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Chronic painisacomplex conditioninfluenced by acombination of
biological, psychological and social factors. Using data from the UK Biobank
(n=493,211), we showed that(pain spreads from proximal to distal sites and
developed a biopsychosocial model that predicted the number of coexisting
painsites. This data-driven model was used to identify a risk score that
classified various chronic pain conditions (area under the curve (AUC)
0.70-0.88) and pain-related medical conditions (AUC 0.67-0.86). In
longitudinal analyses, fiefiSkSeofepredictedticdevelopmenton
widespread chronic pain, the spreading of chronic pain across body sites
and high-impact painabout9yearslater (AUC 0.68-0.78). Key risk factors

included sleeplessness, feeling ‘fed-up’, tiredness, stressful life events
and abody mass index >30. A simplified version of this score, named the
risk of pain spreading, obtained similar predictive performance based on
six simple questions with binarized answers: The risk of pain spreading
was then validated in the Northern Finland Birth Cohort (n = 5,525) and
the PREVENT-AD cohort (n =178), obtaining comparable predictive
performance. Our findings show that chronic pain conditions can be
predicted from a common set of biopsychosocial factors, which can aid in
tailoring research protocols, optimizing patient randomizationin clinical
trials and improving pain management.

Pain is the primary reason that individuals seek healthcare andis a
leading cause of disability among working adults'. Unfortunately,
the causes of chronic pain and its prognosis are often unknown, as tis-
sue damage following injury is rarely an accurate predictor of clinical
outcomes*. Instead, itis widely accepted that the interactions between
biological, psychologicaland social factors play agreaterrolein deter-
mining chronic pain conditions and patients’ overall functioning’.
This holistic framework, referred to as the biopsychosocial model for
chronic pain’, can be challenging to define owing to the difficulties
of simultaneously measuring and distinguishing multidimensional

factors in large groups of patients living with pain. Access to large
cohorts of participants with chronic pain has provided unprecedented
opportunities to tackle these problems and better understand the
determinants of chronic pain®.

Prognostic studies have shown that certain factors, such as mala-
daptive pain-coping strategies, somatization of pain and history of
painincrease the likelihood of developing chronic back pain*"°. Addi-
tionally, factors including pain severity and duration’ ', fear of pain®
and pain catastrophizing®** have been linked to worsening back pain.
Brainimaging and genetic studies also suggest that biological factors
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predispose individuals to chronic pain conditions®; however, these
studies are often circular, as pain measurements or attitudes toward
pain are used as pain predictors and most candidate brain-imaging
markers have beenidentified in studies with small sample sizes, mak-
ing them difficult to reproduce in larger and more diverse groups'®".
Furthermore, these previous prospective studies have rarely been
validated in out-of-sample patients and the generalizability of the find-
ings to new patients remains unknown'®"’, A data-driven framework
with clinical utility for predicting pain conditions is currently missing.

The Task Force for the Classification of Chronic Pain recommends
classifying chronic pain conditions based on their etiology (for example,
musculoskeletal pain), underlying pathophysiology (for example,
neuropathic pain) or body site (for example, back pain)®**. Despite
differences between these conditions, evidence suggests that pain con-
ditions overlap with one another?, share acommon genetic risk pro-
file?»**and show similar alterationsin the central nervous system">*,
Moreover, coexisting pain conditions, which over one-third of pain
patients report experiencing, are associated with higher impact of pain,
including lower quality of life and poorer response to treatment*>?.
Thus, it is believed that different pain conditions share common risk
factors and primary chronic pain is now recognized as a disease oniits
own rather than asymptom of another disease®®.

Building on these ideas, we applied machine learning to the
UK Biobank dataset to synthesize a wide range of multidimensional
pain-agnostic features and develop a predictive model capable of
classifying and forecasting different pain conditions and the spreading
of painacross body sites. Our first hypothesis was that different chronic
pain conditions are characterized by a common set of psychosocial
factorsthat canbeidentified by studying the number of coexisting pain
sites. The second hypothesis was that these risk factors can predict
the development of various chronic pain conditions. The third hypo-
thesis was that the differences between the observed painand the pre-
dicted painbased on these risk factors will determine the spreading or
recovery of chronic pain about 9 years later. We also conducted
exploratory analyses to evaluate the following aspects of our model:
its ability to predict high-impact pain, the specificity of candidate
models trained on different body sites and the development of a
simplified version of our model for generalizable use in research
or clinical settings. Figure 1a illustrates the study workflow,
highlighting each hypothesis (Fig. 1a(i-iii)) and exploratory analysis
(Fig.1a(iv-vi)).

