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A prognostic risk score for development and 
spread of chronic pain
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Azin Zare    1,4, Marc Parisien    1,3,4, Jax Norman1,4, Hilary Sweatman    5, 
Ronrick Da-ano1,4, Eveliina Heikkala6,7, PREVENT-AD Research Group*, 
Jordi Perez3,8, Jaro Karppinen6,9,10, Sylvia Villeneuve11,12, Scott J. Thompson13, 
Marc O. Martel1,3,4, Mathieu Roy1,3,14, Luda Diatchenko    1,3,4 & 
Etienne Vachon-Presseau    1,3,4 

Chronic pain is a complex condition influenced by a combination of 
biological, psychological and social factors. Using data from the UK Biobank 
(n = 493,211), we showed that pain spreads from proximal to distal sites and 
developed a biopsychosocial model that predicted the number of coexisting 
pain sites. This data-driven model was used to identify a risk score that 
classified various chronic pain conditions (area under the curve (AUC)  
0.70–0.88) and pain-related medical conditions (AUC 0.67–0.86). In 
longitudinal analyses, the risk score predicted the development of 
widespread chronic pain, the spreading of chronic pain across body sites 
and high-impact pain about 9 years later (AUC 0.68–0.78). Key risk factors 
included sleeplessness, feeling ‘fed-up’, tiredness, stressful life events 
and a body mass index >30. A simplified version of this score, named the 
risk of pain spreading, obtained similar predictive performance based on 
six simple questions with binarized answers. The risk of pain spreading 
was then validated in the Northern Finland Birth Cohort (n = 5,525) and 
the PREVENT-AD cohort (n = 178), obtaining comparable predictive 
performance. Our findings show that chronic pain conditions can be 
predicted from a common set of biopsychosocial factors, which can aid in 
tailoring research protocols, optimizing patient randomization in clinical 
trials and improving pain management.

Pain is the primary reason that individuals seek healthcare and is a 
leading cause of disability among working adults1–3. Unfortunately, 
the causes of chronic pain and its prognosis are often unknown, as tis-
sue damage following injury is rarely an accurate predictor of clinical 
outcomes4. Instead, it is widely accepted that the interactions between 
biological, psychological and social factors play a greater role in deter-
mining chronic pain conditions and patients’ overall functioning5. 
This holistic framework, referred to as the biopsychosocial model for 
chronic pain5, can be challenging to define owing to the difficulties 
of simultaneously measuring and distinguishing multidimensional 

factors in large groups of patients living with pain. Access to large 
cohorts of participants with chronic pain has provided unprecedented 
opportunities to tackle these problems and better understand the 
determinants of chronic pain6.

Prognostic studies have shown that certain factors, such as mala-
daptive pain-coping strategies, somatization of pain and history of 
pain increase the likelihood of developing chronic back pain4,7–9. Addi-
tionally, factors including pain severity and duration9–12, fear of pain13 
and pain catastrophizing4,14 have been linked to worsening back pain. 
Brain imaging and genetic studies also suggest that biological factors 
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was not amplified uniformly across body sites in either acute or chronic 
pain. We then examined the prevalence of these pain conditions across 
a series of common self-reported clinical diagnoses. Here, pain condi-
tions and other pain-related medical conditions were all characterized 
by overlapping pain conditions (Fig. 1d). For example, in the case of 
migraine, non-migraine headache or spinal spondylitis, the prevalence 
of pain at the head (migraine and non-migraine headache) or back 
(spinal spondylitis) sites were lower than the cumulative prevalence 
of pain at the remaining sites.

The role of coexisting pain conditions was then examined using an 
online pain assessment of 84,030 individuals reporting chronic pain, 
excluding pain all over the body. The number of pain sites reported at 
the time of the online assessment (November 2019 to 2020) showed 
a monotonic increase with pain duration (r = 0.21; Fig. 1e), pain inten-
sity (r = 0.22; Fig. 1f), impact of pain (r = 0.24; Fig. 1g), depressive 
symptoms (r = 0.27; Fig. 1h) and symptom severity (r = 0.36, Fig. 1i; all 
P < 1.0 × 10−300). The use of higher-resolution anatomical body sites in 
the online questionnaire further confirmed the spatial co-occurrence 
(R2 = 0.30, Pperm < 0.0001) and interdependence in pain ratings across 
sites in chronic pain (R2 = 0.21, Pperm < 0.0001; Extended Data Fig. 1). 
Here, diagnosed clinical conditions such as pelvic pain or carpal tunnel  
syndrome were characterized by coexisting pain at other body sites. 
These results show that the number of coexisting pain sites is an impor-
tant phenotype characterizing different chronic pain conditions and 
reflecting the severity and impact of these pain conditions. We con-
clude that the number of coexisting pain sites is an effective target to 
train a predictive model for several different pain conditions.

A data-driven biopsychosocial risk score for pain
We used machine learning algorithms on 99 pain-agnostic features, 
including physical, psychological, demographic and sociological  
factors, to create a risk score that predicts the number of pain sites.  
To this end, the UK Biobank dataset available at the baseline visit 
(in-person assessment) was divided into a training set (n = 445,132) 
for discovery and a testing set composed of out-of-sample partici-
pants for whom longitudinal data were available (n = 48,079). We 
applied a nonlinear iterative partial least square (NIPALS)29 regression  
algorithm on the 99 features to predict the number of coexisting  
pain sites (combining acute and chronic) in the discovery set. The 
algorithm was trained using tenfold cross-validation to estimate the 
model fit and identify the optimal number of components (Extended 
Data Fig. 2). The trained model was then applied to the participants 
of the testing set.

The 99 features were organized into ten categories and three 
domains to improve the interpretability of the model (Fig. 2a). The 
model explained a total of 14% of the variance in the number of coexist-
ing pain sites in the validation set (Fig. 2b), with the most explained 
variance coming from mood (12%), neuroticism (7%) and sleep (5%), 
whereas demographics and occupational measures explained the 
least variance (<1%; Fig. 2c). These results were consistent with those 
obtained in the discovery set (R2 of 12, 7 and 7%, respectively; Extended 
Data Fig. 3). A detailed list of features and their respective weights in 
the model is presented in Extended Data Fig. 4. Features in particular 
with positive weights included tiredness, insomnia and body mass 
index (BMI) and notable features with negative weights included grip 
strength, employment status and frequency of alcohol intake. Partial 
correlations were used to construct networks showing the respective 
contribution of each category for acute and chronic pain conditions, 
based on the strength of their conditional associations after control-
ling for other categories (Extended Data Fig. 4). Networks constructed 
at different densities consistently show that chronic pain (but not 
acute pain) was simultaneously associated with various categories 
(weighted centrality ranging from 0.15–0.60 for the chronic pain node 
and 0.0–0.32 for the acute pain node), highlighting the multifactorial 
nature of the model used to predict pain.

predispose individuals to chronic pain conditions15; however, these 
studies are often circular, as pain measurements or attitudes toward 
pain are used as pain predictors and most candidate brain-imaging 
markers have been identified in studies with small sample sizes, mak-
ing them difficult to reproduce in larger and more diverse groups16,17. 
Furthermore, these previous prospective studies have rarely been 
validated in out-of-sample patients and the generalizability of the find-
ings to new patients remains unknown18,19. A data-driven framework 
with clinical utility for predicting pain conditions is currently missing.

The Task Force for the Classification of Chronic Pain recommends 
classifying chronic pain conditions based on their etiology (for example,  
musculoskeletal pain), underlying pathophysiology (for example, 
neuropathic pain) or body site (for example, back pain)20,21. Despite 
differences between these conditions, evidence suggests that pain con-
ditions overlap with one another22, share a common genetic risk pro-
file23,24 and show similar alterations in the central nervous system15,25,26. 
Moreover, coexisting pain conditions, which over one-third of pain 
patients report experiencing, are associated with higher impact of pain, 
including lower quality of life and poorer response to treatment22,27. 
Thus, it is believed that different pain conditions share common risk 
factors and primary chronic pain is now recognized as a disease on its 
own rather than a symptom of another disease28.

Building on these ideas, we applied machine learning to the 
UK Biobank dataset to synthesize a wide range of multidimensional 
pain-agnostic features and develop a predictive model capable of  
classifying and forecasting different pain conditions and the spreading 
of pain across body sites. Our first hypothesis was that different chronic 
pain conditions are characterized by a common set of psychosocial  
factors that can be identified by studying the number of coexisting pain 
sites. The second hypothesis was that these risk factors can predict 
the development of various chronic pain conditions. The third hypo-
thesis was that the differences between the observed pain and the pre-
dicted pain based on these risk factors will determine the spreading or  
recovery of chronic pain about 9 years later. We also conducted  
exploratory analyses to evaluate the following aspects of our model: 
its ability to predict high-impact pain, the specificity of candidate  
models trained on different body sites and the development of a  
simplified version of our model for generalizable use in research  
or clinical settings. Figure 1a illustrates the study workflow,  
highlighting each hypothesis (Fig. 1a(i–iii)) and exploratory analysis 
(Fig. 1a(iv–vi)).

Results
This study was conducted using data from the UK Biobank (timeline 
shown in Supplementary Fig. 1). At their initial visit, participants  
were asked whether they experienced pain interfering with their  
usual acti vities in the last month at the following body sites: head, 
face, neck/shoulder, stomach/abdominal, back, hip and knee. The 
participants could also respond that they experienced pain all over 
the body (PAO) or none of the above (the latter were categorized as 
pain-free participants). Figure 1b shows the prevalence of pain in the 
full sample of participants (n = 493,211) and a subsample of participants 
who returned for a follow-up magnetic resonance imaging (MRI) visit 
(median time between visits of 9 years; n = 48,079). Participants report-
ing pain were then asked whether they had pain lasting for more than 
3 months, which represents the cutoff for the pain to be considered 
chronic20. Pain experienced for less than 3 months was considered 
to be acute.

