FAs have been intensively investigated
from a broad perspective, and their safety has been reported [177]. Currently, there is
limited research exploring the roles of omega-3 FAs on TMDs; however, two cross-sectional
studies have suggested an association between a higher ratio of omega-6 to omega-3 FAs
and painful TMDs [196]. Similarly, a higher level of circulating omega-3 FAs has been linked
to a reduced likelihood of painful TMDs [197]. Further, considering that psychological
distress is a risk factor for TMDs, the preventive effects of omega-3 FAs on depression may
support the idea of their inhibitory role in TMDs [178].

Preclinical studies have provided interesting evidence supporting the effectiveness of
omega-3 FAs in managing TMJ inflammation. For example, Marana et al. [49] demonstrated
that systemic administration of omega-3 FAs led to a decrease in TMJ damage and reduced
levels of proinflammatory cytokines, such as IL-1 beta and TNF-alpha, in rats subjected
to ovariectomy and rheumatoid arthritis induction. Similarly, systemic administration
of omega-3 FAs exhibited anti-inflammatory effects, as evidenced by decreased levels of
various proinflammatory cytokines in facial inflammatory models [64,65]. These findings
highlight the potential of omega-3 FAs to inhibit local inflammation within the TMJ.

On the other hand, regarding the clinical features of TMDs, it is important to note
that TMDs often present with fewer obvious inflammatory signs in craniofacial tissues. In
this context, the potential of omega-3 FAs to alleviate craniofacial pain in TMDs might be
mediated by mechanisms within the central rather than the peripheral nervous system.
This idea finds support in several studies. For example, preclinical studies have shown that
omega-3 FA deficiencies can induce emotional and neural disturbances similar to those
observed after social defeat stress conditioning [198]. Consistently, supplementation with
omega-3 FAs has been documented to have antidepressant effects [199,200]. Furthermore,
a neuropathic pain model demonstrated hyperalgesia-like responses alongside decreases
in DHA levels, while central administration of DHA decreased central microglia-associated
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neuroinflammation and pain-like behaviors [201]. In an intermittent cold stress model,
omega-3 FAs exhibited modulatory effects on neuroinflammation related to transient
receptor potential V1 signaling in the prefrontal cortex, hippocampus, and periaqueductal
gray [202]. Finally, in the case of TMD models, systemic administration of DHA exerted
inhibitory effects on neural activities in the trigeminal subnucleus caudalis in the persistent
facial inflammatory pain rat [66].

While neural function heavily depends on adequate omega-3 FA levels, the precise
mechanisms by which omega-3 fatty acids exert inhibitory effects on nociception remain
unclear. Several findings might partially explain them [200,203]. For example, the fa-
cilitative effects of EPA and DHA on microglial autophagy might reduce inflammatory
processes [204,205], leading to decreased nociceptive responses in the brain. Despite varia-
tions in chronic pain conditions, omega-3 FAs could play beneficial roles in alleviating deep
craniofacial nociception. Further clinical and preclinical investigations into their effects on
TMDs are warranted.

4.2.4. Polyphenols

Polyphenols are natural compounds with phenolic structures found in various foods,
such as fruits. Clinical and preclinical studies have evaluated the therapeutic roles of
polyphenols on chronic pain. Accordingly, randomized controlled trials have shown that
several fruits, such as blueberries [206], passionfruit [207], and strawberries [208], could
offer relief for musculoskeletal pain, likely due to the antioxidative effects of various
polyphenols that they contain. A meta-analysis demonstrated the beneficial roles of these
for fibromyalgia patients [209]. Similarly, consuming fruits and vegetables has been linked
to reduced odds of headaches in university students [210]. Polyphenol-rich foods have also
been shown to reduce chronic pain in women with fibromyalgia [211]. Further, evidence
has revealed that various polyphenols play beneficial roles in improving rheumatoid
arthritis [184], irritable bowel syndrome [89], and migraine headaches [117].