Results

This study was conducted using data from the UK Biobank (timeline
shown in Supplementary Fig. 1). At their initial visit, participants
were asked whether they experienced pain interfering with their
usual activities in the last month at the following body sites: head,
face, neck/shoulder, stomach/abdominal, back, hip and knee. The
participants could also respond that they experienced pain all over
the body (PAO) or none of the above (the latter were categorized as
pain-free participants). Figure 1b shows the prevalence of painin the
full sample of participants (n = 493,211) and asubsample of participants
who returned for afollow-up magnetic resonance imaging (MRI) visit
(mediantime between visits of 9 years; n = 48,079). Participants report-
ing pain were then asked whether they had pain lasting for more than
3 months, which represents the cutoff for the pain to be considered
chronic®. Pain experienced for less than 3 months was considered
tobeacute.

Overlapping pain

In the UK Biobank, 44% of individuals experiencing chronic pain
reported pain at more than one body site and the co-occurrence of pain
was more frequent between proximal sites than distal sites (R*= 0.56,
P,erm < 0.0001; Fig. 1c). This pattern was also observed in acute pain
conditions (R*=0.34, P, < 0.006). These results indicate that pain

was notamplified uniformly across body sitesin either acute or chronic
pain. We then examined the prevalence of these pain conditions across
aseries of commonself-reported clinical diagnoses. Here, pain condi-
tions and other pain-related medical conditions were all characterized
by overlapping pain conditions (Fig. 1d). For example, in the case of
migraine, non-migraine headache or spinal spondylitis, the prevalence
of pain at the head (migraine and non-migraine headache) or back
(spinal spondylitis) sites were lower than the cumulative prevalence
of pain at the remaining sites.

Therole of coexisting pain conditions was then examined using an
online pain assessment of 84,030 individuals reporting chronic pain,
excluding pain all over the body. The number of pain sites reported at
the time of the online assessment (November 2019 to 2020) showed
amonotonic increase with pain duration (r= 0.21; Fig. 1e), paininten-
sity (r=0.22; Fig. 1f), impact of pain (r = 0.24; Fig. 1g), depressive
symptoms (r = 0.27; Fig. 1h) and symptom severity (r= 0.36, Fig. 1i; all
P <1.0 x1073%), The use of higher-resolution anatomical body sites in
the online questionnaire further confirmed the spatial co-occurrence
(R*=0.30, P,ern < 0.0001) and interdependence in pain ratings across
sites in chronic pain (R* = 0.21, P, < 0.0001; Extended Data Fig. 1).
Here, diagnosed clinical conditions such as pelvic pain or carpal tunnel
syndrome were characterized by coexisting pain at other body sites.
These results show that the number of coexisting pain sitesis animpor-
tant phenotype characterizing different chronic pain conditions and
reflecting the severity and impact of these pain conditions. We con-
clude that the number of coexisting pain sites is an effective target to
train a predictive model for several different pain conditions.

A data-driven biopsychosocial risk score for pain

We used machine learning algorithms on 99 pain-agnostic features,
including physical, psychological, demographic and sociological
factors, to create arisk score that predicts the number of pain sites.
To this end, the UK Biobank dataset available at the baseline visit
(in-person assessment) was divided into a training set (n = 445,132)
for discovery and a testing set composed of out-of-sample partici-
pants for whom longitudinal data were available (n =48,079). We
applied anonlineariterative partial least square (NIPALS)* regression
algorithm on the 99 features to predict the number of coexisting
pain sites (combining acute and chronic) in the discovery set. The
algorithm was trained using tenfold cross-validation to estimate the
model fit and identify the optimal number of components (Extended
Data Fig. 2). The trained model was then applied to the participants
of the testing set.

The 99 features were organized into ten categories and three
domains to improve the interpretability of the model (Fig. 2a). The
model explained atotal of 14% of the variance in the number of coexist-
ing pain sites in the validation set (Fig. 2b), with the most explained
variance coming from mood (12%), neuroticism (7%) and sleep (5%),
whereas demographics and occupational measures explained the
least variance (<1%; Fig. 2c). These results were consistent with those
obtainedin the discovery set (R*0f12,7 and 7%, respectively; Extended
Data Fig. 3). A detailed list of features and their respective weights in
the modelis presented in Extended Data Fig. 4. Features in particular
with positive weights included tiredness, insomnia and body mass
index (BMI) and notable features with negative weights included grip
strength, employment status and frequency of alcohol intake. Partial
correlations were used to construct networks showing the respective
contribution of each category for acute and chronic pain conditions,
based on the strength of their conditional associations after control-
ling for other categories (Extended Data Fig. 4). Networks constructed
at different densities consistently show that chronic pain (but not
acute pain) was simultaneously associated with various categories
(weighted centrality ranging from 0.15-0.60 for the chronic painnode
and 0.0-0.32 for the acute pain node), highlighting the multifactorial
nature of the model used to predict pain.
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Fig.1|Phenotyping pain in the UK Biobank. a, Schematic showing the