Overlapping pain
In the UK Biobank, 44% of individuals experiencing chronic pain 
reported pain at more than one body site and the co-occurrence of pain 
was more frequent between proximal sites than distal sites (R2 = 0.56, 
Pperm < 0.0001; Fig. 1c). This pattern was also observed in acute pain 
conditions (R2 = 0.34, Pperm < 0.006). These results indicate that pain 
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The model’s output provided a single prediction for the number of 
pain sites, for each participant, based on their score on the 99 features. 
This output, referred to as the risk score for pain, was used to predict  
the number of pain sites and classify each pain condition separately 
(Fig. 2d). The risk score for pain showed good to excellent performance 
for classifying participants with chronic pain conditions from pain-free 
participants at each body site, as shown by their effect sizes (Cohen’s 

d = 0.53–1.42; Fig. 2e) and diagnostic capacities (AUC 0.70–0.88,  
Fig. 2f). Although the model was trained on acute and chronic pain, 
the risk score for pain better predicted and classified chronic pain 
conditions than acute pain conditions (Cohen’s d = 0.33–0.74; AUC 
0.63–0.76). Finally, the risk score for pain also showed good perfor-
mance for classifying a broad range of medical conditions (Cohen’s 
d = 0.48–1.50; AUC 0.67–0.86; Fig. 2g).
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Fig. 1 | Phenotyping pain in the UK Biobank. a, Schematic showing the 
study workflow. IBS, irritable bowel syndrome; Dx, diagnosis; S/A, stomach or 
abdominal; B, back; Ha, headache; Rx, prescription; UKB, UK Biobank; NFBC, 
Northern Finland Birth Cohort; Sociodem., sociodemographic. b, Anatomical 
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were negatively associated with their distances in chronic (Pperm < 0.0001) and 
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The 95% confidence interval (CI) estimated across 1,000 bootstrap samples 
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symptom severity in last 2 weeks (h) and symptom severity during the last week 
(i). BPI, brief pain inventory; PHQ, patient health questionnaire.
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Recovery and spreading of chronic pain: 9-year prognosis
We used the longitudinal dataset (the individuals from the test set  
that underwent a follow-up in-person assessment) to test whether 
the risk score for pain measured at baseline predicted changes in  
the number of chronic pain sites at the follow-up visit about 9 years 
later. The stability and individual changes in the number of pain sites 
between the two visits are displayed in Fig. 3a. The matrix in Fig. 3b 
shows that chronic pain at baseline was associated with higher odds of 
experiencing chronic pain at the same site or at a proximal site about 9 
years later (R2 = 0.41, Pperm < 0.0001). Moreover, individuals with high 
risk scores for pain were more likely to report new pain at distal sites 
(R2 = 0.26, Pperm = 0.0002; Fig. 3c). This suggests that while baseline 
chronic pain presents a risk for the spreading of pain to proximal sites, 
a higher risk score for pain instead impacts the spreading of pain to 
distal sites, where pain does not normally propagate. As hypothesized, 
an elevated risk score for pain adjusted for the number of pain sites at 
baseline predisposed individuals to the pain outcomes measured at 
the follow-up visits; participants with negative scores recovered from 
their pain, whereas participants with positive scores progressed toward 
spreading of their pain (Fig. 3d). Thus, our adjusted risk score showed 
strong effect sizes, obtained good performance for predicting chronic 
pain spreading across multiple new pain sites at the follow-up visit (AUC 
0.73 for 4+ sites; Fig. 3e) and predicted the prognosis of pain-related 
medical conditions in the longitudinal data (Cohen’s d = 0.25–0.83; 
Fig. 3f).

We next performed a tentative temporal ordering of individual 
risk factors by ranking the ten categories on the basis of their effect 
sizes to identify key risk factors that may indicate the onset or progres-
sion of chronic pain conditions. This procedure allowed us to unpack 
the sequence of the risk factors organized by categories, from early 
prodromal features to late features, predicting the progression of the 
spreading or recovering of chronic pain across body sites (Fig. 3g).  
The results show that mood was the earliest contributor to pain spread-
ing, suggesting that mood-related factors may be early warning signs 
contributing to the development of chronic pain. On the other hand, 
occupation ranked last, suggesting that factors related to a job or career 
may not have as much impact on the development or progression 
of chronic pain spreading as other factors such as mood, anthropo-
metric measurements, neuroticism or sleep. By establishing a tenta-
tive temporal ordering of these risk factors, we were able to better 
define the cascade of factors predicting chronic pain spreading, which 
could help develop more targeted interventions to prevent or manage  
pain conditions.

High-impact pain
The risk score for pain was also generalized to secondary pain out-
comes (Fig. 4a), including overall health rating (R2 = 0.20, P < 1.0 × 10−300; 
Cohen’s d between consecutive categories of 0.38–0.78), use of opioids 
(AUC 0.73; Cohen’s d = 0.72) and disability due to sickness (AUC 0.88; 
Cohen’s d = 1.35; Fig. 4b). The longitudinal analyses demonstrated 
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1,000 bootstrap samples is shown. *PAO was excluded from model training in the 
discovery set. Dx, diagnoses.
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that the risk score for pain predicted the initiation of opioid medica-
tion (AUC 0.67; Cohen’s d = 0.51) and the development of disability 
(AUC 0.78; Cohen’s d = 0.94; Fig. 4c), which echoes the associations 
previously observed between high-impact pain and overlapping pain 
conditions (Fig. 1). Concordant results were observed in the discovery 
set (Extended Data Fig. 5). Overall, our results show that the risk score 
for pain also predicted high-impact chronic pain.

Pain risk score and biological markers
We next tested whether certain biological markers were associated with 
the risk score for pain (Extended Data Fig. 6). The markers included 
C-reactive protein (CRP), a polygenic risk score (PRS) and a validated 
brain-based biomarker called the tonic pain signature (ToPS)30. These 
markers showed small but significant associations with the number of 
pain sites in the validation dataset (CRP, r = 0.09, P = 3.4 × 10−83; PRS, 
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Fig. 3 | Forecasting the spreading and recovery of chronic pain. a, Test–retest 
variance explained (R2) in the number of chronic pain sites (4+ including PAO) 
between baseline and the follow-up visit. b, Odds of reporting chronic pain sites 
at baseline and the follow-up visit depended on the distance on the body map 
(Pperm < 0.0001). c, Our risk score, however, increased the odds of reporting 
pain at distal sites (Pperm = 0.0002, using 10,000 two-sided permutation tests). 
The 95% CI estimated across 1,000 bootstrap samples is shown. d, The matrices 
display the risk score depending on the changes in the number of chronic 
pain sites before (left matrix) and after (right matrix) adjusting linearly and 
exponentially for the number of chronic pain sites initially reported at baseline, 
age and years of follow-up. A negative-adjusted risk score was associated with 
recovery and a positive-adjusted risk score was associated with spreading of 
chronic pain. Means and s.e.m. are shown. e, The diagnostic capacities of our 

adjusted risk score for recovering and spreading was tested using Cohen’s 
d effect size (presented as mean ± s.e.m. estimated from 10,000 bootstrap 
samples) and AUC-ROC discrimination when compared to chronic pain-free 
participants. f, The same approach was conducted for diagnoses of medical 
conditions using Cohen’s d effect sizes (presented as mean ± s.e.m. estimated 
from 10,000 bootstrap samples). g, The order of progression between the pain 
determinants was determined using Cohen’s d in each category after controlling 
for multiple comparison. The factors are ordered depending on their importance 
in spreading and recovery. Early factors showed significant differences between 
small changes in chronic pain (for example, pain +1 or −1 site), whereas late 
factors only showed differences between large changes in chronic pain. FDR, 
false discovery rate.
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r = 0.11, P = 5.1 × 10−114; ToPS, r = 0.038, P = 5.0 × 10−13), with equivalent 
or even stronger correlations found with the risk score for pain (CRP, 
r = 0.20, P < 1.0 × 10−300; PRS, r = 0.12, P = 1.8 × 10−125; ToPS, r = 0.074, 
P = 2.6 × 10−45; Extended Data Fig. 7). This supports the idea that  
psychosocial factors are connected to biological factors in the  
experience of pain, as suggested by the biopsychosocial model for pain5. 
Additional analyses integrating domains for each biological marker  
or their combinations, are presented in Extended Data Fig. 7.

Pain-specific candidate models for different body sites
We next investigated the specificity of the risk factors between differ-
ent pain conditions by generating and testing alternative candidate 
models for each pain site separately. The 16 new candidate models 
were trained by applying the NIPALS algorithm on the 99 features to 
classify each body site separately (for example, participants report-
ing chronic knee pain versus everyone else). The matrix presented in  
Fig. 5a shows the loadings of the 99 features on the risk score derived 
for different pain conditions, including our initial model predicting  
the number of coexisting pain sites. A visual inspection of the matrix 
shows that the most predictive features for the spreading of pain were 
also the most homogenous between pain conditions. The models 
trained to classify acute pain conditions showed poor to good dis-
crimination (AUC 0.62–0.74), whereas the models trained to classify 
chronic pain conditions showed good to excellent discrimination  
(AUC 0.70–0.89; Fig. 5b). The expression of each risk score (normal-
ized for comparisons) correlated with the number of coexisting pain 
sites (Fig. 5c). The weights of the 99 features are presented for each 
candidate model in Extended Data Fig. 8.

To test the commonality or the specificity between the body sites, 
we compared the discriminative value of each site-specific model 
with that of the candidate models trained on a different pain site, 
in both cross-sectional (Fig. 5d) and longitudinal (predicting the 
development of chronic pain; Fig. 5e) data. In both cases, site-specific  
models showed only modest improvement over the risk score for pain 
(improvement in AUCs ranged from 0.006–0.065 in cross-sectional 
data and −0.021–0.047 in longitudinal data) and models trained for a 
different body site (improvement in AUCs ranged from 0.024–0.085 
in cross-sectional data and 0.004–0.074 in longitudinal data). Similar 
results were observed in the discovery dataset (Extended Data Fig. 8). 
We conclude that different chronic pain conditions can be predicted 
from interchangeable models trained on a different pain site. These 

findings support the proposition that a common framework may be 
used to characterize different pain conditions that tend to co-occur 
and be predicted from the same features. The main difference in the 
performance of the model was instead that the risk score for pain 
discriminated between participants reporting pain at one body site 
and participants reporting pain at more than one body sites (chronic 
pain AUC 0.68–0.75; acute pain AUC 0.57–0.63; Supplementary Fig. 2).

A similarity matrix correlating the loadings between the candidate 
models showed that our initial model trained on the number of pain 
sites loads strongly on each of the eight candidate models trained for 
specific chronic pain conditions (r = 0.75–0.97; Fig. 5f). The similarities 
between the chronic pain candidate models depended on the distance 
between the body sites, reflecting the actual body map of the coexisting 
pain sites presented in Fig. 1b (R2 = 0.58, Pperm < 0.0001). This was, how-
ever, not the case for acute pain conditions, as the candidate models 
loadings onto the risk score varied between body sites (r = 0.31–0.93) 
and did not depend on the distance between pain sites on the body 
map (R2 = 0.09, Pperm = 0.19). Consistent results were obtained in the 
discovery dataset (Extended Data Fig. 8).

