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Omega-3 polyunsaturated fatty acids (PUFAs), such as docosaexaenoic acid (DHA) and eicosapentaenoic acid
(EPA), mediate neuroactive effects in experimental models of traumatic peripheral nerve and spinal cord injury.
Cellular mechanisms of PUFAs include reduced neuroinflammation and oxidative stress, enhanced neurotrophic
support, and activation of cell survival pathways. Bioactive Omega-9 monounsaturated fatty acids, such as oleic
acid (OA) and 2-hydroxy oleic acid (2-OHOA), also show therapeutic effects in neurotrauma models. These FAs
reduces noxious hyperreflexia and pain-related anxiety behavior following peripheral nerve injury and improves
sensorimotor function following spinal cord injury (SCI), including facilitation of descending inhibitory
antinociception. The relative safe profile of neuroactive fatty acids (FAs) holds promise for the future clinical de-
velopment of these molecules as analgesic agents. This article is part of a Special Issue entitled: Membrane Lipid
Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
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1. Introduction

Fatty acids (FAs) are an important component of the diet and play a
major role in the lipid composition of cell membranes [1]. Some fatty
acid metabolites, such as prostaglandins, thromboxanes and leukotri-
enes, also play a crucial role as cell signaling molecules [2].
Docosaexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) are the
most important long chain Omega-3 fatty acids involved in physiologi-
cal functions. As the total production of endogenous EPA andDHA is not
enough to mediate all required physiological requirements under nor-
mal conditions, these polyunsaturated fatty acids (PUFAs)must be sup-
plemented in the diet from fish, eggs and nuts and, their supply is
especially important in the adequate development of the nervous sys-
tem during embryonic development of the fetus [3].

Change in the lipid membrane composition may affect cell signaling
pathways leading to disease development. Therefore, membrane-lipid
therapy can also be used to prevent or reverse several pathophysiolog-
ical processes [4]. Although vascular diseases and tumor pathologies
have been linked with the intake of saturated and trans-monounsatu-
rated lipids [5], intake of PUFAs prevent or reverse systemic pathological
conditions such as obesity [6].

More recently major advances have been made in our understand-
ing of how FAs can be used as potential therapeutic agents to ameliorate
high impact symptoms of neurotraumaassociatedwith spinal cord inju-
ry (SCI) [7] and peripheral nerve injury [8]. In thismini-reviewwe pres-
ent recent findings demonstrating neuromodulatory effects of FAs and
their recent application for the treatment of chronic complications,
such as neuropathic pain, in addition to recovery of motor function
after SCI [7].

2. Omega-3, -6 and -9 fatty acids as neuroactive molecules

The physiological functions of Omega-3 fatty acids in the nervous
system involve the maintenance of membrane fluidity which is crucial
for cell adhesion, axonal guidance, dendritic formation, synapse integri-
ty and neurotransmission [9]. At themechanistic level PUFAs are known
to mediate antioxidant [10], anti-inflammatory [11], and neuroprotec-
tive effects [12]. Furthermore, endogenous derivatives of Omega-3
FAs, specifically Resolvin D and E derived fromDHA and EPA respective-
ly, and act as endogenous anti-inflammatory mediators in a peripheral
inflammation model [13].

Administration of Omega-3 PUFAs have been assessed for the treat-
ment of hyperactive disorder attention deficit [14], Alzheimers [15], de-
pression [16], neurodegenerative diseases [17] and spinal cord injury
[18]. Although only partial therapeutic effects with Omega-3 PUFAs
were identified, these studies reveal that these fatty acids can mediate
a variety of physiological functions and, with further characterisation
may show therapeutic promise for neurotraumatic conditions.

With regards to Omega-6 fatty acids, Arachidonic Acid (AA) medi-
ates pro-inflammation and through the biosynthesis of eicosanoids by
cyclooxygenase enzymes (COX-1 and COX-2). Derivatives of AA include
the leukotrienes, thromboxanes and prostaglandins, molecules which
lead to inflammation, free radical production, vasoconstriction and
platelet aggregation, and neurological deterioration [19]. In contrast,
other AA derivatives, such as the Lipoxins play a beneficial role in the
nervous system. Specifically, Lipoxin A4 (LXA4) through the activation
of its receptor ALXR in astrocytes, reduces brain damage after a traumat-
ic brain injury, and decreases the release of proinflammatory cytokines,
including TNFα, IL-1β and IL-6 [20]. Furthermore, LXA4 potentiates the
endocannabinoid modulatory system, acting as an allosteric modulator
of the cannabinoid receptor 1 [21].