study workflow. IBS, irritable bowel syndrome; Dx, diagnosis; S/A, stomach or
abdominal; B, back; Ha, headache; Rx, prescription; UKB, UK Biobank; NFBC,
NorthernFinland Birth Cohort; Sociodem., sociodemographic. b, Anatomical
body map of pain sites and counts of pain cases (combined acute and chronic) for
the full sample and for individuals with a follow-up visit 9 years later (in-person
assessment). F, facial; N/S, neck or shoulder; Hp, hip; K, knee; PAO, pain all over.
¢, Odds ratios (ORs) of co-occurrence between pain sites (chronic on the left and
acute onright) at baseline. The log-OR of co-occurring pain between two sites
were negatively associated with their distances in chronic (P, < 0.0001) and
acute pain (P, = 0.006, using 10,000 two-sided permutation (perm) tests).

The 95% confidence interval (CI) estimated across 1,000 bootstrap samples
isshown. d, The prevalence of pain is shown per body site among noncancer
medical conditions commonly associated with chronic pain and the count of
cases reported. e-i, In the online assessment pain questionnaire in chronic pain
individuals, the number of coexisting pain sites (O indicates no major sites)

was associated (two-sided Pearson’s r correlations, all P< 1.0 x 10°°) with the
duration or discomfort of pain (e), rating of the least and worst pain out of 10
inthelast 24 h (f), interference of pain across seven dimensions (g), depressive
symptom severity in last 2 weeks (h) and symptom severity during the last week
(i). BPI, brief paininventory; PHQ, patient health questionnaire.

The model’s output provided a single prediction for the number of
painsites, for each participant, based on their score onthe 99 features.
This output, referred to as the risk score for pain, was used to predict
the number of pain sites and classify each pain condition separately
(Fig.2d). Therisk score for painshowed good to excellent performance
for classifying participants with chronic pain conditions from pain-free
participants at each body site, as shown by their effect sizes (Cohen’s

d=0.53-1.42; Fig. 2e) and diagnostic capacities (AUC 0.70-0.88,
Fig. 2f). Although the model was trained on acute and chronic pain,
the risk score for pain better predicted and classified chronic pain
conditions than acute pain conditions (Cohen’s d = 0.33-0.74; AUC
0.63-0.76). Finally, the risk score for pain also showed good perfor-
mance for classifying a broad range of medical conditions (Cohen’s
d=0.48-1.50; AUC 0.67-0.86; Fig. 2g).
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Fig. 2| A multivariate model classifying and predicting different pain
conditions. a, Classification of 99 clinical features grouped in three domains
and ten categories. b, Venn diagram and bar graph show the model’s explained
variance (R?) (ordered based on discovery results) in the number of pain

sites across the three domains. ¢, The variance explained is shown for the ten
categories and the category contributing the least was compared to anull
model generated from 10,000 permutations. d, The model performanceis
shownin the testing set (validation data) using explained variance and root
mean squared error (RMSE) for acute and chronic pain conditions separately

Medical conditions

(Nepronic = 17,948; Nyeue = 13,117). Mean estimated across number of sites +s.e.m.
areshown. e, Cohen’s d effect sizes in the risk score for each pain site (acute in
orange and chronicin red) compared to pain-free individuals. f, The diagnostic
ability of our model to classify acute and chronic pain conditions is displayed
using the AUC-ROC. g, The diagnostic ability of our model to classify the selected
medical conditions is displayed using Cohen’s d and measured with AUC-ROC
(selected Dx compared to Dx-free individuals). The 95% Cl estimated across
1,000 bootstrap samples is shown. *PAO was excluded from model training in the
discovery set. Dx, diagnoses.