While our literature search yields fewer randomized controlled studies assessing the
effects of polyphenols on painful TMDs, a report not cited in PubMed has elucidated their
beneficial roles in TMDs [212]. Moreover, one randomized control trial revealed the benefi-
cial roles of avocado–soybean unsaponifiable extract that could contain polyphenols [213].
Additionally, several studies have shown that TMD patients experience alterations in oxida-
tive status within the TMJ disc [156,214,215]. These findings suggest that targeting oxidative
conditions with polyphenols could help reduce painful TMDs. Despite the limited clinical
evidence, accumulating studies emphasize the effects of polyphenols on pain-like behaviors
and their neural mechanisms in preclinical models of TMDs. For example, extracts rich in
polyphenols from grape seeds [216] and purple corn [217] have shown promise in reducing
neuronal and glial responses in critical areas associated with craniofacial nociception. The
latter study highlighted the polyphenol content in purple corn extracts [217]. Similarly, cit-
rus fruits [71,72] and cocoa [218,219], which also contain polyphenols, have demonstrated
potential antinociceptive properties in facial pain models.

A randomized experimental clinical study revealed that intake of chocolate, a cocoa-
derived product rich in polyphenols, could reduce pain sensation caused by the injection
of hypertonic saline into the masseter muscle in healthy individuals; however, the au-
thors did not specifically assess the role of polyphenols in the observed reduction in
pain responses [220]. An in vitro study demonstrated that cocoa bean extracts containing
polyphenols could repress the release of calcitonin gene-related peptides in the trigeminal
root ganglion [221], potentially regulating craniofacial nociception. Consistently, repeated
administration of the coffee polyphenolic extract (CE) modulated reflexive pain responses,
depressive-like behavior, and spinal cord gliosis in a dose-dependent manner in a model of
fibromyalgia [222]. These effects are believed to arise from the polyphenols, which impact
neural changes associated with orofacial nociceptive processing [29]. In the following para-
graph, we demonstrate several preclinical examples of the roles of polyphenols, including
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quercetin, (-)-epigallocatechin-3-gallate, resveratrol, and curcumin on facial pain because of
the available evidence regarding polyphenols.

Local administration of quercetin, one of the flavonoid phytochemicals, exerted in-
hibitory effects on nociceptive neural activities evoked by facial stimulation in trigeminal
primary sensory neurons in the presence [51] and absence of persistent facial inflamma-
tory conditions [52]. Further, (-)-epigallocatechin-3-gallate, the main catechin contained in
green tea, could inhibit nociceptive neural activities in the trigeminal subnucleus caudalis
region [55]. Likewise, daily administration of resveratrol contained abundantly in grapes
and wine exerted inhibitory impacts on the trigeminal nociception in response to facial
stimulation [56,223]. Notably, Ma et al. illustrated that the development of TMJ inflam-
mation, accompanied by increased neural activities in the trigeminal subnucleus caudalis
region due to microbiome perturbation, could be mitigated by systemic administration of
resveratrol [67]. These findings suggest that the involvement of polyphenols in gut micro-
biota could have beneficial roles in alleviating deep craniofacial pain. Moreover, curcumin,
a naturally occurring polyphenolic compound found in turmeric, exhibits antioxidative
and anti-inflammatory properties. Systemic administration of curcumin inhibited pain-like
behaviors in the hindpaw [224], trigeminal neuralgia model [225], and orofacial formalin
pain model [50]. An in vitro study revealed that curcumin can inhibit key molecular pro-
cesses in TMJ inflammatory chondrocytes [226], suggesting the antinociceptive roles of
curcumin [227].

Collectively, while twelve preclinical studies suggest promising therapeutic roles for
polyphenols in managing painful TMDs, further longitudinal and randomized controlled
trials are needed to confirm their potential benefits, and the clinical efficacy of polyphenols
is unclear.