Risk of pain spreading screening
Last, we aimed to simplify our model by reducing the number of fea-
tures (Fig. 6a). We re-trained the model by incrementally adding the 
items explaining the most variance. This simplified model, named 
the risk of pain spreading (ROPS), is a new risk score for pain calcu-
lated by simply summing the binarized answers to six items measuring 
sleep, neuroticism, mood, trauma and anthropometric measurements  
(Fig. 6b). The ROPS was associated with the number of pain sites 
(R2 = 0.075, P < 1.0 × 10−300) as well as pain intensity (R2 = 0.071, 
P = 8.5 × 10−56) and achieved good performance in cross-sectional 
data (chronic pain AUC 0.66–0.79; acute pain AUC 0.60–0.71) and 
average-to-good performance in longitudinal data (chronic pain AUC 
0.59–0.73; acute pain AUC 0.53–0.65, Fig. 6c). This represented the best 
trade-off between the smallest number of features (obtained using 
the most predictive features from the original 99 features) and the 
highest AUC receiver operating characteristic (ROC), especially in 
the longitudinal data (chronic pain all over the body AUC 0.73). The 
ROPS predicted high-impact pain, as measured by pain interference 
(R2 = 0.065; P < 1.0 × 10−300), pain severity (R2 = 0.14; P < 1.0 × 10−300) 
and depressive mood (R2 = 0.18; P < 1.03 × 10−300; Fig. 6d). Further-
more, the original risk score and the ROPS both performed well across 
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Fig. 4 | Predicting secondary outcomes associated with high-impact pain.  
a, Schematic of secondary outcomes examined: health ratings, opioid 
medications and disability and/or sickness. b, Cross-sectional performance of the 
risk score on secondary outcomes. Cohen’s d effect sizes and explained variance 
(R2, on the left with P estimated using a two-sided Pearson’s r correlations) were 
used across self-reported ratings of overall health ratings while Cohen’s d and 
AUC-ROC discriminations were used for opioid medication use and inability to 

work due to sickness or disability in the validation data. c, Longitudinal prognosis 
of secondary outcomes at about 9 years follow-up predicted from the risk score at 
baseline. Cohen’s d and AUC-ROC were measured in worsening at follow-up (left 
in red) and improvement (right in blue). P obtained using a two-sided unequal 
variance t-test (Welch’s approximation). Sample sizes are included in parenthesis. 
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sexes (self-identified male or female, ROPS AUC 0.67–0.82 with sex 
differences in AUCs ≤ 0.03) and ethnicities (self-identified as White, 
Black, Asian or mixed, ROPS AUC 0.69–0.86 with ethnic differences 
in AUCs ≤ 0.06; Extended Data Fig. 9). None of these six features was 
directly related to pain or attitudes toward pain, suggesting that more 
objective predictions can be obtained by avoiding the use of pain ques-
tionnaires to predict pain outcomes.

We then tested the ROPS using the Northern Finland Birth Cohort 
(NFBC), which includes 5,525 participants born in 1966, 4,710 of whom 
were followed longitudinally. This cohort was selected because equiva-
lent items were found for each one of our six items, with pain phenotype 
and demographics similar to the UK Biobank (Extended Data Fig. 10). 
In the NFBC, the ROPS predicted pain cross-sectionally (chronic pain 
AUC 0.62–0.70; acute pain AUC 0.58–0.69) and longitudinally (chronic 
pain AUC 0.57–0.66; acute pain AUC 0.50–0.63) with similar accuracy 
to the score initially developed in UK Biobank (Fig. 6e). Moreover, 
the ROPS also partially determined the impact of pain (R2 = 0.044, 
P = 5.0 × 10−33), work disability (R2 = 0.078, P = 5.1 × 10−37) and depres-
sive mood (R2 = 0.18, P = 5.0 × 10−79) in participants reporting chronic 
pain (Fig. 6f).

We also directly administered the ROPS to a smaller group of 
participants enrolled in the Pre-symptomatic Evaluation of Novel 
or Experimental Treatments for Alzheimer’s Disease (PREVENT-AD) 
cohort. These participants are older adults with normal cognitive 
function enrolled in a longitudinal study aimed to identify risk factors 
for Alzheimer’s disease. Participants only responded to the five ques-
tions displayed in Fig. 6b (BMI was calculated from previous health 
records), preventing any flexibility in the selection of feature equiva-
lence entered in the predictive model. The results were almost identical 
to those observed in the UK Biobank and the NFBC for cross-sectional 
classifications (AUC 0.57–0.88; Fig. 6g), pain intensity (R2 = 0.11, 
P = 0.022), McGill Pain Questionnaire (MPQ) sensory-affective scales 
(R2 = 0.12, P = 9.1 × 10−4), anxiety (R2 = 0.28, P = 1.3 × 10−7) and depressive 
mood (R2 = 0.40, P = 6.6 × 10−11; Fig. 6h).

Discussion
In this study, we trained a model to predict the number of pain sites and 
derive individual pain risk scores. These scores classified each chronic 
pain condition separately in cross-sectional data (seven different body 
sites and 25 pain-related medical conditions), forecasted individual 
differences in pain spreading or recovery after 9 years and generalized 
to secondary outcomes such as general health, disability and opioid 
use. To simplify the model’s practicality, we developed a user-friendly 
screening tool named the ROPS, restricted to only six questions  
with binarized answers. The ROPS effectively predicted widespread 
chronic pain and its impact across three different cohorts. Predicting 
chronic pain conditions has numerous potential applications, such  
as patient selection for research protocols, participant matching in  
randomized controlled trials and guiding treatment options for 
patients in urgent need.

Using a multivariate approach, we identified that major risk factors  
for co-occurring pain on multiple body sites were mood (tired-
ness and consulting GP for depression/anxiety), sleep (insomnia), 

neuroticism (feeling fed-up) and anthropometric measures (BMI). 
Mental health-related factors were consistent across different pain 
sites and were the strongest predictors, whereas sociodemographic 
factors were heterogeneous across pain sites and were least predictive 
of the number of chronic pain sites. The comparison between candidate 
models trained on different body sites showed little superiority to body 
site-specific models, indicating that different chronic pain conditions 
can be predicted cross-sectionally and longitudinally from common 
risk factors. Our findings suggest that the biopsychosocial model not 
only shapes pain experience and maintenance, but also predisposes 
the development of new pain sites, a phenomenon we refer to as the 
‘spreading’ of pain sites.

An increasing number of conditions resembling widespread pain 
disorders have been referred to as chronic overlapping pain conditions 
(COPCs). Our results showed that co-occurring pain sites beyond 
the traditional focus areas (such as headaches in migraine, stomach/
abdominal pain in irritable bowel syndrome (IBS) or hand pain in carpel 
tunnel syndrome) are common in conditions other than the traditional 
COPCs. Furthermore, we found that the pain site co-occurrence was not 
random, with a strong dependence between proximal pain sites, shown 
from either acute or chronic pain sites and from correlations between 
pain intensity ratings. Thus, biopsychosocial risk scores developed for 
headache will also moderately predict knee pain and vice versa, indi-
cating insensitivity to specific pain sites, although the more distal the 
pain sites, the more dissimilar the models were. All candidate models 
were effective in predicting widespread pain and diagnoses with a 
high prevalence of multi-site pain, such as fibromyalgia, regardless of 
whether they were trained on the number of pain sites or specific body 
sites. This suggests that an elevated risk could be a pathway for the 
progression of widespread pain disorders and helps in understanding 
how pain spreads across multiple sites.

This study highlights the significance of pain spreading as a core 
concept in COPCs. Our results show that individuals with a higher pain 
risk score are prone to developing pain in multiple sites and the extent 
of pain spreading across the body is more important than the location 
of pain. Furthermore, our results indicate that pain spreading encom-
passes the concept of high-impact pain characterized by limitations 
in work, social and self-care activities leading to disability, opioid use 
and increased healthcare needs31,32. This denotes that the concepts of 
chronic pain spreading and high-impact pain seem intimately linked 
and predictable from higher-order biopsychosocial characteristics 
presented from our data-driven framework. Therefore, we assert that 
research and prevention strategies should not solely focus on address-
ing the transition from acute to chronic pain, as solely focusing on the 
temporal evolution of pain is an incomplete narrative. Instead, our 
results suggest that the spatial trajectory of pain, whether it remains 
localized to a specific body site or spreads to proximal and then distal 
sites, is a central factor in chronic pain syndrome. Thus, prioritizing the 
study of spatial evolution of pain once it becomes chronic is crucial due 
to the prevalence of COPCs, the dynamic changes they undergo over 
time, the predictability of their spreading patterns, their biological 
underpinnings and their pivotal role in determining the severity of 
high-impact pain.

Fig. 5 | A common risk shared across chronic pain conditions. a, Schematic 
describing that a total of 16 site-specific candidate models (for example, acute 
knee versus all else) were derived cross-sectionally in the discovery set using 
NIPALS. Feature loadings (Pearson’s r correlation coefficient between features 
and the models’ scores) are shown in the testing set for each model. IPAQ, 
International Physical Activity Questionnaire; MET, metabolic equivalent 
task. b, Candidate models’ capacities to discriminate between the pain sites 
they were trained on from pain-free individuals are shown using AUC-ROC. 
c, The risk score derived from each candidate model correlated with number 
of coexisting pain sites for acute and chronic pain conditions separately (risk 
scores presented as mean ± s.e.m. estimated from 10,000 bootstrap samples, 

nchronic = 17,948; nacute = 13,117). d, Cross-sectional discrimination for each pain site 
in acute (dashed line) and chronic (full line) pain conditions against the rest of 
the testing cohort (pain-free and other pain sites) using the model specific to the 
site (in color), to the number of pain sites (black) and to other candidate models 
trained on different pain sites (gray). e, The same analyses were performed in 
the longitudinal data to predict the development of chronic pain in pain-free 
individuals about 9 years later. f, Post hoc analyses show that similarities between 
the feature loadings the different models (Fisher-normalized) can be explained 
(R2) by the distance between the sites in chronic (Pperm < 0.0001), but not acute 
pain conditions (Pperm = 0.19, using 10,000 two-sided permutation tests).  
The 95% CI estimated across 1,000 bootstrap samples is shown.
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The biopsychosocial model has been influential in the field  
of chronic pain, as any model focusing solely on any one of these 
domains would inevitably be inadequate5,33. In this study, we  

also investigated the association between our pain risk score with  
biological markers, including CRP (inflammatory marker), PRS 
(genetic risk score) and ToPS (a brain-based signature for tonic pain). 
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Our results revealed consistent but small associations between these 
bio markers and the number of pain sites; however, these biomarkers 
were equivalently or even more strongly correlated with pain risk  
scores than with the number of pain sites alone. These findings raise  

questions about the pathophysiology of chronic pain and suggest 
that incorporating psychosocial factors may be more effective  
in understanding the biological determinants underlying chronic 
pain conditions.
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We finally aimed to make our risk score for pain more clinically 
relevant and useful by simplifying it to a set of six questions with binary 
answers (yes/no), suitable for over-the-phone administration or screen-
ing visit assessments. The ROPS allows for a quick assessment of the risk 
of developing or transitioning to more severe forms of chronic pain. 
The ROPS has multiple applications, including enhancing research 
power by targeting vulnerable patients, optimizing patient allocations 
in randomized controlled trials and improving pain management by 
identifying individuals at risk of severe chronic pain conditions that 
persist or worsen over time.