Recovery and spreading of chronic pain: 9-year prognosis

We used the longitudinal dataset (the individuals from the test set
that underwent a follow-up in-person assessment) to test whether
the risk score for pain measured at baseline predicted changes in
the number of chronic pain sites at the follow-up visit about 9 years
later. The stability and individual changes in the number of pain sites
between the two visits are displayed in Fig. 3a. The matrix in Fig. 3b
shows that chronic painat baseline was associated with higher odds of
experiencing chronic pain at the same site or at a proximal site about 9
years later (R* = 0.41, P, < 0.0001). Moreover, individuals with high
risk scores for pain were more likely to report new pain at distal sites
(R*=0.26, P,y = 0.0002; Fig. 3¢). This suggests that while baseline
chronic pain presents arisk for the spreading of pain to proximal sites,
a higher risk score for pain instead impacts the spreading of pain to
distal sites, where pain does not normally propagate. As hypothesized,
anelevatedrisk score for pain adjusted for the number of pain sites at
baseline predisposed individuals to the pain outcomes measured at
the follow-up visits; participants with negative scores recovered from
their pain, whereas participants with positive scores progressed toward
spreading of their pain (Fig.3d). Thus, our adjusted risk score showed
strong effect sizes, obtained good performance for predicting chronic
painspreading across multiple new pain sites at the follow-up visit (AUC
0.73 for 4+ sites; Fig. 3e) and predicted the prognosis of pain-related
medical conditions in the longitudinal data (Cohen’s d = 0.25-0.83;
Fig. 3f).

We next performed a tentative temporal ordering of individual
risk factors by ranking the ten categories on the basis of their effect
sizes toidentify key risk factors that may indicate the onset or progres-
sion of chronic pain conditions. This procedure allowed us to unpack
the sequence of the risk factors organized by categories, from early
prodromalfeatures to late features, predicting the progression of the
spreading or recovering of chronic pain across body sites (Fig. 3g).
Theresults show that mood was the earliest contributor to pain spread-
ing, suggesting that mood-related factors may be early warning signs
contributing to the development of chronic pain. On the other hand,
occupation ranked last, suggesting that factorsrelatedtoajob or career
may not have as much impact on the development or progression
of chronic pain spreading as other factors such as mood, anthropo-
metric measurements, neuroticism or sleep. By establishing a tenta-
tive temporal ordering of these risk factors, we were able to better
define the cascade of factors predicting chronic pain spreading, which
could help develop more targeted interventions to prevent or manage
pain conditions.

High-impact pain

The risk score for pain was also generalized to secondary pain out-
comes (Fig.4a), including overall healthrating (R*=0.20,P<1.0 x107%;
Cohen’sdbetween consecutive categories of 0.38-0.78), use of opioids
(AUC 0.73; Cohen’s d = 0.72) and disability due to sickness (AUC 0.88;
Cohen’s d =1.35; Fig. 4b). The longitudinal analyses demonstrated
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Stability and longitudinal chronic pain spreading
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Fig. 3 | Forecasting the spreading and recovery of chronic pain. a, Test-retest
variance explained (R?) in the number of chronic painsites (4+ including PAO)
between baseline and the follow-up visit. b, Odds of reporting chronic pain sites
atbaseline and the follow-up visit depended on the distance on the body map
(Pperm < 0.0001). ¢, Our risk score, however, increased the odds of reporting
pain at distal sites (P, = 0.0002, using 10,000 two-sided permutation tests).
The 95% Cl estimated across 1,000 bootstrap samples is shown. d, The matrices
display the risk score depending on the changes in the number of chronic
painsites before (left matrix) and after (right matrix) adjusting linearly and
exponentially for the number of chronic pain sitesinitially reported at baseline,
age and years of follow-up. A negative-adjusted risk score was associated with
recovery and a positive-adjusted risk score was associated with spreading of
chronic pain. Means and s.e.m. are shown. e, The diagnostic capacities of our

adjusted risk score for recovering and spreading was tested using Cohen’s

d effect size (presented as mean + s.e.m. estimated from 10,000 bootstrap
samples) and AUC-ROC discrimination when compared to chronic pain-free
participants. f, The same approach was conducted for diagnoses of medical
conditions using Cohen’s d effect sizes (presented as mean + s.e.m. estimated
from 10,000 bootstrap samples). g, The order of progression between the pain
determinants was determined using Cohen’s d in each category after controlling
for multiple comparison. The factors are ordered depending on theirimportance
inspreading and recovery. Early factors showed significant differences between
small changes in chronic pain (for example, pain +1 or -1site), whereas late
factors only showed differences between large changes in chronic pain. FDR,
false discovery rate.

that the risk score for pain predicted the initiation of opioid medica-
tion (AUC 0.67; Cohen’s d = 0.51) and the development of disability
(AUC 0.78; Cohen’s d = 0.94; Fig. 4c), which echoes the associations
previously observed between high-impact pain and overlapping pain
conditions (Fig.1). Concordantresults were observed in the discovery
set (Extended DataFig. 5). Overall, our results show that the risk score
for pain also predicted high-impact chronic pain.