4.2.5. Isoprenoids

Isoprenoids are found in various common foods such as fruits, vegetables, nuts, and
seeds. They are a class of natural compounds, including terpenes, that could exert antiox-
idative potential and help in pain relief [228]. Although clinical evidence regarding the
roles of isoprenoids in TMDs is lacking, preclinical evidence supports their antinociceptive
properties. For example, limonene, a monoterpene found in citrus fruits like lemons and
oranges, has been shown to inhibit TMJ nociceptive behavior and alter neural responses in
the trigeminal subnucleus caudalis [71]. Similarly, limonene’s inhibitory effects on noci-
ception have been observed in models of fibromyalgia [229] and neuropathic pain [230].
Furthermore, systemic administration of citral, another monoterpene, has been found to
attenuate masseter muscle pain-like behaviors induced by various algesic and inflamma-
tory agents through the regulation of several transient receptor potential channels [73].
Prophylactic and therapeutic administration of citral also inhibited mechanical and heat
hypersensitivity of the facial skin in rats with persistent TMJ inflammation [72]. Those find-
ings from craniofacial pain models are consistent with those seen in hindpaw inflammatory,
neuropathic, and plantar incisional pain models [231]. Additionally, carvacrol, another
type of isoprenoid, has exerted antinociceptive effects in craniofacial pain models [232].
However, that isoprenoid was derived from aromatic and medicinal plants, not from ordi-
nary foods. Based on three preclinical studies and the absence of clinical evidence, it is still
too early to make definitive conclusions. However, it is worth considering that isoprenoids
might have therapeutic potential in treating painful TMDs. Consequently, the efficacy of
isoprenoids for managing painful TMDs remains uncertain.

4.2.6. Carotenoids

Carotenoids are naturally occurring pigments synthesized by plants like carrots, sweet
potatoes, avocados, and algae [233]. More than 1000 natural carotenoids have been doc-
umented, and only 40–50 of them are consumed in human diets, such as lutein and
beta-carotene. They are responsible for the bright red, orange, and yellow colors of many
fruits and vegetables and exert critical roles in human health as antioxidant properties by
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inhibiting reactive oxygen reactions and sources of vitamin A [234]. Evidence revealed that
carotenoids could offer protection against local inflammation associated with rheumatoid
arthritis [90]. For example, two preclinical studies have demonstrated the analgesic effects
of crocin, a compound found in saffron and gardenia flowers, often used as a flavor. In
one study, intra-cerebroventricular administration of crocin reduced pain-like behaviors
in sleep-deprived rats [235]. In a relevant context to craniofacial pain, crocin inhibited
facial pain-like behaviors triggered by formalin injection in rats [74]. Lutein is the most
widespread carotenoid found in fruits and leafy vegetables. Preclinical reports demon-
strated that lutein administration could exert inhibitory effects on various pain conditions.
For example, lutein could potentially promote antioxidative, antidepressant, and antinoci-
ceptive effects in the preclinical models of fibromyalgia [236]. Regarding the conditions of
facial pain, two reports revealed that lutein decreased nociceptive neural activities indicated
by c-Fos expressions [75] and neural activities [76] in the medullary and upper cervical
dorsal horn junction region. Further clinical and preclinical investigations would be needed
to confirm and expand upon these findings regarding the potential roles of carotenoids on
painful TMDs. Thus, the efficacy of carotenoids on painful TMDs is unclear.

4.2.7. Lectin

Lectins are a heterogeneous group of proteins found in both plants and animals that
can bind to carbohydrate molecules. It is well known that seaweed and beans are major
sources of lectins, which exhibit antinociceptive and anti-inflammatory properties [237,238].
The biological activities of lectins might be related to their ability to recognize carbohydrates
on the surface of cell membranes and trigger intracellular signaling that results in biological
responses, including nociceptive processing. Clinical evaluations of the therapeutic roles of
lectins in painful TMDs are lacking, yet preclinical studies have shown that lectins derived
from seaweed [77,78] and seeds [79–82] could reduce facial nociception and inflammation
in craniofacial tissues by regulating molecular mechanisms in TMD models. While the
involvement of lectins in nociception is not fully understood, evidence suggests that
plant lectins can modulate transient receptor potential vanilloid one function, leading to a
reduction in formalin-evoked facial pain-like behaviors [78]. Additionally, the inhibitory
effects of lectins on TMJ pain-like behaviors and inflammation could be due to decreased
levels of proinflammatory cytokines, such as interleukin-1 beta, in TMJ tissues and the
trigeminal ganglion [81]. Because no clinical evidence is available, further clinical and
preclinical evaluations are necessary.