Our study has several limitations. First, the UK Biobank lacks 
diversity, being a predominantly white population of middle-aged 
and older individuals. This may restrict the applicability of our model,  
as studies have demonstrated that algorithms trained on mostly  
white participants can be mischaracterized in non-white partici-
pants34. We, however, found that the original score and the ROPS 
presented near identical discrimination between sex and ethnicities 
(Extended Data Fig. 9). Second, the UK Biobank may have a ‘healthy 
volunteer’ selection bias given the low participation of 5.45%35. Internal  
selection bias has been reported in the imaging visit (the valida-
tion cohort), where participants are sociodemographically similar  
(Extended Data Fig. 2) but generally healthier than participants  
from the baseline visit (the discovery cohort)36. We, however, 
genera lized the risk score for pain in independent cohorts with dif-
ferent characteristics. Third, our study did not account for medical  
comorbidities or treatments when developing the risk score for  
pain, focusing instead on the association between higher risk  
scores and the diagnosis of medical conditions and/or medication 
use. Future research should explore the independent contribution  
of medical factors to chronic pain. Last, like any multivariate  
model, the weights of our model cannot be directly interpreted.  
We, however, estimated feature importance through loadings and 
interpreted the univariate associations between each feature and  
the risk score.

In conclusion, our model predicted chronic pain spreading across 
multiple body sites in nearly 50,000 out-of-sample individuals. We 
showed that high sensitivity and specificity could still be obtained for 
certain chronic pain conditions using only six questions. The ability 
to predict chronic pain, particularly COPCs and its severe forms, with 
minimal effort has the potential to benefit both research and clinical 
practice.
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the variance explained by the full risk score predicting the number of pain sites.  
c, Model performance on the testing set for the number of pain sites in both acute 
and chronic pain sites in the cross-sectional (nchronic = 17,948, nacute = 13,117) and 
longitudinal data and with pain intensity during the online assessment. d, In the 
online pain assessment, the ROPS was associated with the interference of pain, 
symptom severity during the last week and the depressive symptoms severity 
in last 2 weeks (nROPS:0 = 9,794, nROPS:1 = 18,460, nROPS:2 = 20,102, nROPS:3 = 16,489, 
nROPS:4 = 10,423, nROPS:5 = 4,349 and nROPS:6 = 911). e–h, These results were  
replicated in independent cohorts including the NFBC cohort (using equivalent 
score items, longitudinal-only sample, n = 4,710) and the PREVENT-AD cohort 
(using identical score items). Hd, hand; A, arm; Ft, feet; C, chest; L, leg; GAI, 
geriatric anxiety scale; GDS, geriatric depression scale. In the NFBC, the ROPS 
predicted the number of pain sites and classified different pain conditions in 

both cross-sectional (n = 5,525) (nchronic = 1,489; nacute = 2,374) and longitudinal 
data (n = 4,710) with similar accuracy as in the UKB (e). The ROPS determined 
impact, working disability and depressive mood in the NFBC cohort (nROPS:0 = 334, 
nROPS:1 = 413, nROPS:2 = 408, nROPS:3 = 344, nROPS:4 = 184, nROPS:5 = 62 and nROPS:6 = 12) 
(f). In the PREVENT-AD cohort, the ROPS predicted the number of pain sites 
and classified different pain conditions in cross-sectional data (g). The ROPS 
determined sensory and affective pain measured with the MPQ, anxiety and 
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Methods
Overview of the UK Biobank population
The UKB project is a large-scale, prospective and ongoing study ini-
tially established to allow extensive investigation of genetic factors 
and lifestyle determinants of a diverse range of common diseases in 
middle-aged and older adults37. To recruit the intended sample size of 
approximately 500,000 participants, over 9 million invitations were 
sent to individuals registered in the UK National Health Service aged 
40–69 years old and living within a reasonable distance from an assess-
ment center. Baseline recruitment and data collection from 503,317 
participants who consented to join the study took place between 2006 
and 2010 in 22 assessment centers throughout Scotland, England and 
Wales. Subsets of baseline participants were invited later for follow-up 
visits and/or were asked to provide data on online questionnaires at 
certain time points. The following datasets from different time points 
are used to address different aims of our study.

Baseline UK Biobank (in-person assessment visit, 2006–2010, 
n = 502,494). Data collection at recruitment included (1) a touch-
screen questionnaire, where participants provided information on 
their sociodemographic, lifestyle, psychosocial factors (social support 
and mental health), as well as their health and medical history; (2) a 
verbal interview by a trained nurse, including data on early life factors, 
employment, medical conditions, medications and operations; (3) 
physical measurements; and (4) biological sampling. For the purposes 
of this study, our study sample was restricted to 502,494 participants 
that contained data available at the date of our data request.

Imaging UK Biobank (imaging follow-up visit, 2014–2020, 
n = 49,001). A subsample of baseline participants was invited to attend 
a follow-up visit 3–13 years later (median 9 years). This visit included 
an MRI scan on the brain as well as the same questionnaires and assess-
ments as the baseline38. After exclusion based on both visits, the sample 
for this follow-up visit was restricted to the 48,079 participants. More 
details regarding brain imaging is provided in Methods, Brain MRI 
measures.

Online UK Biobank (online pain questionnaire, 2019–2020, 
n = 167,255). Additional assessments in a subset of participants 
recruited at baseline were conducted by the UKB using online ques-
tionnaires. Experience of pain questionnaires were administered about 
8–13 years (median 10 years) after the baseline visit to allow better 
phenotyping of individuals with chronic pain. A subset of 332,587 
participants were sent invitations and 167,255 filled out the online 
questionnaire. Subsections were used to validate the in-person pain 
phenotype using the same anatomical sites asked at the UKB baseline 
visit (ten sections, https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/
pain_questionnaire.pdf). About 94,074 of these individuals reported 
pain or discomfort lasting for more than 3 months (chronic pain).

UK Biobank participants and data exclusion
From the initial 502,494 participants from the baseline assessment 
visit (baseline UKB), those with more than 20% of features missing 
among the 99 features selected for the pain risk score (as explained in 
Methods, Feature selection for the pain risk score) were excluded, as 
were participants with missing data at any of the acute or chronic pain 
sites (equivalent to a total of <2.5% of the participants). These exclusion 
criteria were implemented to ensure high confidence regarding the 
number of pain sites, the primary outcome of this study. To ensure the 
findings of the study were as generalizable as possible to the greater 
population, no other exclusion criteria were applied. This resulted in 
a total study population of 493,211 individuals. The total study sample 
was then divided into a discovery cohort of 445,132 participants who 
did not attend the imaging follow-up visit and a validation cohort of 
48,079 participants who did attend the imaging visit (imaging UKB). As 

the validation cohort includes participants from the imaging follow-up 
visit and longitudinal data are available for these participants, this sub-
sample was used for the purposes of longitudinal analyses in this study.

To minimize potential bias from incomplete questionnaires, a 
data-driven Bayesian ridge regression model was applied for imputa-
tion of missing data as a function of all other features in the model, 
using the median as a prior. A median-only feature imputation method 
was also tried and presented congruent results. Features were then 
standardized across the participants by centering the mean to zero 
and scaling the variance to one. The same process (exclusion followed 
by an imputation for missing data and standardization with the same 
mean and variance) was applied separately for the validation dataset.

Of the participants from the online UKB, only those reporting 
chronic pain (as explained in Methods, Pain phenotype in the UK 
Biobank, n = 94,074) were included in this study. Participants report-
ing PAO were not exposed to a subset of the questionnaire and were 
therefore excluded from the related analyses. Similarly, participants 
missing data at any of the pain sites examined were excluded (in-person 
7 or full 12 pain sites available).

Pain phenotype in the UK Biobank

Pain phenotype: baseline and imaging UK Biobank. One-month pain. 
Participants were asked whether they experienced pain that interfered 
with their usual activities at any major anatomical sites (head, face, 
neck or shoulder, back, stomach or abdominal, hip, knee or PAO) in 
the last month. Participants who answered PAO could not choose any 
other pain sites. This category consists of both chronic and acute pain.

Acute and chronic pain sites. Participants who reported having a 
given pain site in the last month were then asked whether this pain at 
the given site had persisted for more than 3 months. This question was 
used to distinguish between a chronic pain site, one present for more 
than 3 months according to the classification from the International 
Association for the Study of Pain20 and an acute pain site, one present 
for 3 months or less.

Pain phenotype: online pain questionnaire (online UK Biobank). 
Chronic pain. Participants were asked whether they were troubled  
by pain or discomfort either all the time or intermittently for more 
than 3 months. This was followed by a question asking about where 
they had experienced this pain or discomfort in the last three months. 
The options for pain sites were the head, face, neck or shoulders,  
chest, stomach and abdomen, back, hip, legs, knees, feet, arms, hands 
and PAO.

Length of pain or discomfort. The online questionnaire inquired about 
the duration of the pain or discomfort (3–12 months, 1–5 years or more 
than 5 years) for participants reporting chronic pain.

Pain rating in the last 24 h. Participants were asked to rate their pain 
over the last 24 h for each reported chronic pain site on a 0–10 scale (0, 
no pain and 10, as bad as it could be).

Worst pain rating experienced in the last 24 h. Participants were 
asked to rate the pain that bothered them most at its worst in the  
last 24 h, from 0 (no pain) to 10 (pain as bad as you can imagine). Only 
participants reporting chronic pain at a specific body site (not PAO) 
were exposed to this question.

Pain interference in the last 24 h. Using the BPI39, the impact of pain 
functioning was assessed across seven items, including general activity, 
mood, walking ability, normal work, relations with other people, sleep 
and enjoyment of life, each rated out of 10 (0, does not interfere and 
10, completely interferes). This was assessed for the most bothersome 
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pain and only participants reporting chronic pain at a specific body site 
(not PAO) were exposed to this question.

Depressive symptoms in the last 2 weeks. Presence or absence and 
the severity of current depression as a common comorbidity with 
chronic pain was assessed using the PHQ-9 (ref. 40), where 0–4 indi-
cates no/minimal depression severity and 5–9 indicates mild depres-
sion severity).

Symptom severity over the last week. Participants were asked to 
indicate the level of severity they experienced over the past week across 
three symptoms of the fibromyalgia symptom severity scale, includ-
ing fatigue, sleep quality and cognitive symptoms (0 indicates no 
problem and 3 indicates severe, pervasive, continuous, life-disturbing 
problems).

Pain or discomfort today. Participants were asked to describe their 
health ‘today’ (choosing one of the following options: no pain/discom-
fort, slight pain/discomfort, moderate pain/discomfort, severe pain/
discomfort or extreme pain/discomfort).