We next tested whether certain biological markers were associated with
therisk score for pain (Extended Data Fig. 6). The markers included
C-reactive protein (CRP), a polygenic risk score (PRS) and a validated
brain-based biomarker called the tonic pain signature (ToPS)*. These
markers showed small but significant associations with the number of
pain sites in the validation dataset (CRP, r=0.09, P=3.4 x107%; PRS,
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Fig. 4 |Predicting secondary outcomes associated with high-impact pain.

a, Schematic of secondary outcomes examined: health ratings, opioid
medications and disability and/or sickness. b, Cross-sectional performance of the
risk score onsecondary outcomes. Cohen’s d effect sizes and explained variance
(R?, onthe left with Pestimated using a two-sided Pearson’s r correlations) were
used across self-reported ratings of overall health ratings while Cohen’s d and
AUC-ROC discriminations were used for opioid medication use and inability to

work due to sickness or disability in the validation data. ¢, Longitudinal prognosis
of secondary outcomes at about 9 years follow-up predicted from the risk score at
baseline. Cohen’s d and AUC-ROC were measured in worsening at follow-up (left
inred) and improvement (right in blue). Pobtained using a two-sided unequal
variance t-test (Welch’s approximation). Sample sizes are included in parenthesis.
ATC, Anatomical Therapeutic Classification; NO2A, Opioids ATC Classification.

r=0.11,P=51x10"ToPS, r=0.038, P=5.0 x10™%), with equivalent
or even stronger correlations found with the risk score for pain (CRP,
r=0.20,P<1.0x107%°; PRS, r=0.12, P=1.8 x107'%; ToPS, r= 0.074,
P=2.6 x10™%; Extended Data Fig. 7). This supports the idea that
psychosocial factors are connected to biological factors in the
experience of pain, as suggested by the biopsychosocial model for pain®.
Additional analyses integrating domains for each biological marker
or their combinations, are presented in Extended Data Fig. 7.

Pain-specific candidate models for different body sites

We nextinvestigated the specificity of the risk factors between differ-
ent pain conditions by generating and testing alternative candidate
models for each pain site separately. The 16 new candidate models
were trained by applying the NIPALS algorithm on the 99 features to
classify each body site separately (for example, participants report-
ing chronic knee pain versus everyone else). The matrix presented in
Fig. 5a shows the loadings of the 99 features on the risk score derived
for different pain conditions, including our initial model predicting
the number of coexisting pain sites. A visual inspection of the matrix
shows that the most predictive features for the spreading of pain were
also the most homogenous between pain conditions. The models
trained to classify acute pain conditions showed poor to good dis-
crimination (AUC 0.62-0.74), whereas the models trained to classify
chronic pain conditions showed good to excellent discrimination
(AUC 0.70-0.89; Fig. 5b). The expression of each risk score (normal-
ized for comparisons) correlated with the number of coexisting pain
sites (Fig. 5c). The weights of the 99 features are presented for each
candidate model in Extended Data Fig. 8.

To test the commonality or the specificity between the body sites,
we compared the discriminative value of each site-specific model
with that of the candidate models trained on a different pain site,
in both cross-sectional (Fig. 5d) and longitudinal (predicting the
development of chronic pain; Fig. 5e) data. In both cases, site-specific
models showed only modestimprovement over therisk score for pain
(improvement in AUCs ranged from 0.006-0.065 in cross-sectional
dataand -0.021-0.047 in longitudinal data) and models trained for a
different body site (improvement in AUCs ranged from 0.024-0.085
incross-sectional dataand 0.004-0.074 in longitudinal data). Similar
results were observed in the discovery dataset (Extended DataFig. 8).
We conclude that different chronic pain conditions can be predicted
from interchangeable models trained on a different pain site. These

findings support the proposition that a common framework may be
used to characterize different pain conditions that tend to co-occur
and be predicted from the same features. The main difference in the
performance of the model was instead that the risk score for pain
discriminated between participants reporting pain at one body site
and participants reporting pain at more than one body sites (chronic
pain AUC 0.68-0.75; acute pain AUC 0.57-0.63; Supplementary Fig. 2).

Asimilarity matrix correlating the loadings between the candidate
models showed that our initial model trained on the number of pain
sites loads strongly on each of the eight candidate models trained for
specific chronic pain conditions (r = 0.75-0.97; Fig. 5f). The similarities
between the chronic pain candidate models depended on the distance
betweenthebodysites, reflecting the actual body map of the coexisting
painsites presented in Fig. 1b (R*= 0.58, P,.;r, < 0.0001). This was, how-
ever, not the case for acute pain conditions, as the candidate models
loadings onto therisk score varied between body sites (r= 0.31-0.93)
and did not depend on the distance between pain sites on the body
map (R*= 0.09, P, = 0.19). Consistent results were obtained in the
discovery dataset (Extended Data Fig. 8).