4.2.8. Polysaccharide

Polysaccharides are naturally derived from plants and are macromolecular carbohy-
drates composed of monosaccharides linked by glycosidic bonds. Currently, various types
of them have been identified, which can exert a broad range of biological activities [239].
Indeed, sulfated polysaccharides exhibit diverse biological activities, including antioxidant,
neuroprotective, and anti-inflammatory effects [228,240]. These findings could align with
the notions of their antinociceptive properties. Although evidence for their effectiveness in
treating painful TMDs is currently lacking, preclinical studies have indicated the impacts
of sulfated polysaccharides on craniofacial pain-like responses. For example, systemic
administration of sulfated polysaccharides derived from red seaweed has been shown
to reduce TMJ-evoked pain-like behaviors and enhance opioid function, as evidenced by
increased levels of endorphins in the trigeminal subnucleus caudalis [83]. The reduction
in TMJ formalin-evoked pain-like behaviors by polysaccharides derived from marine red
algae is mediated through the modulatory effects of several receptor mechanisms, such
as glutamatergic receptors [84]. A report, not cited in PubMed, revealed that sulfated
polysaccharides derived from green seaweed could reduce mechanical hyper-nociception
in the facial region 4 h after TMJ inflammation evoked by zymosan [85]. Despite a few
preclinical reports, further human and preclinical studies are expected to assess the roles of
polysaccharide-based treatments on craniofacial pain conditions. Additionally, polysaccha-
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rides derived from various plants have shown promise in preclinical studies for improving
mental disorders such as anxiety and depression [239], which are risk factors for painful
TMDs, thus supporting further exploration of their therapeutic potential. Collectively, it is
too early to describe the definitive efficacy of polysaccharides on TMDs.

4.2.9. Glucosamine

Glucosamine is an amino sugar and a prominent precursor in the biochemical synthesis
of glycosylated proteins and lipids [241,242]. While glucosamine is an amino monosac-
charide naturally biosynthesized in the human body, it is commonly extracted from the
exoskeletons of crustaceans such as shrimp and crabs, as well as from animal cartilage
and bone broth. It attaches to protein cores to form proteoglycans, which are essential
components of the extracellular matrix in articular cartilage. The therapeutic potential of
glucosamine in treating osteoarthritis has been well documented [243].

Indeed, as mentioned earlier, while randomized controlled trials assessing the ef-
fects of various nutraceuticals on painful TMDs have been scarce, this might not be the
case for glucosamine. Several review articles have demonstrated that certain types of
TMDs, particularly those involving degenerative joint diseases and pain, benefit from
glucosamine administration [241,242,244]. The clinical efficacy of glucosamine in reducing
pain associated with osteoarthritis of the TMJ appears to depend on the duration of admin-
istration, with benefits observed after more than 1–3 months of use [40–43,45,46]. However,
a randomized clinical trial reported that glucosamine had a less beneficial effect on TMJ
osteoarthritis pain compared to placebo controls [47].

Given the high prevalence of females with painful TMDs, a preclinical study using
female rats might provide insights into the role of glucosamine in craniofacial pain; however,
this study found that glucosamine caused no alterations in proinflammatory cytokine
levels in both sham and ovariectomized females (OVX) [245]. These findings indicated that
changes in sex hormones played a lesser role in those. Regardless of these findings, it is
important to note that these reports did not focus on the therapeutic roles of glucosamine
for myogenic TMDs.

Additionally, despite the unclear benefits of glucosamine alone, chicken bone broth,
which contains glucosamine, exerted inhibitory effects on pain-like behaviors evoked by
facial skin stimulation in a TMD model developed through prolonged jaw opening in
rats [246]. These reports supported the notion that glucosamine might alleviate chronic
pain in certain types of TMDs. Collectively, the efficacy of glucosamine on TMDs might be
present in specific types of this condition. However, further clinical and preclinical evalua-
tions and studies on other types of TMDs, like myogenic pain conditions, are necessary.