Oleic acid (OA) is one of the most representative monounsaturated
Omega-9 fatty acids. Enriched monounsaturated Omega-9 fatty acids
intake in the diet is associated with reduction in anger and irritability
[22]. In addition adherence to a Mediterranean diet rich in oleic acid
has been shown to reduce pain in patients with inflammatory arthritis
[23], while ingestion of a mixture of fatty acids including oleic acid im-
proves somatosensory evoked potentials in female carriers of X-linked
adrenoleukodystrophy (ADL) (rare inherited demyelinating disorder)
while reducing inflammation [24]. Indeed, during development upregu-
lation of the enzyme stearyl coenzyme A desaturase-I (SCD-1), respon-
sible for OA synthesis within the central nervous system (CNS), has
been shown to increase myelin basic protein levels [25], suggesting a
central role for this FA in neuronal function.

Fatty acids are also endogenous ligands for the peroxisome
proliferator-activated receptor (PPAR) family, with unsaturated fatty
acids such asOAhaving a greater affinity for the receptor than saturated
FAs [26]. OA activation of the PPARα receptor is essential for neuronal
differentiation and upregulation of GAP-43 and MAP-2 [27]. With re-
spect to themodulation of glia, OA inhibits the permeability of gap junc-
tions in astrocytes [28], in contrast to Omega-3 fatty acids which
increase their permeability [29]. OAmediates anti-inflammatory effects
through the inhibition of reactive oxygen species (ROS), p38MAPK and
Akt signaling pathways/IKK/NF-kappaB as characterized in BV2 cells
microglia line culture [30]. Furthermore, OA derivatives, such as
oleamide and nitro-OA,modulate COX-2 expression in culturedmicrog-
lia [31]. In this respect, our group has shown that themodified OAmol-
ecule, 2-OHOA, reduces the COX-2/COX-1 ratio in lipopolysaccharide-
activated macrophage cells [8]. At the neuronal level, OA blocks reup-
take of gamma-aminobutyric acid (GABA) [32], and acts as an allosteric
factor for the 5-HT7A serotonin receptor [33]. In addition the condensa-
tion product made between OA and dopamine, N-oleoyl-dopamine, has
been proposed as a dopamine receptor agonist with a central action for
facilitating locomotion [34].

Additional neuroactive properties of OA have been characterised in
relation to its synthesis from Albumin (A), which is naturally present
in the CNS during development [35]. Albumin induces synthesis of OA
by astrocytes an activates the SREBP-1 and SCD-1 enzymes [36]. The
A-OA complex present in the extracellular space is then incorporated
into neurons and promotes dendritic growth through the upregulation
of GAP-43 and microtubule associated protein (MAP-2) [37]. Further-
more, the neurotrophic effect of OA is synergistic with the effect of
NT3 and NT4/5 [38] (Fig. 1).

To date only a few clinical studies have identified a therapeutic effect
of fatty acids for CNS disorders or neurotrauma. Clinical trials earlier
demonstrated the efficacy of Fortasyn® Connect, a nutritional supple-
ment that contains amixture of DHA and EPA for cognitive deficits asso-
ciated with Alzheimer's disease [39], although this therapeutic effect
has not been replicated. In a trial for attention deficit hyperactivity dis-
order in children no benefit of DHAwas found for the primary outcome
measures studied, but an intriguing beneficial effect was found for cog-
nitive score in ApoE4 negative allele patients [14]. Although no positive
clinical trial has been performed, there is a growing body of strong pre-
clinical evidence which suggests that Omega-3 fatty acids administered
as a nutritional supplement could be effective for the treatment of trau-
matic brain injury and post-concussion syndrome patients [40]. A dou-
ble-blind crossover study for the treatment of adrenoleukodystrophy, a
demyelinating brain disorder,with chronic oleic acid (OA) in addition to
erucic acid as a nutritional supplement, showed an increase in white
matter following treatment [41].