Risk of pain spreading screening

Last, we aimed to simplify our model by reducing the number of fea-
tures (Fig. 6a). We re-trained the model by incrementally adding the
items explaining the most variance. This simplified model, named
the fisk'of pain'spreading (ROPS), is a new risk score for pain calcu-
lated by simply summing the binarized answers to six items measuring
sleep, neuroticism, mood, trauma and anthropometric measurements
(Fig. 6b). The ROPS was associated with the number of pain sites
(R?=0.075, P<1.0 x107%%°) as well as pain intensity (R*=0.071,
P=8.5x107) and achieved good performance in cross-sectional
data (chronic pain AUC 0.66-0.79; acute pain AUC 0.60-0.71) and
average-to-good performance inlongitudinal data (chronic pain AUC
0.59-0.73;acute pain AUC 0.53-0.65, Fig. 6¢). Thisrepresented the best
trade-off between the smallest number of features (obtained using
the most predictive features from the original 99 features) and the
highest AUC receiver operating characteristic (ROC), especially in
the longitudinal data (chronic pain all over the body AUC 0.73). The
ROPS predicted high-impact pain, as measured by pain interference
(R*=0.065; P<1.0 x107%%°) (pain'severity (R*= 0.14; P<1.0 x 107%°)
anddepressivemood (R*= 0.18; P<1.03 x 107°%; Fig. 6d). Further-
more, the original risk score and the ROPS both performed well across
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sexes (self-identified male or female, ROPS AUC 0.67-0.82 with sex
differences in AUCs < 0.03) and ethnicities (self-identified as White,
Black, Asian or mixed, ROPS AUC 0.69-0.86 with ethnic differences
in AUCs < 0.06; Extended Data Fig. 9).(None of these six features was
directly related to pain or attitudes toward pain, suggesting that more
objective predictions can be obtained by avoiding the use of pain ques-
tionnaires to predict pain outcomes.

Wethen tested the ROPS using the Northern Finland Birth Cohort
(NFBC), whichincludes 5,525 participantsbornin1966, 4,710 of whom
were followed longitudinally. This cohort was selected because equiva-
lentitems were found for each one of our sixitems, with pain phenotype
and demographics similar to the UK Biobank (Extended Data Fig. 10).
Inthe NFBC, the ROPS predicted pain cross-sectionally (chronic pain
AUC 0.62-0.70; acute pain AUC 0.58-0.69) and longitudinally (chronic
pain AUC 0.57-0.66; acute pain AUC 0.50-0.63) with similar accuracy
to the score initially developed in UK Biobank (Fig. 6e). Moreover,
the ROPS also partially determined the impact of pain (R*=0.044,
P=5.0x107*), work disability (R*=0.078, P=5.1x107%) and depres-
sive mood (R*=0.18, P=5.0 x107°) in participants reporting chronic
pain (Fig. 6f).

We also directly administered the ROPS to a smaller group of
participants enrolled in the Pre-symptomatic Evaluation of Novel
or Experimental Treatments for Alzheimer’s Disease (PREVENT-AD)
cohort. These participants are older adults with normal cognitive
functionenrolledinalongitudinal study aimed toidentify risk factors
for Alzheimer’s disease. Participants only responded to the five ques-
tions displayed in Fig. 6b (BMI was calculated from previous health
records), preventing any flexibility in the selection of feature equiva-
lence enteredin the predictive model. The results were almostidentical
tothose observedin the UK Biobank and the NFBC for cross-sectional
classifications (AUC 0.57-0.88; Fig. 6g), pain intensity (R*=0.11,
P=0.022), McGill Pain Questionnaire (MPQ) sensory-affective scales
(R?=0.12,P=9.1x107*),anxiety (R*=0.28,P=1.3 x107) and depressive
mood (R*=0.40,P=6.6 x10™; Fig. 6h).

Discussion
Inthisstudy, we trained amodel to predict the number of painsites and
deriveindividual painrisk scores. These scores classified each chronic
pain condition separately in cross-sectional data (seven different body
sites and 25 pain-related medical conditions), forecasted individual
differencesin painspreading or recovery after 9 years and generalized
to secondary outcomes such as general health, disability and opioid
use. Tosimplify the model’s practicality, we developed a user-friendly
screening tool named the ROPS, restricted to only six questions
with binarized answers. The ROPS effectively predicted widespread
chronic painanditsimpact across three different cohorts. Predicting
chronic pain conditions has numerous potential applications, such
as patient selection for research protocols, participant matching in
randomized controlled trials and guiding treatment options for
patientsin urgent need.