Feature selection for the risk score for pain
A total of 99 features collected at the baseline in-person visit (baseline 
UKB) were selected a priori based on their relevance to chronic pain. 
The selection was based on the Prognosis Research Strategy (PRO-
GRESS) group that recently provided a framework for the development 
of a prognostic model to determine risk profile41. Variables were organ-
ized through an iterative approach along a hierarchical framework 
from 99 variables into ten categories forming three distinct domains 
(mental health, physical health and sociodemographics). The three 
domains are as follows:

Mental health. The mental health domain includes three categories 
(1) neuroticism (all individual items and their total sum-score) based 
on 12 neurotic behaviors closely linked to negative effect; (2) traumas 
(illness, injury, bereavement or stress in the last 2 years) including six 
events; and (3) mood (reported frequency of certain moods in the past 
2 weeks and visits to a GP or psychiatrist for nerves, anxiety, tension 
or depression).

Physical health. The physical health domain includes four categories 
(1) physical activity based on MET scores computed using the IPAQ42; 
(2) sleep, such as questions regarding duration, napping, snoring and 
sleeplessness; (3) substance use, such as smoking and alcohol use; and 
(4) anthropometric measures such as BMI, fractures that occurred over 
the last 5 years and blood pressure.

Sociodemographics. The sociodemographic domain includes three 
categories (1) socioeconomic status, such as education completed, 
income and employment; (2) occupational measures, such as individuals  
present within household, social entourage and manual or physical 
job; and (3) demographics such as age, sex and ethnicity.

A full list of all pain risk score measures and their corresponding 
UKB data fields are provided in Supplementary Table 1.

Diagnoses of pain-related medical conditions
Medical conditions collected at each visit: baseline and imaging 
UK Biobank. Participants underwent a verbal interview about past 
and current medical conditions, in which a trained nurse confirmed or 
amended the type of medical condition that the participant reported 
through the touchscreen questionnaire. If the participants were uncer-
tain of the type of illness they had, they would describe it to the nurse 
who would attempt to place it within the coding tree or enter it as a 
free-text description to be subsequently matched to a specific entry 
by a doctor. Only noncancer illnesses were investigated.

Medical conditions collected online: online UK Biobank. The online 
pain questionnaire includes self-reported diagnoses of 14 common 
pain medical conditions. These included osteoarthritis affecting one 
or more joints, rheumatoid arthritis affecting one or more joints, can-
cer pain, carpal tunnel syndrome, complex regional pain syndrome, 
chronic post-surgical pain, diabetes, nerve damage/neuropathy, fibro-
myalgia syndrome, chronic fatigue syndrome or myalgic encephalo-
myelitis, gout, migraine, pelvic pain and post-herpetic neuralgia.

High-impact chronic pain measurements
Overall health rating. The self-reported health rating was assessed 
through the touchscreen questionnaire at the baseline visit and the 
imaging follow-up visit (baseline and imaging UKB).

Use of opioid medication. Medication was obtained from self-reported 
regular use (most days of the week for the last 4 weeks) of prescrip-
tion medications at the baseline visit and the imaging follow-up visit 
(baseline and imaging UKB) and was coded according to the ATC clas-
sification system of the World Health Organization obtained from the 
Wu et al. (2019) stratification43. Opioid medication use was extracted 
at each visit from the ATC-WHO coded data (ATC codes N02A and 
R05DA04).

Unable to work due to sickness disability. This measure was included 
as a section of the participants’ current employment status at the base-
line visit and the imaging follow-up visit (baseline and imaging UKB).

Overview of the replication study cohorts
NFBC replication. The NFBC1966 was originally composed of 12,068 
newborns in 1966 representing 96.3% of births in the target region 
that year at the University of Oulu44. The data utilized for this study 
were obtained at the 31-year and 46-year follow-up visits conducted 
from 1997 to 1998 and 2012 to 2014, respectively45. Cross-sectional 
analysis was conducted at the 46-year follow-up with a final population 
of 5,525 and only participants with complete data in the required pain 
questionnaires were included. A longitudinal analysis of participants 
present at both the 31-year and 46-year visit was also conducted with 
a total population of 4,710.

PREVENT-AD replication. The PREVENT-AD dataset is an observational 
cohort composed of healthy individuals at risk of developing Alzhei-
mer’s disease due to a first-degree family of Alzheimer’s disease. This 
sample originally consisted of 349 adults aged older than 60 years at 
baseline visit (between 2011 and 2017) who met the eligibility criteria of 
investigation explained elsewhere46. Cross-sectional analysis was con-
ducted on data available from a total of 178 individuals who answered 
the most recent questionnaire (only participants with complete data 
in the required pain questionnaires were included).

Pain phenotype in the replication cohorts
Pain phenotype: NFBC. At the 46-year follow-up participants were 
asked whether they have had ‘pain or aches in the last 12 months’ (ques-
tion (Q) 46) of the complimentary questionnaire), at which body sites 
they experienced this pain and for how long. Pain lasting longer than 
3 months was considered chronic. Pain lasting less than 3 months was 
considered acute. Facial and stomach/abdominal pain were collected 
in a separate questionnaire. Participants reporting both chronic pain 
on the previously mentioned questionnaire and pain at the stomach/
abdomen (reported in Q96 of the background, lifestyle and health 
survey) were defined as having chronic stomach/abdominal pain. 
Similarly, participants with chronic or acute facial pain were defined as 
participants reporting chronic or acute pain in Q46 and jaw or face pain 
once a week or more (Q101 of the background, lifestyle and health sur-
vey). Healthy controls were defined as those who reported no pain over 
the last year. Self-reported pain intensity, impact of pain, likelihood 
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of returning to work and depressive symptoms were recorded on a 
0–10 scale. Participants also reported whether they had pain-related 
illnesses, such as fibromyalgia, diagnosed by a doctor. PAO was defined 
as reporting five or more pain sites.

At an earlier visit (31-year follow-up) participants reported fre-
quency of pain or aches over the past year at a variety of body sites 
as well as frequency of headaches in the past week. Although these 
items were unable to differentiate acute from chronic pain sufferers, 
we utilized this item to select participants who never experienced pain 
at a given site during the 31-year visit and tracked who among these 
participants developed pain at the next follow-up visit 15 years later.

Pain phenotype: PREVENT-AD cohort. The experience of physical pain 
was evaluated using the MPQ47. Participants were asked whether they 
had suffered from chronic pain (any pain lasting more than 3 months) 
in the past year. If they answered ‘yes’ they were considered to have 
chronic pain. This was followed by a question asking about the area 
where their pain occurs on a complete body template divided into 50 
anatomical areas, which for the purposes of this study were combined 
and categorized into 11 different pain sites (arm or elbow, hand, leg, 
foot, chest, buttock, knee, back, abdominal, neck or shoulder, and 
head). This phenotype was used to define PAO as five or more sites 
and/or report of fibromyalgia. Other measures were used, including 
present pain intensity scale, sensory and affective ratings of the pain 
experience from the MPQ, GAI, GDS, as well as demographic-specific 
questionnaires.

Data analyses in the UK Biobank
Number of coexisting pain sites characterizing different chronic 
pain conditions. In Fig. 1c, the co-occurrence of acute and chronic 
pain sites was measured using ORs from the exponential function of a 
logistic regression coefficient estimated for each combination of sites 
(excluding PAO). As conducted by Khoury et al. (2022)23, each reported 
pain site was assigned a number 1–7 for the baseline UKB and 1–10 for 
the online UKB data, starting from the highest point toward the low-
est point. Distances between sites were measured as the number of 
sites setting apart each combination of the corresponding numbers. 
Explained variance (R2) between the distance and logarithmic value 
of the ORs between sites was assessed. To ensure the significance of 
the association between co-occurrence and distance, our results were 
compared to a null model generated from 10,000 two-sided permuta-
tion tests, using two-sided tests as indicated in the figure legends.

The prevalence of pain sites among self-reported medical condi-
tions was assessed for each pain site (Fig. 1d). The associations were 
independently assessed between the total number of pain sites expe-
rienced as a continuum (excluding PAO) and pain duration, worst pain 
rating, pain interference, depressive symptoms and symptom severity 
using two-sided Pearson’s r correlation test and explained variance (R2) 
are shown in Fig. 1e–i.

Developing the predictive model predicting number of chronic pain 
sites. A NIPALS29 regression algorithm (implemented using scikit-learn.
org/) was used to derive an epidemiological model that explained the 
number of pain sites reported at the baseline visit.

Briefly, NIPALS identifies latent patterns that maximize the covari-
ance between two matrices. Here, the NIPALS method was trained 
within the discovery dataset to identify latent scores (Ε and Ζ) and 
loadings (Ρ and Η) that maximize the covariance between a (445504, 
99) matrix of standardized psychosocial features (Χi) and a (445504, 1) 
vector of self-reported number of pain sites (Υ):

 1. Compute singular vectors μ, ν (weights) of covariance matrix  
C = ΧΤΥ

 2. Obtain the latent scores Ε and Ζ by projecting Χ and Υ onto 
singular vectors μ and ν

 3. Compute loadings Ρ and Η by iteratively regressing Χ onto Ε 
(power iteration)

 4. Deflate X and Y using Χ + 1 = Χ - ΕΡΤ and Υ + 1 = Υ - ΖΗΤ, 
respectively

 5. Fit training (discovery) data Χ using the projection matrix Ρ to 
obtain latent space x̄ so that x̄ = ΧΡ

 6. Use the latent space to predict left-out data (47708,1) Yv using 
the coefficient matrix β∈Rd⨯tβββ such that Yv = Xvß, where Xv 
denotes the (47708, 99) matrix of psychosocial features in the 
validation set

Further information on the implementation can be found at 
https://scikit-learn.org/stable/modules/cross_decomposition.
html#cross-decomposition.

This model excluded individuals reporting PAO to avoid making 
assumptions about the equivalence of PAO and some number of pain 
sites experienced. This specific algorithm was chosen to reduce the 99 
features into a few sets of distinct homogenous components associated 
with self-reported number of pain sites. A common rule of thumb in 
multiple regression suggests that the minimum ratio of sample size 
per variable is 10:1, with greater ratios equivalent to greater stability. 
Here, we observed a 4,500:1 ratio of sample size per variable giving 
us confidence in our stability. Tenfold cross-validation was used to 
assess the number of components to use in the model. A total of three 
components were selected based on the largest increase in the variance 
explained and the largest decrease in RMSE according to the elbow 
criterion. The model was then applied in the validation dataset.