3. Omega-3 and Omega-9 fatty acid characterisation in peripheral
and central nervous system injury models

3.1. Peripheral neurotrauma models

Systemic administration of Omega-3 PUFAs preventsmyelin and pe-
ripheral nerve degeneration following low-dose radiation exposure in
rat fetuses [42]. This observation was previously supported by the ex-
amination of peripheral nerve injury in mice where endogenous
Omega-3 PUFA levels are elevated due to the Fat-1 genewhich encodes
for Omega-3 FA desaturase [43]. In this study when compared to wild



Fig. 1. Regulation of oleic acid synthesis by receptor-mediated endocytosis of albumin in astrocytes. Transcytosis of albumin and its passage through the endoplasmic reticulum (ER), the
sterol regulatory element-binding protein-1 (SREBP-1) which is regulated by internal levels of oleic acid, induces stearoyl-CoA 9-desaturase (SCD), which is responsible for oleic acid
synthesis. In parallel pyruvate deshydrogenase (PDH), with the synthesis of acetyl-CoA, is used as a precursor for oleic acid synthesis. The complex formed by oleic acid-albumin is
then released to the extracellular medium by active exocytosis. ABP, albumin-binding protein [36].
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type mice, the Fat-1 strain showed evidence of enhanced neuroprotection
and functional recovery following peripheral nerve injury [43], including
protection against muscle atrophy [43]. At the neuronal level, activation
of ATF-3 as a marker of damage in the dorsal root ganglia of Fat-1 mice
was lower following nerve injury compared to the wild type group [43].
These studies support the idea that a higher endogenous Omega-3 PUFAs
promote beneficial effects after peripheral nerve injuries.

OA as a Omega-9 FA, is known tomodulate arthritic pain in patients
[44] in addition to orofacial pain in one experimental animalmodel [45].
Recentlymechanistic evidence for the action of OA, and derivatives such
as Oleamide or Nitro-OA, within the injured peripheral nervous system
has been shown by the desensitisation of the transient receptor poten-
tial channels within the dorsal root ganglia [31]. Furthermore
eicosatrienoic acid (ETA), ametabolite of OA, is known to be a potent in-
hibitor of leukotriene B4 synthesis [46], which in turn is known to me-
diate central sensitization to noxious stimuli [47] and to modulate
mechanical and thermal nociception [48].

3.2. Central neurotrauma models

With regards to traumatic brain injury, the Omega-3 PUFA DHA, ex-
hibits neuroprotective and anti-inflammatory effects when assessed in
an ischemic brain injurymodel, accompanied by a decrease in oxidative
stress [49]. Administration of Omega-3 PUFAs derivatives such as
Resolvin E1, has also been shown to improvemotor and post-traumatic
sleep function, in addition to reduced microglia reactivity following
traumatic brain injury [50]. Moreover increased levels of endogenous
Omega-3 PUFA, mediated by the Fat-1 gene that encodes Omega-3
fatty acid desaturase (see above) mediates hippocampal cornu
Ammonis 1 (CA1) neuroprotection and improved cognitive function fol-
lowing global ischemia in an experimental injury model [51].

After SCI, DHA administration has been shown tomediate neuropro-
tection and improvement inmotor function [52]. Furthermore, the com-
bination of an intravenous bolus dose of DHAwith a DHA-enriched diet
also leads to greater spinalwhitematter neuroprotection and locomotor
activity following SCI [53], with reduced neuronal and oligodendrocyte
loss and microglia/macrophage activation [54]. DHA treatment reduces
pro-inflammatory cytokine expression, glial fibrillary acidic protein and
apoptosis induced by spinal cord trauma [55]. Functional improvement
and neuroplasticity reflects sprouting of corticospinal and serotoniner-
gic fibres to make synaptic contact onto interneurones and
motoneurones [56]. More recently the fatty acid binding protein 5
(FABP5) has been identified as a molecule responsible for cellular up-
take and metabolism of DHA following SCI, which mediates the
neurorestorative effects of DHA [57].

4. Neuropathic pain after neurotrauma

4.1. Peripheral nerve injury

Peripheral nerve injury often leads to neuropathic pain and chronic
pain comorbidities such as anxiety [58]. Standardised experimental
pain models, such as the spared nerve injury (SNI) model, can be used
to assess new analgesics by measuring clinically-relevant symptoms
[59]. Reflex hypersensitivity to bothmechanical and thermal stimuli de-
velop soon after SNI [59], with the additional development of anxiety-
like behavior [60]. SNI elicits microglia cell activation within the spinal
dorsal hornwhich in turnmediates change in sensory function [61]. Ac-
tivation ofmicroglia require cyclooxygenase COX-1 andCOX-2 enzymes
to release prostaglandin E2 [62]. Furthermore following SNI constitutive
expression of COX-1 enzyme within spinal dorsal horn microglia is in-
creased [63], and COX-2 upregulation has been identified in both
human and rat tissue following peripheral nerve injury [64].