Using amultivariate approach, weidentified that major risk factors
for co-occurring pain on multiple body sites were mood (tired-
ness and consulting GP for depression/anxiety), sleep (insomnia),

neuroticism (feeling fed-up) and anthropometric measures (BMI).
Mental health-related factors were consistent across different pain
sites and were the strongest predictors, whereas sociodemographic
factors were heterogeneous across pain sites and were least predictive
ofthe number of chronic pain sites. The comparison between candidate
models trained on different body sites showed little superiority to body
site-specific models, indicating that different chronic pain conditions
can be predicted cross-sectionally and longitudinally from common
risk factors. Our findings suggest that the biopsychosocial model not
only shapes pain experience and maintenance, but also predisposes
the development of new pain sites, a phenomenon we refer to as the
‘spreading’ of pain sites.

Anincreasing number of conditions resembling widespread pain
disorders have beenreferred to as chronic overlapping pain conditions
(COPCs). Our results showed that co-occurring pain sites beyond
the traditional focus areas (such as headaches in migraine, stomach/
abdominal paininirritable bowel syndrome (IBS) or hand painin carpel
tunnel syndrome) are common in conditions other than the traditional
COPCs. Furthermore, we found that the pain site co-occurrence was not
random, with a strong dependence between proximal pain sites, shown
fromeither acute or chronic painsites and from correlations between
painintensity ratings. Thus, biopsychosocial risk scores developed for
headache will also moderately predict knee pain and vice versa, indi-
cating insensitivity to specific pain sites, although the more distal the
painsites, the more dissimilar the models were. All candidate models
were effective in predicting widespread pain and diagnoses with a
high prevalence of multi-site pain, such as fibromyalgia, regardless of
whether they were trained on the number of pain sites or specificbody
sites. This suggests that an'elevated risk could be a pathway for the
progression of widespread paindisorders and helpsin understanding
how pain spreads across multiple sites.

This study highlights the significance of pain spreading as a core
conceptin COPCs. Our results show that individuals with a higher pain
risk score are prone to developing painin multiple sites and the extent
of painspreading across the body is moreimportant than thelocation
of pain. Furthermore, our results indicate that pain spreading encom-
passes the concept of high-impact pain characterized by limitations
inwork, social and self-care activities leading to disability, opioid use
andincreased healthcare needs®*?. This denotes that the concepts of
chronic pain spreading and high-impact pain seem intimately linked
and predictable from higher-order biopsychosocial characteristics
presented from our data-driven framework. Therefore, we assert that
researchand prevention strategies should not solely focus on address-
ing the transition from acute to chronic pain, as solely focusing on the
temporal evolution of pain is an incomplete narrative. Instead, our
results suggest that the spatial trajectory of pain, whether it remains
localized to a specificbody site or spreads to proximal and then distal
sites, isacentral factor in chronic pain syndrome. Thus, prioritizing the
study of spatial evolution of pain once it becomes chronicis crucial due
to the prevalence of COPCs, the dynamic changes they undergo over
time, the predictability of their spreading patterns, their biological
underpinnings and their pivotal role in determining the severity of
high-impact pain.

Fig.5| A commonrisk shared across chronic pain conditions. a, Schematic
describing that a total of 16 site-specific candidate models (for example, acute
knee versus all else) were derived cross-sectionally in the discovery set using
NIPALS. Feature loadings (Pearson’s r correlation coefficient between features
and the models’ scores) are shown in the testing set for each model. IPAQ,
International Physical Activity Questionnaire; MET, metabolic equivalent
task. b, Candidate models’ capacities to discriminate between the pain sites
they were trained on from pain-free individuals are shown using AUC-ROC.

¢, Therisk score derived from each candidate model correlated with number
of coexisting pain sites for acute and chronic pain conditions separately (risk
scores presented as mean + s.e.m. estimated from 10,000 bootstrap samples,

Nenronic = 17,948; Nyeue = 13,117). d, Cross-sectional discrimination for each pain site
inacute (dashed line) and chronic (full line) pain conditions against the rest of
the testing cohort (pain-free and other pain sites) using the model specific to the
site (in color), to the number of pain sites (black) and to other candidate models
trained on different pain sites (gray). e, The same analyses were performed in

the longitudinal data to predict the development of chronic painin pain-free
individuals about 9 years later. f, Post hoc analyses show that similarities between
the feature loadings the different models (Fisher-normalized) can be explained
(R?) by the distance between the sites in chronic (P, < 0.0001), but not acute
pain conditions (P, = 0.19, using 10,000 two-sided permutation tests).