In Fig. 2b,c the model’s explained variance (R2) in the number of 
pain sites was assessed by organizing the 99 features into ten cate-
gories and three domains (physical health, mental health and soci-
odemographics). The category contributing the least (occupational) 
was still significant compared to a null model generated from 10,000 
two-sided permutations. The model fit for predicting the number of 
pain sites in the testing set was assessed using explained variance (R2) 
and RMSE; Fig. 2d,). The risk scores of individuals with each pain site 
were compared to the score of pain-free participants to examine the 
impact of acute and chronic pain sites using Cohen’s d effect sizes 
(pooled s.d.; Fig. 2e) and the AUC-ROC for discrimination (Fig. 2f). 
The AUC-ROCs were used to estimate model accuracy because they 
are (1) threshold-unspecific and (2) resilient to class imbalance, which 
is inherent to less frequent pain conditions or clinical outcomes. The 
performance of the model was also tested across 25 different medical 
conditions commonly associated with chronic pain using the same 
metrics: Cohen’s d and AUC-ROC (Fig. 2g). To ensure the robustness 
of the results in less frequent medical conditions, 10,000 bootstrap 
samples were performed to estimate the CI in the observed effect sizes. 
Statistics calculated in the discovery data to evaluate the model per-
formance and model interpretation are shown in Extended Data Fig. 3.

Network analysis. Networks were estimated from partial correlations 
between pain and the ten categories (Extended Data Fig. 5d). Partial 
correlations were used to measure conditional dependence between 
categories (defined as nodes) while controlling for all other potential 
edges. The number of acute pain sites and chronic pain sites were 
integrated into the network to assess the relative contributions of our 
model’s categories on both pain types. The networks were constructed 
and studied at three different densities. A threshold was first applied 
to obtain a sparse model and conserve connections equivalent to a 
small effect size (partial correlation >0.1). An intermediate model was 
then constructed using a more liberal threshold equivalent to a very 
small effect size (partial correlation >0.05). A full model was finally 
constructed by including all the edges surviving Bonferroni correction. 
Nodes were placed using a force-displacement layout (spring layout, 
using a Fruchterman–Reingold algorithm) using qgraph48. Starting 
in a circular layout and through various iterations, more-connected 
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nodes are placed closer together, whereas less-connected or negatively 
linked nodes are placed further apart. Finally, node-weighted centrality, 
a measure of the mean number of edges passing through each node, 
was computed to estimate the centrality of both categories and pain 
outcomes. The procedure was conducted on both the discovery and 
validation datasets.

Spreading and recovery of chronic pain. The prognostic value of the 
pain risk score to predict the development, persistence and worsening 
of chronic pain was assessed using the left-out participants in the valida-
tion for whom the longitudinal data were available. After examining the 
stability of number of pain sites (0–4 or more, including PAO; Fig. 3a), the 
association between the risk of chronic pain at each anatomical site at 
follow-up and the risk of chronic pain at each site at baseline was calcu-
lated using ORs from the exponential function of the logistic regression 
coefficients. Explained variance (R2) between the distance from site at 
baseline and logarithmic value of the ORs between sites was calculated 
(Fig. 3b). To ensure the significance of the association, our results were 
compared to a null model generated from 10,000 two-sided permutation 
tests. The risk of chronic pain at each anatomical site at follow-up was 
then examined by calculating the OR associated with one unit increase 
in the risk score for each chronic pain site at baseline (Fig. 3c).

Spreading was measured using the change in number of chronic 
pain sites (from −4 or less to 4 or more). To examine the prognostic value 
of our risk score, we regressed out the number of chronic pain sites (and 
their squared values) reported at baseline, age at baseline and years to 
follow-up from the risk score calculated at baseline. Making the score 
orthogonal to the baseline pain allowed us to interpret interindividual 
deviations in this adjusted score as risk of recovery or spreading of pain 
at the follow-up visit (Fig. 3d). Effect sizes (Cohen’s d) were computed 
for the adjusted pain risk score between individuals without chronic 
pain and individuals with chronic pain based on changes in the num-
ber of chronic pain sites (for example, +1 sites versus pain free). The 
AUC-ROCs were also used to estimate whether these changes in the 
number of pain site can be predicted based on the adjusted risk score 
at baseline (Fig. 3e). The same approach was also used to predict the 
development or recovery of medical conditions longitudinally (Fig. 3f).

A temporal ordering of predicted risk across the ten categories was 
performed after adjusting for the number of pain sites (and squared 
values) at baseline. The effects sizes were calculated for the adjusted 
risk score within each category between participants reporting chronic 
pain and pain-free participants for different rates of spreading (+1 sites 
versus pain free, +2 sites versus pain free, +3 sites versus pain free and 
+4 sites versus pain free) and recovery (−1 sites versus pain free, −2 sites 
versus pain free, −3 sites versus pain free and −4 sites versus pain free). 
The categories were then ranked based on the magnitude of their effect 
sizes, as illustrated in Fig. 3g, after adjusting for the FDR. The ranking 
was calculated using the absolute sum of effect sizes across all rates of 
spreading or recovery, providing a temporal progression of risk across 
categories from early-to-late pain site development.

Sex-based analyses. Sex was collected by the UKB from central regis-
try at recruitment and were updated by the participant if necessary. For 
both the NFBC and PREVENT-AD, sex was self-reported. No exclusion 
was made based on biological sex or gender. Sex ratio was reported for 
each cohort and included in the full partial least squares model applied 
in the UKB. Sex-stratified analyses performed for the full model and the 
ROPS are shown in Extended Data Fig. 9.

Exploratory analyses
High-impact pain. The cross-sectional and longitudinal performance 
of the model for predicting secondary outcomes associated with 
high-impact chronic pain was assessed using self-reported ratings 
of overall health, opioid medication use and inability to work due to 
sickness or disability. In Fig. 4b, model fit in predicting secondary pain 

outcomes was assessed using Cohen’s d effect sizes and explained 
variance (R2) across self-reported ratings of overall health and using 
Cohen’s d and AUC-ROC discriminations for opioid medication use and 
inability to work due to sickness or disability. The longitudinal changes 
in opioid use and changes in ability to work were also calculated using 
Cohen’s d and AUC-ROC discriminations (Fig. 4c). Statistics calculated 
in the discovery data are shown in Extended Data Fig. 4b.

Candidate models. The same statistical procedure (NIPALS) performed 
on the same 99 clinical features was used to derive 16 candidate models 
classifying acute or chronic pain sites (versus all else; Fig. 5). Model speci-
fication was performed through tenfold cross-validation to maximize 
the variance explained (R2) while minimizing the RMSE. This allowed us 
to decide on the sparsity of components to include in the models using 
the elbow criterion from the largest drop in explained variance. The 
same parameters (three components, used as regularization) were used 
to predict the pain sites using NIPALS. Features for each model were visu-
alized using two methods (1) by computing the Pearson’s r correlation 
equivalent to the loadings of each feature onto their projected score or 
(2) by comparing the z-normalized weights used to obtain the projected 
score. The former approach was preferred for interpretability (Fig. 5a).

The sensitivity of these candidate models was evaluated using 
AUC-ROC discrimination in comparison to pain-free individuals. The 
specificity of these models was assessed by comparing their AUC-ROCs 
with the one of our initial pain risk score (black) and the one from 
other candidate models trained on another pain site (gray). This was 
performed cross-sectionally (Fig. 5d) and longitudinally (Fig. 5e). For 
the longitudinal analyses, we assessed the capacity of the risk score to 
predict the development of pain in pain free individuals at baseline.

Figure 5f shows a post hoc analysis that was performed to examine 
the similarity of the 99 loadings (or normalized weights) across models 
using Pearson’s r correlation coefficients. This approach allowed us to 
compare the similarity between risk factors for acute and chronic pain 
separately. The correlation coefficients were then normalized using 
z-Fisher transformations and the explained variance (R2) was calculated 
using the similarity between models and the distance between pain 
sites. This procedure was also performed in the discovery data shown 
in Extended Data Fig. 8d–g.

The risk of pain spreading. Deriving the ROPS in the UK Biobank.  
A simplified model containing six features was derived from the full 
risk model containing 99 features in the training cohort of the UKB 
baseline dataset (n = 445,132). We trained a linear forward feature selec-
tion algorithm, implemented using scikit-learn, to select the core six 
features that presented the highest explained variance based on the full 
risk model. Forward feature selection initially finds the one feature that 
maximizes a cross-validated score in an outcome of interest (number 
of pain sites). Then, a second feature is added and the procedure is 
repeated for a prespecified combination of features in a feature pool 
(99 features from the original model) until there is no improvement in 
the model’s performance. Here, six features provided the best trade-off 
between sparsity and variance explained.

The identified features were then calibrated based on thresholds 
that maximized the discrimination performance (AUC-ROC) between 
individuals reporting PAO in the baseline UKB data and those not 
reporting PAO (n = 159,663). This procedure allowed us to generate 
binarized scores for each feature that facilitated the use of such a 
screening tool. For example, we evaluated thresholds ranging from 
0–40 in increments of 5 and found that a BMI threshold of 30 led to the 
highest discrimination performance. Thus, individuals with a BMI >30 
were coded as a 1 and those <30 were coded as 0. This procedure was 
repeated for all features on a categorical or continuous scale (sleepless-
ness, tiredness and traumas). This led to the formation of a six-item 
short questionnaire (ROPS) capturing 63% of the variance explained 
by the full risk model. In Fig. 6c, the cross-sectional and longitudinal 
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performance of the ROPS was assessed in the discovery set for acute and 
chronic conditions for the number of pain sites using explained vari-
ance (R2) and for group differences between pain and pain-free groups 
using AUC-ROC matrices. In Fig. 6d, the longitudinal performance of 
ROPS was evaluated in the online UKB data in a subsample of 80,528 
participants calculating the association between baseline risk scores 
and each of interference of pain ratings (BPI), depressive symptoms 
in the last 2 weeks and the severity of symptoms using Pearson’s r cor-
relation and R2 metrics.

ROPS replication: Northern Finland Birth Cohort. An equivalent to 
the ROPS was constructed at both the 31-year and 46-year time points 
in the NFBC to determine both the cross-sectional and longitudinal 
validity of the score. The score was derived using six binarized items:

 1. Do you have difficulty falling asleep, quite a lot or very much?
 2. Do you have a feeling that your life has been a constant effort, 

quite a lot or very much?
 3. Do you feel a lack of energy or powerlessness, quite a lot or very 

much?
 4. Have you had a mental health problem diagnosed or treated by 

a doctor?
 5. Have you experienced any of the following:

 a. Divorce
 b. Death of a partner
 c. The following work history: unemployed more than employed,  

obtained almost all my employment through employment 
support measures or I have never been gainfully employed

 6. Measured BMI greater than 30

In Fig. 6e, the performance of the ROPS was assessed for num-
ber of acute and chronic pain sites using R2 and RMSE and AUC-ROC 
scores showed the model’s ability to differentiate between pain free 
individuals and pain participants as well as differentiating between 
individuals with pain diagnoses and individuals without diagnoses 
cross-sectionally. A ROPS model derived at the 31-year visit was then 
utilized to predict participants reporting no pain at the 31-year visit 
who will develop pain at the equivalent site at the 46-year visit (stom-
ach pain was excluded in longitudinal analysis due to the absence of a 
sufficiently similar item in the 31-year visit).