4.2. Spinal cord injury

SCI involves several changes in sensorimotor function below the spi-
nal injury level, including paralysis and the development of chronic
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symptoms, including pain and spasticity [7]. Development of neuro-
pathic pain after SCI is mediated by spinal and supraspinal pathophysi-
ological mechanisms [65], which leads to reduced quality of life [66].
Microglial cell reactivity exacerbates secondary damage following SCI
and promotes sensory dysfunction related to pain [67]. During acute
SCI the release of neuroinflammatory mediators such as cytokines pro-
mote morphological and functional changes in resident microglia cells
[68]. Microglia activation is related to sensory dysfunction at [69] and
above the SCI [67]. As multiple pathophysiological mechanisms related
to the development of neuropathic pain are triggered following SCI,
novel pharmacological treatments should be designed to control neuro-
inflammation, spinal excitability mediated by NMDA receptors and res-
toration of descending antinociception [7].

4.3. Omega-3 and Omega-9 fatty acids for the treatment of pain

Clinical studies have shown that Omega-3 FAs provide some relief of
neuropathic pain conditions, especially after diabetic peripheral neu-
ropathy. A systematic review of the effect of alpha lipoic acid (ALA) ad-
ministration to treat diabetic peripheral neuropathy symptoms,
including pain, suggests some effect following a 3weeks administration
protocol [70]. More specifically oral administration of ALA significantly
reduced symptoms of diabetic neuropathy (dysesthesia and burning
pain) and neuropathic deficits (paresthesia)when compared to placebo
[71]. In a series of case studies of people with neuropathic pain, reduc-
tion of symptoms was observed with high oral doses of Omega-3 FAs
for pathologies including cervical radiculopathy and thoracic outlet syn-
drome. These patients reported clinically significant pain reduction up
to 19 months following treatment initiation. No serious adverse effects
were reported [72]. Analgesic properties of Omega-3 FAs have also
been identified in pain symptoms unrelated to neurotrauma, such as
headache [73] and rheumatoid arthritis [74].

In experimental animal models with pre-emptive administration of
Omega-3 FAs, modulation of thermal noxious reflex responses follow-
ing partial sciatic nerve ligation has been observed [75], corroborated
with an enriched diet of Omega-3 fatty acids administered nerve injury
[76]. The same group showed that a diet containing a greater amount of
linolenic acid, a Omega-3 PUFA, administered before nerve injury was
more effective in reducing thermal hyperalgesia when compared to an-
imals treated with a diet containing a high amount of linoleic acid, a
Omega-6 PUFA [77]. Using an experimental model of SCI an 8 weeks
pre-emptive enriched diet of DHA reduced heat thermal hyperalgesia,
in addition to reduced sprouting of CGRP nociceptive afferents and
p38-MAPK dorsal horn neurons and spinal levels of inositol [78]. Finally,
Resolvin E1, ametabolite of DHA, administered via the intrathecal route
3 weeks after nerve injury temporarily reduced mechanical and heat
noxious reflex activity, in addition to lipopolysaccharide-induced
microgliosis and TNF-α release in primary micoglial cultures [79].

With regard to Omega-9 FAs, derivatives of OA such as oleamide and
nitro-OA have been shown to modulate nociception and anxiety in un-
injured rats [80]. The bioactive OA form, 2-hydroxyoleic acid (2-OHOA),
is a FA which has demonstrated effect as a hypotensive agent and for
anti-cancer properties [81]. Recently we have shown that the oral ad-
ministration of 2-OHOA significantly reduced ipsilateral mechanical
and thermal noxious reflex responses, decreased the COX-2/COX-1
ratio in lipopolysaccharide-activated macrophage cells and OX-42 ex-
pression within the ipsilateral lumbar spinal dorsal horn 7 days after
spared nerve injury. Moreover, 2-OHOA significantly restored inner-
zone exploration in the open-field test comparedwith the vehicle-treat-
ed shamgroup at 21 days after SNI suggesting a reduction in anxiety as a
pain comorbidity [8] (Fig. 2).

Lastly our group has shown that the combination of albumin and
oleic acid (A-OA) via the intrathecal route, synergistically promoted
early recovery of locomotor activity and promoted de novo descending
antinociception of Tibialis Anterior noxious reflex activity. In addition,
spinal L4–L5 immunohistochemistry demonstrated a unique increase
in serotonin innervation within the dorsal and ventral horn with A-OA
treatment when compared to uninjured tissue, in addition to a reduc-
tion in NR1 NMDA receptor phosphorylation and microglia, one
month after SCI. These mechanisms of action suggest that A-OA as a po-
tential analgesic and neurotrophic factor [7]. Furthermore, intrathecal
injection of A-OA has also been shown to reduce PPARα immunoreac-
tivity within glia cells following SCI, indicating a possible interaction
with nuclear hormone receptor regulation in the injured CNS [82]
(Fig. 3).