4.2.10. Palmitoylethanolamide

Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide found in var-
ious foods, such as tomatoes, soybeans, eggs, and broccoli. It is also synthesized in the
body, including the brain, within the lipid bilayer [247]. Due to its antinociceptive, anti-
inflammatory, and antioxidative effects [248], PEA has documented benefits in managing
various chronic pain conditions. Various molecular mechanisms for its neural involvement
have been demonstrated [249]. A randomized controlled trial revealed that the inhibitory
effects of daily PEA administration on craniofacial pain, indicated by the maximum mouth
opening, appeared to be greater than those of ibuprofen [48]. Additionally, PEA administra-
tion could reduce mechanical behavioral sensitivity in the facial region and glial activities in
the trigeminal ganglion after the induction of inflammation in the TMJ [86]. Similarly, PEA
might improve other types of chronic trigeminal pain conditions, including burning mouth
syndrome and periodontal disease [247]. In the case of post-tooth extraction trigeminal
neuropathy patients, PEA administration alone significantly alleviated pain as measured
by a numeric rating scale [250]. Due to clinical and preclinical assessments of PEA’s efficacy
seeming too premature, there is a need for more well-designed randomized controlled
trials and animal studies to understand the roles of PEA on painful TMDs.
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5. Limitations

While our current investigation shown above could allow us to advocate for clinical
investigations into the beneficial role of nutraceuticals in managing TMDs, limitations are
identified. First, a systematic review was not conducted. Indeed, due to the limited clinical
and preclinical evidence available, this narrative review aims to elucidate current under-
standings of the relationships between nutrition and chronic craniofacial pain conditions
rather than evaluating the efficacy of each intervention. Additionally, the literature search
was confined to mainly Medline-PubMed and English-language sources, as outlined in
the methods section. However, additional articles were retrieved through reference lists
to avoid missing relevant studies. Second, our discussion relies heavily on preclinical
evidence (38/50 articles), which could weaken the argument for the effectiveness of dietary
and nutraceutical approaches from the clinical aspects. Attention should be paid to the
preclinical models, as many experiments conducted pain assessments in the acute stages
of pain. Therefore, additional approaches are crucial to assess the effects of dietary and
nutraceutical interventions on chronic craniofacial nociception using models like psycho-
logical stress models [33,251]. Further, most preclinical studies developed TMD models
using male rodents, while only two reports employed females [49,50]. Considering the
predominance of females in TMDs, the conclusiveness of these statements based on the
preclinical evidence was weakened. Despite those limitations, it is noteworthy that various
models for painful TMDs have been well documented. These models share key features
of painful TMDs, including behavioral characteristics and neural activities in the brain
associated with craniofacial nociception, with or without therapeutic interventions [33].
This indicates that various preclinical models for TMDs have high translational value.
Third, almost all preclinical studies reported predominantly positive findings, with little
evidence of negative results. This might indicate publication bias, which could limit the
comprehensiveness of our perspective. Therefore, future research should aim to standard-
ize experimental protocols and improve reporting clarity to facilitate a more accurate and
comprehensive evaluation of nutraceutical efficacy in managing craniofacial nociception.
Fourth, while several mechanisms, such as the antioxidative and anti-inflammatory prop-
erties of nutraceuticals, were mentioned, detailed mechanisms of action at the molecular
level and effective doses of each nutraceutical were not discussed. However, as mentioned
earlier, these issues were beyond the scope of this investigation. Finally, randomized
controlled trials involving dietary or nutraceutical interventions for managing TMDs were
less common before 2015 [32]. These notions indicate that this area of research is still in its
early stages and is actively developing. These limitations are important considerations for
researchers to keep in mind in order to draw strong conclusions about the therapeutic roles
of each nutraceutical on painful TMDs.