The association between the ROPS derived at the 46-year visit and 
the number of pain sites was determined for acute and chronic pain 
patients separately, with healthy controls counting as 0 pain sites in 
each correlation. Pain intensity was binned into four groups (no pain 
(0), mild pain (1–3), moderate pain (4–6) and severe pain (7+)) and the 
correlation between pain intensity and the sparse risk score across 
participants was calculated using Pearson’s r and R2. In Fig. 6f, impact 
of pain, likelihood of returning to work and depressive symptoms were 
correlated with the ROPS score in chronic pain participants.

ROPS replication: PREVENT-AD. For the purposes of this study, the 
same six items of the ROPS (as shown in Fig. 5b) were administered to 
the participants from the PREVENT-AD cohort. As conducted in the UKB 
data, in Fig. 6g, the cross-sectional performance of the sparse model 
was assessed for predicting the number of pain sites using explained 
variance (R2). The AUC-ROC was then used to differentiate participants 
reporting chronic pain from pain-free participants, at each pain site. In 
Fig. 6h, the ROPS was also evaluated on pain intensity scores, affective 
and sensory ratings of the MPQ, the total score on the GDS and the total 
score of the GAI using Pearson’s r correlation and R2 metrics.

Biological measures and analyses
Immune-inflammatory profile. The baseline assessment visit data 
(baseline UKB) include a complete blood count (https://biobank.
ctsu.ox.ac.uk/crystal/crystal/docs/haematology.pdf). The sample 

handling and storage has been described by Elitt and Peakman49. For 
the purposes of this study, inflammation was estimated using CRP 
obtained through saliva samples and measured by immunoturbidi-
metric assay using a high-sensitivity analysis on a Beckman Coulter 
Analyzer. Immune cell count included neutrophils, platelets, reticu-
locytes, basophils, lymphocytes, eosinophiles and monocytes, most 
of which have been shown to be independently linked to chronic pain, 
the sickness response and associated depressive profile50.

A logarithmic transformation was applied to the raw measures of 
CRP to account for the positive skewness (https://biobank.ndph.ox.ac.
uk/showcase/field.cgi?id=30710). The association between CRP and 
the number of pain sites was evaluated using Pearson’s r correlation 
and Cohen’s d effect sizes comparing each pain site with pain-free 
individuals (Extended Data Fig. 6). Pearson’s r correlation between 
CRP and the risk score was assessed in both discovery and validation 
datasets (Extended Data Fig. 7). The associations between specific 
immune cell counts and CRP, pain risk score and the number of pain 
sites are reported in Supplementary Fig. 3.

Genetics. Blood samples collected at the baseline visit (baseline UKB) 
allowed different types of assays to be performed, including genetic 
analyses. A genome-wide association study of number of pain sites, 
including both acute and chronic was conducted. A thresholding proce-
dure was conducted across seven statistical thresholds of significance 
(from P = 5 × 10−2 to 5 × 10−8) for each single nucleotide polymorphism. 
The association of each threshold with the risk score, CRP and pain 
phenotype was also examined in the discovery and validation datasets 
(Extended Data Fig. 6).

Partitioned heritability in tissues was used to investigate the 
genetic architecture of our polygenic risk score. The top 1,000 
most-enriched genes per tissue were extracted from the gene expres-
sion database features in Benita et al. (2010) using the computer 
program ‘ldsc’51–53. A total of 78 tissues grouped into eight tissue 
classes (central nervous system, peripheral nervous system, endo-
crine, myeloid, B cells, T cells, adipose and muscle) were examined 
for enrichment. The methodology is described in greater detail in our 
previous publication23. Pearson’s r correlation between our normalized 
polygenic score and the risk score was assessed in both discovery and 
validation datasets (Extended Data Fig. 7).

Brain MRI measures. Resting-state functional MRI data available from 
the imaging follow-up visit (imaging UKB) were obtained from the UKB. 
The data were based on the minimally preprocessed pipeline designed 
and carried out by the FMRIB group, Oxford University. The minimally 
preprocessed resting-state fMRI data from the UKB were analyzed 
using the following pre-processing steps: motion correction with 
MCFLIRT54, grand-mean intensity normalization, high-pass temporal 
filter, fieldmap unwarping and gradient distortion correction. Noise 
terms were identified and removed using FSL ICA-FIX. Full information 
on the UKB pre-processing is published55. Additional pre-processing 
included warping the image in native space to the 3-mm MNI template 
(FSL), despiking using 3DDespike (AFNI from Nipype), 6-mm kernel 
smoothing (Nilearn) and resampling to 3 mm (for storage purposes). A 
modified Brainnetome atlas56 was used to parcel the brain into 279 dis-
tinct regions to apply the weights from the ToPS30, a capsaicin-induced 
tonic pain signature of pain derived from the brain that was associated 
with both experimental and clinical pain. The modified atlas includes 
additional midbrain, brainstem and cerebellar regions.

Dynamic connectivity was estimated to derive ToPS using dynamic 
conditional correlation, which is based on generalized autoregressive 
condition heteroscedastic and exponential weighted moving average 
models (implemented by https://cocoanlab.github.io/tops/). The 
preprocessing aimed to be as similar as possible to the original ToPS 
study without diverging from the minimally preprocessed data from 
the UKB. The weights of the signature were thresholded to the top 5% to 
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avoid overfitting and to minimize relation with head motion before the 
examination of the full dataset (early subsample of n = 200). Multiple 
thresholds (1, 2.5, 5, 10, 25, 50 and 100%) were also tested to ensure gen-
eralizability. Absolute connectivity from the signature for visualization 
and interpretation purposes was computed using the normalized sum 
of absolute connectivity values for each brain region within the top 5% 
threshold, using a cutoff of 100 as the maximum (Supplementary Fig. 
4). Surface rendering was conducted using the Surf Ice tool (https://
www.nitrc.org/projects/surfice/).

Two frameworks were evaluated to control for the effects of con-
founding variables (1) adjusting confounding variance that does not 
overlap with pain and (2) adjusting total confounding variance. The first 
approach allows the brain signature to be compared to other polygenic 
and inflammatory markers that were left intact given the research focus 
on prediction, whereas the second ensures that our results do not over-
lap with confounds commonly reported as higher in patients with pain, 
such as motion. Results were very similar in both approaches, with the 
former presenting slightly smaller probability values.

The MRI-based covariates included head motion (linear, squared 
and cubed), imaging site, position in the scanner and coil position (x, y 
and z, respectively). Both covariates and brain features were normalized 
to a mean of zero and variance of one unit across participants. To exam-
ine confounding variance that did not overlap with pain, the number 
of pain sites was regressed out from confounds. A confound-removal 
procedure, conducted on the original confounds or pain-regressed 
confounds was applied by deriving a multivariate regression model to 
predict each normalized brain feature as a function of the normalized 
confounds. The procedure was carried out for each of the brain features, 
making them strongly or perfectly orthogonal to confounds. Pearson’s r 
correlation value between our normalized ToPS and the risk score as well 
as across each domain from the model was assessed in the validation 
dataset (Extended Data Fig. 7). The results were further displayed for 
each one of the nine brain networks separately (Supplementary Fig. 5).

Statistical analysis
Data pre-processing and statistical analyses were performed using 
Python v.3.7 (including Numpy (v.1.22.0), Pandas (v.1.3.5), Sklearn 
(v.1.0.2), Nilearn (v.0.9.0) and Nltools (v.0.4.5)) and R software (Qgraph 
(v.1.9.2)). Permutation tests (with 10,000 iterations) were used to test 
whether the associations assessed by calculating Pearson’s r correlation 
were significantly higher than a null association. We used bootstrap 
resampling with 10,000 iterations to indicate the estimated error in 
the Cohen’s d effect sizes. Tenfold cross-validation was used to obtain 
unbiased model performance results. In all analyses, significance was 
based on P < 0.05 for single testing and FDR < 0.05 for multiple testing. 
Further details of the statistical methods are specified in each relevant 
section above.

Ethical approval
The UKB was approved by the National Information Governance Board 
for Health and Social Care and the National Health Service North West 
Multicenter Research Ethics Committee (ref. no. 06/MRE08/65). All par-
ticipants gave written, informed consent and the study was approved by 
the Research Ethics Committee (no. 11/NW/0382). Further information 
on the consent procedure can be found at https://biobank.ctsu.ox.ac.
uk/crystal/field.cgi?id=200. Each follow-up study of the NFBC1966 
was evaluated by the regional ethical committee of the Norther Ostro-
bothnia Hospital District (EETTMK 94/11, 17.09.2012). The use of NFBC 
data is based on cohort participants’ written informed consent at their 
latest follow-up study. Participants in the PREVENT-AD cohort provided 
written informed consent to participate at each follow-up visit, includ-
ing questionnaires and multimodal imaging assessments. Protocols, 
consent forms and study procedures were approved by McGill Institu-
tional Review Board and/or Douglas Mental Health University Institute 
Research Ethics Board.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data provided from the UKB are available to other investigators 
online upon permission granted by www.ukbiobank.ac.uk. Restric-
tions apply to the availability of these data, which were used under  
license for the current study (project ID 20802). The NFBC data are  
available upon request from the University of Oulu, Infrastruc-
ture for Population Studies (https://www.oulu.fi/en/university/ 
faculties-and-units/faculty-medicine/northern-finland-birth- 
cohorts-and-arctic-biobank). Permission to use the data can 
be requested for research purposes via an electronic material  
request portal (Greip). PREVENT-AD data can be accessed openly at  
https://openpreventad.loris.ca, whereas most of the other informa-
tion that is sensitive by nature is accessible by qualified researchers at 
https://registeredpreventad.loris.ca.