Several studies indicate that fatty acids modulate membrane pro-
teins related to ion channels including the transient receptor potential
family, that could mediate the observed analgesic effect in preclinical
models. The lipid composition in the immediate microenvironment in-
fluences the physiological function ofmembrane proteins related to cel-
lular signaling processes [83] especially involving G-proteins [84].
Recent studies have concluded that the lipid composition within the
plasma membrane can modulate the activity of ion channels [85]. Spe-
cifically, potassium channels can be directly modulated by lipids, such
as the KCNQ/Kv7 family voltage-gated K+ channels [86]. Moreover, it
has been demonstrated that the inwardly rectifying potassium channel
(Kir2.2) interacts with phosphatidyl inositol diphosphate, promoting
conformational changes to an open state [87]. With regards to other
ion channels that are influenced by change inmembrane lipid composi-
tion, the Transient receptor potential (TRP) channels may play an im-
portant role in the potential analgesic effect of fatty acids. PUFAs
administered as DHA or EPA are known to modulate the TRPA1,
TRPV1 and TRPM8 channels in sensory neurons [88]. TRP ion channels
receptors are known to be important modulators of pain processing,
and membrane lipid therapy may represent a promising new approach
through the exogenous intake of fatty acids [89].

5. Further characterisation of Omega-3 and Omega-9 fatty acids for
the treatment of neurotrauma

Several important issues remain to be addressed before Omega-3
and Omega-9 FAs are applied for the clinical treatment of peripheral
or central nervous system injury.

Better pharmacological characterization of the application of
Omega-3 and Omega-9 FAs and their neuroactive metabolites is re-
quired to define the optimal route, timing, therapeutic window and sys-
temic distribution following their administration for the treatment of
nerve injury and associated symptoms. Furthermore more safety stud-
ies are required to demonstrate the innocuous effect of FA treatment
for the promotion of neuroprotection and neuroplasticity in appropriate
patient groups for future clinical trials [90]. This includes further charac-
terisation of FAmodulation of adaptive andmaladaptive neuroplasticity
and the development of high impact symptoms such as pain and spas-
ticity [7].

6. Conclusions

Experimental studies support the use of polyunsaturated fatty acids
as a promising pharmacological therapeutic approach for the treatment
of central and peripheral traumatic injuries. Polyunsaturated FAs such
as DHA and EPA, mediate their effects in experimental neurotrauma
models by mediating neuroprotective and neurotrophic effects in com-
bination with a reduction in neuroinflammation.

In contrast, treatment with the CIS-monounsaturated Omega-9 FA
oleic acid, administered in combination with albumin or as 2-
hydroxyoleic acid, promotes recovery of hindlimb motor function
and reduces spasticity following SCI, in addition to promoting
antinociception and anxiolytic effects following both central and pe-
ripheral nerve injury. Several mechanisms of action associated with
FA treatment effects following neurotrauma have been demonstrated,
including the modulation of activated peroxisome proliferation alpha
nuclear receptors.



Fig. 2. Analgesic effects of systemic administration of 2-hydroxyoleic acid (2-OHOA) following peripheral nerve injury. (A) The Spared Nerve InjuryModelwas used to screen for potential
analgesic effects of 2-OHOA. (B) Reflex hypersensitivity to bothmechanical (top graph) and cold (bottom graph) test stimuli was significantly reduced following oral administration of 2-
OHOA, compared to administration of Pregabalin (**pb0.05, ***pb0.001) (C) Oral administration of 2-OHOA reversed pain-associated comorbidities, such as open-field induced anxiety
(upper panel), measured as the time spent by the animal entering the inner area of the 1 m2 arena (lower panel) [8].

Fig. 3. Descending antinociception of noxious reflex activity below spinal cord injury following treatment with intrathecal oleic acid and albumin. (A) The thoracic contusion spinal cord
injury experimental model was used to identify modulation of Tibialis Anterior noxious reflex temporal summation following transcutaneous spinal conditioning stimulation above the
injury site. (B) Intrathecal administration of albumin-oleic acid (A-OA), administered up to one month after spinal cord injury promoted de novo descending antinociception of noxious
reflex activity (lower graph), when compared to no effect in the control group in animals treated with saline (***pb0.001) [7].
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This review has shown that both polyunsaturated Omega-3 fatty
acids and CIS-monounsaturated Omega-9 fatty acids may constitute
novel treatment effects that could be translated to the clinic for a
range of central and peripheral nervous system pathologies, to restore
sensorimotor function.
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