6. Future Directions: An Alternative Diet—Rice-Fermented Food

Given the significant role of diet and nutrition in managing chronic pain, it is crucial
to explore alternative dietary approaches. Recently, there has been increasing interest in
the health-promoting effects of various fermented foods [252]. Among these, we would
discuss the potential impacts of several rice-fermented foods, such as Sake lees and Rice-
koji, on chronic pain. Those foods have been shown to contain various nutraceuticals. For
example, Rice-koji contains vitamins B and E [253]. Another study has shown that it also
contains phenolic acids, flavonoids, vitamin B3, and various amino acids such as tryptophan
and GABA [254]. Sake lees consist of macro-nutrients like protein, carbohydrates, and
fats [255], along with nutraceuticals including vitamins B3 and B6 [256]. Given the presence
of these various nutraceuticals in rice-fermented foods, they hold promise for offering
novel therapeutic benefits for painful TMDs. Although exhibiting significant geographical
diversity [257], rice-fermented foods such as Sake lees and Rice-koji encompass a variety
of traditional Japanese culinary delights renowned for their rich flavor and nutritional
benefits [253,258]. Figure 1 illustrates the Japanese Sake brewing process, where the primary
goal is to produce sake, the popular and traditional alcoholic beverage in Japan, alongside
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Rice-koji and Sake lees as byproducts, which contain various nutraceuticals. These products
are bioactive, acting as probiotics that offer antioxidant and anti-inflammatory effects while
also regulating various bodily functions [257,259]. Importantly, rice-fermented diets are
known to be safe due to the absence of toxicity and adverse effects observed in in vitro and
in vivo studies [260,261].
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Our preclinical reports revealed that these rice-fermented foods could have modula-
tory roles on neural functions associated with nociception. First, daily administration of
Sake lees attenuated pain-like hindpaw behaviors with the reduction of neural activities in
the lumbar spinal dorsal horn in psychophysical stress rats [262]. Sake lees are a byprod-
uct produced in large quantities during the brewing process of Japanese Sake (Figure 1).
However, there are currently few effective methods for utilizing them. If Sake lees, rich in
nutrients, could be consumed as functional food, it would reduce waste and align perfectly
with the principles of the Sustainable Development Goals. Additionally, we reported an
interesting finding [263]. An in vitro experiment demonstrated that Sake lees could induce
functional changes in odontoblast-like cells, promoting their mineralization. Furthermore,
an in vivo study revealed the facilitatory effects of Sake lees in producing reparative dentin-
like hard tissues in the dental pulp of rats [263]. This evidence suggests that Sake lees might
have potential applications in treating even toothache. Second, Japanese Sake displayed
inhibitory effects on nociceptive neural activities in the trigeminal subnucleus caudalis
region [264]. Of note, the results revealed that Sake effects are due to the constituents rather
than the 15% ethanol found in Sake [264]. Third, daily consumption of Rice-koji prevented
anxiety- and pain-like behaviors associated with psychological stress conditionings [260].
This study also revealed that ergothioneine, an antioxidant contained in Rice-koji, was well
known for its regulatory roles in brain functions associated with pain [260]. While further
research is needed to elucidate the precise mechanisms underlying these effects and assess
their efficacy in clinical settings, our current studies propose that rice-fermented food could
be the additional candidates that benefit from mitigating various chronic pain conditions,
including TMDs.

7. Conclusions

Our review suggests that painful TMDs could influence dietary habits, leading to
potential deficiencies in nutrients, yet the extent of this impact remains uncertain due to
inconsistencies in research findings [108]. The multifactorial nature of TMDs, encompass-
ing various pathologies, complicates efforts to draw definitive conclusions about their
nutritional implications. However, given the multifactorial etiologies of TMDs, dietary
improvements and nutraceutical approaches could be reasonable, as the regulatory effects
of these interventions might address a wide range of bodily functions through their di-
verse constituents. This review discussed the roles of several nutraceuticals (Table 1) in
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chronic pain in the craniofacial tissues associated with TMDs, supported by preclinical
evidence. Additionally, various rice-fermented foods might be suggested as supplementary
nutritional approaches.

Emerging evidence indicates that supplementation with those nutraceuticals could
hold promise in managing painful TMDs, aligning with observations in other chronic pain
conditions. However, as mentioned in the section on limitations above, our understanding
is limited by the scarcity of evidence from longitudinal and randomized controlled trials.
Therefore, further preclinical investigations are required to clarify the therapeutic benefits
of specific nutritional interventions to chronic pain in deep craniofacial tissues, which are
prominently affected in TMDs.

Finally, a recent review highlighted the need for well-designed clinical trials based on
dietary assessments and measurements capable of evaluating food quality and nutrient
adequacy to assess the role of nutrition in TMDs [30]. This standpoint aligns with our
ongoing inquiries. By advancing our understanding of the interplay between nutrition and
craniofacial pain conditions, such as TMDs, through comprehensive research efforts, we
can pave the way for personalized therapeutic strategies that enhance the quality of life for
individuals affected by these conditions.
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