Code availability
Detailed code and annotation will be available at GitHub (https://
github.com/EVPlab). The medication classification performed by 
Wu et al.43 can be found in supplementary data from the original arti-
cle (https://www.nature.com/articles/s41467-019-09572-5). Code to 
extract the ToPS by Lee et al.30 can be found online (https://cocoanlab.
github.io/tops/).
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Extended Data Fig. 1 | Online UK Biobank assessment of the experience of 
pain. a. Demographics of participants across sex, ethnicity and age. b. Pain 
reported in the past 3 months (chronic pain, > 3 months) for single and multi-site 
pain. c. High-resolution representation of anatomical body map sites and counts 
across a total of 13 sites: 10 along the medial line, 2 along the lateral line (shoulder 
to arm-hand) and 1 not localized (widespread). PAO, pain all over; Ha, headache; 
Fc, facial; N/S, neck or shoulder; C, chest; S/A, stomach or abdominal; B, back; 
Hp, hip; L, leg; K, knee; Ft, feet; A, arm; Hd, hand. d. Cross-sectional analysis of 
co-existing pain and pain ratings. Odds ratios (OR) of co-occurrence between 
sites in the past 3 months (left diagonal, yellow) and Pearson’s r correlations 

between pain ratings in the last 24 hours (right diagonal; green). Both the log- 
normalized OR of pain sites (Pperm < 0.0001) and fisher- normalized r correlations 
(Pperm < 0.0001, using 10,000 two-sided permutation tests) were negatively 
associated with their distance. 95% Confidence interval estimated across 1,000 
bootstrap samples is shown. e-f. A total of 14 common chronic pain diagnoses 
were included. e. Counts of diagnoses across the entire online assessment and 
the prevalence of those reporting pain or discomfort in the past 3 months. No Dx 
includes those without any of the 14 diagnoses. f. Pain prevalence and mean  
pain ratings (10, as bad as you can imagine) across each diagnosis stacked across 
body sites.
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Extended Data Fig. 2 | Discovery and Validation data for the risk score 
development. Pie charts displaying a. demographics, b. acute (≤3 months) and c. 
chronic (>3 months) pain phenotypes for the discovery data the model is trained 
on and the validation data the model is tested on, at baseline and follow-up.  
d. Years between baseline and follow-up visit in the validation data (9 years 
median). e. Schematic on using NIPALS to predict co-existing pain from 

biopsychosocial features. f. Model specification based on tenfold cross-
validation by minimizing the root mean squared error (RMSE) and maximizing 
the explained variance (R2) average across tenfolds. Following the scree plot 
(elbow rule) criterion and to minimize overfitting, 3 components were selected. 
g. Random stratified sampling of 200 participants projected across the  
3 components separately and combined as our risk score.
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Extended Data Fig. 3 | Model interpretation and performance in the 
discovery data. a–g. Identical analyses conducted in the original discovery 
from which the model was derived (see Fig. 2). a. Classification of 99 clinical 
features grouped in three domains and ten categories. b. Venn diagram and bar 
graph show the model’s explained variance (ordered based on discovery results) 
in the number of pain sites across the three domains c. The variance explained is 
shown for the ten categories d. The model performance is shown in the training 
set (that is, discovery data) using explained variance (R2) and Root Mean Squared 
Error (RMSE) for acute and chronic pain conditions separately (n Chronic = 196,706, 
n Acute = 126,313). Mean estimated across number of sites +/-standard errors are 

shown. e. Cohen’s d effect sizes in the risk score for each pain site (acute in orange 
and chronic in red) compared to pain-free individuals. f. The diagnostic ability  
of our model to classify acute and chronic pain conditions is displayed using 
AUC-ROC. AUC, area under the curve; ROC, receiver operating characteristic.  
g. The diagnostic ability of our model to classify the selected medical conditions 
is displayed using Cohen’s d and measured with AUC-ROC (selected Dx compared 
to Dx-free individuals). Error bars estimated from 10,000 bootstrap resampling 
are shown. *Pain all over the body was excluded from model training in the 
discovery set. Dx, diagnoses.
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Extended Data Fig. 4 | Model features and model integration through 
network analysis. a. Model feature weights projected to the risk score. Error 
distributions estimated across 1,000 bootstrap samples are shown. b. Schematic 
of a network approach to integrate the risk model’s categories. Edges and 
nodes were evaluated using strength of partial correlation and weighted node 
centrality. LS, life stressors; N, neuroticism; M, mood; SU, substance use; S, sleep; 

PA, physical activity; A, anthropometric; SE, socioeconomic; O, occupational; 
D, demographic. c. Schematic of the network analysis approach examining the 
centrality of each category and its connections across thresholds. d. Partial 
correlation network analyses across three levels: sparse (absolute partial 
correlation above 0.1), intermediate (above 0.05) and full (all edges) across the 
discovery data (upper row) and validation data (lower row).
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Extended Data Fig. 5 | Examination of outcomes associated with high-impact 
pain in the discovery set. a. Schematic of a selection of three selected secondary 
outcomes. ATC, Anatomical Therapeutic Classification; N02A, opioids ATC 
Classification b. Cross-sectional performance of the risk score on the secondary 
outcomes in the discovery data. Cohen’s d effect sizes and explained variance (R2, 

on the left) were used across self-reported ratings of overall health ratings while 
Cohen’s d and AUC-ROC discriminations were used for opioid medication use and 
inability to work due to sickness or disability. Cohen’s d effect sizes and AUC-ROC 
discriminations were used. Sample sizes are included in parentheses.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Examination of three prospective biological makers 
and their associations with pain. a. Schematic describing the selected 
biological markers: c- reactive inflammatory protein, a polygenic risk score for 
the number of pain sites, and a validated brain signature for sustained pain. b-e. 
Genome-wide association study of number of pain sites in the discovery data. 
b. The Manhattan plot shows association -log10 (P) for each single nucleotide 
polymorphism. c. The partitioned heritability in tissues of the Benita et al. 
dataset is shown for 78 tissues grouped into eight tissue classes: central nervous 
system (CNS), peripheral nervous system (PNS), endocrine (END), myeloid 
(MYE), B cells (B), T cells (T), adipose (ADI) and muscle (MUS). P-values were FDR-
adjusted (10%) for enrichment with significant tissues colored. d. Details shown 
for the CNS tissue class. e. PRS repeated across an array of thresholds, with the 
least stringent threshold taken to maximize prediction. Associations between 
each threshold with the number of pain sites, risk score and CRP is shown and 
estimated using a two-tailed Pearson’s r correlation (standard error are estimated 
from 1,000 bootstrap samples). f. Two-tailed Pearson’s r correlation was also 

used to assess the association between CRP (log- transformed for parametric 
estimations) and the number of pain sites in both discovery (P < 1.0e-300) and 
validation (P < 3.4e-83) datasets. g. The association between the selected PRS  
and the number of pain sites in both discovery (P < 1.0e-300) and validation 
(P < 5.1e-114) datasets. Ha, headache; F, facial; N/S, neck or shoulder; S/A, 
stomach or abdominal; B, back; Hp, hip; K, knee. h. Visualization of the absolute 
connectivity from the Tonic Pain Signature (ToPS) computed from resting-state 
functional Magnetic Resonance Imaging (rsfMRI) and thresholded for the top 5% 
of weights. Represents the sum of normalized dynamic conditional correlation 
connectivity across each brain parcel. PAG, periaqueductal gray; S1, primary 
somatosensory cortex; S2, secondary somatosensory cortex; L, left; R, right.  
i. Circular graph representing the links of the computed ToPS across each major 
brain networks. j. The association between the ToPS (top 5% weights) and the 
number of pain sites in the validation (P < 5.0e-13) dataset. The Cohen’s d effect 
sizes for each marker are presented for each pain site compared to pain-free 
individuals. Comparisons were FDR-corrected (q < 0.05, ns > 0.05).
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Extended Data Fig. 7 | Inflammatory, genetic, and functional connectivity 
markers associated with the risk score for pain. a. Schematic describing 
the selected biological markers: c- reactive inflammatory protein, a polygenic 
risk score for the number of pain sites, and a validated brain signature for 
sustained pain. CRP, C-reactive protein; PRS, polygenic risk score; ToPS, Tonic 
Pain Signature. b-c. Two-tailed Pearson’s r correlation the association between 
CRP (log-transformed for parametric estimations) and our risk score in both 
b. validation set (P < 1.0e-300), and c. discovery set (P < 1.0e-300). d, e. The 

association between the selected PRS and our risk score in both d. validation set 
(P < 1.8e-125), and e. discovery set (P < 1.0e-300). f. The association between the 
ToPS and our risk score in the validation set (P < 2.6e-45). Venn diagram shows the 
correlation between the biological measures with respect to the three domains 
and their unions. g. Markers were combined as one variable and examined in 
the validation set. The respective contribution of biological markers to pain risk 
score and the number of pain sites are reported in the Venn diagrams.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Deriving candidate models for chronic and acute 
pain conditions. a. Schematic describing the 99 features to derive a total of 16 
site-specific candidate models cross-sectionally in the discovery set. b. tenFold 
cross-validation was used to estimate the root mean squared error (RMSE) 
and explained variance (R2). The same number of components were used to 
ensure comparability between derived models using NIPALS. c. Weights used 
for each model (normalized to allow comparison) grouped across categories 
and domains. Ha, headache; F, facial; N/S, neck or shoulder; S/A, stomach 
or abdominal; B, back; Hp, hip; K, knee. d. Candidate models’ capacities to 
discriminate between the pain sites they were trained on from pain-free 

individuals are shown using AUC-ROC. e. The risk score derived from each 
candidate model correlated with number of co-existing pain sites. f. Cross- 
sectional discrimination for each pain site in acute (dashed line) and chronic (full 
line) pain conditions against the rest of the training cohort (that is, pain-free and 
other pain sites) using the model specific to the site (in color), to the number 
of pain sites (black), and to other candidate models trained on a different pain 
site (gray). g. Post-hoc analyses show that similarities between the weights of 
the different models (Fisher-normalized) can be explained (R2) by the distance 
between the sites in chronic (Pperm = 0.0003) but not acute pain conditions 
(Pperm = 0.51, using 10,000 two-sided permutation tests).
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Extended Data Fig. 9 | Minimal demographic bias in the original risk score 
and the Risk Of Pain Spreading. Cross-sectional AUC-ROC discrimination of 
chronic pain sites compared to pain-free individuals within a. females and males 
separately, b. white, black, mixed, and Asian ethnicities and c. each ethnicity and 

sex interaction. d. Model fit using explained variance (R2) for both risk scores 
across each demography is shown. Sample sizes are reported in parentheses 
from the entire UK Biobank cohort.
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Extended Data Fig. 10 | Validation of the ROPS in two independent cohorts. 
Pie charts displaying a. demographics, b. acute (≤3 months) and c. chronic  
(>3 months) pain phenotypes for the replication data, shown in the Prevent-AD in 
the top row, and in the NFBC at 31 and 46 years old shown in the second and third 
rows respectively. NFBC, Northern Finland Birth Cohort; Ha, headache; F, facial; 

N/S, neck/shoulder; B, back; S/A, stomach/abdominal; Hp, hip; K, knee; A, arm/
elbow; Hd, hand; Ft, feet; C, chest; L, leg. c. Years between baseline (31 years old) 
and follow-up visit (46 years old) in the Northern Finland Birth Cohort data  
(15-year follow-up). d. Equivalence of the six-item pain risk score (ROPS) in the 
NFBC to the original from UK Biobank, also used in Prevent-AD.
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