The 95% Cl estimated across 1,000 bootstrap samples is shown.
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The biopsychosocial model has been influential in the field
of chronic pain, as any model focusing solely on any one of these
domains would inevitably be inadequate®®. In this study, we
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Our results revealed consistent but small associations between these
biomarkers and the number of pain sites; however, these biomarkers
were equivalently or even more strongly correlated with pain risk
scores than with the number of pain sites alone. These findings raise

questions about the pathophysiology of chronic pain and suggest
that incorporating psychosocial factors may be more effective
in understanding the biological determinants underlying chronic
pain conditions.
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Fig. 6 | The risk of pain spreading screening. a, Schematic describing the steps
implemented to develop the ROPS on 459,855 participants. b, Core selected
features retained and binarized to form a six-item short score capturing 63% of
the variance explained by the full risk score predicting the number of painssites.
¢, Model performance on the testing set for the number of pain sites in both acute
and chronic pain sites in the cross-sectional (1 onic = 17,948, N, = 13,117) and
longitudinal data and with pain intensity during the online assessment. d, In the
online pain assessment, the ROPS was associated with the interference of pain,
symptom severity during the last week and the depressive symptoms severity
inlast 2 weeks (1gops.o = 9,794, Ngops1 = 18,460, Npops = 20,102, Nyops.; = 16,489,
Ngops:a = 10,423, Ngops.s = 4,349 and nggps. = 911). e-h, These results were
replicated inindependent cohortsincluding the NFBC cohort (using equivalent
score items, longitudinal-only sample, n = 4,710) and the PREVENT-AD cohort
(usingidentical score items). Hd, hand; A, arm; Ft, feet; C, chest; L, leg; GAI,
geriatric anxiety scale; GDS, geriatric depression scale. In the NFBC, the ROPS
predicted the number of pain sites and classified different pain conditions in

both cross-sectional (n = 5,525) (N¢nronic = 1,489; N, = 2,374) and longitudinal
data (n=4,710) with similar accuracy as in the UKB (e). The ROPS determined
impact, working disability and depressive mood in the NFBC cohort (rops.o = 334,
Npops1 = 413, Npops:2 = 408, Npopss = 344, Npops:s = 184, Npops:s = 62 and Npgps;s =12)

(f). In the PREVENT-AD cohort, the ROPS predicted the number of pain sites

and classified different pain conditions in cross-sectional data (g). The ROPS
determined sensory and affective pain measured with the MPQ, anxiety and
depressive mood (1yops.0 = 13, Mrops.y = 29, Npops:a = 12, Mrops:3 = 22, Npops.s = 8 and
Ngops:s = 2) (h). Box plots show the medians and are bound by the first and third
quartiles. Data points outside 1.5 x interquartile range are shown as diamonds.
PAOinboth replication cohorts was defined as pain in five or more sites. The 95%
Clwas estimated across 1,000 bootstrap samples (c,e,g). In boxplots, the

center line (median), white dot (mean), box (inner quartiles), whiskers (bottom
and top bounds) and diamonds (outliers outside 1.5 x interquartile range) are
shown. MSK, musculoskeletal. *Longitudinal data had a different n than the
whole sample.

We finally aimed to make our risk score for pain more clinically
relevant and useful by simplifying it to a set of six questions with binary
answers (yes/no), suitable for over-the-phone administration or screen-
ing visitassessments. The ROPS allows for a quick assessment of the risk
of developing or transitioning to more severe forms of chronic pain.
The ROPS has multiple applications, including enhancing research
power by targeting vulnerable patients, optimizing patient allocations
in randomized controlled trials and improving pain management by
identifying individuals at risk of severe chronic pain conditions that
persist or worsen over time.

Our study has several limitations. First, the UK Biobank lacks
diversity, being a predominantly white population of middle-aged
andolderindividuals. This may restrict the applicability of our model,
as studies have demonstrated that algorithms trained on mostly
white participants can be mischaracterized in non-white partici-
pants**. We, however, found that the original score and the ROPS
presented near identical discrimination between sex and ethnicities
(Extended Data Fig. 9). Second, the UK Biobank may have a ‘healthy
volunteer’ selection bias given the low participation of 5.45%*. Internal
selection bias has been reported in the imaging visit (the valida-
tion cohort), where participants are sociodemographically similar
(Extended Data Fig. 2) but generally healthier than participants
from the baseline visit (the discovery cohort)**. We, however,
generalized the risk score for pain in independent cohorts with dif-
ferent characteristics. Third, our study did not account for medical
comorbidities or treatments when developing the risk score for
pain, focusing instead on the association between higher risk
scores and the diagnosis of medical conditions and/or medication
use. Future research should explore the independent contribution
of medical factors to chronic pain. Last, like any multivariate
model, the weights of our model cannot be directly interpreted.
We, however, estimated feature importance through loadings and
interpreted the univariate associations between each feature and
theriskscore.

In conclusion, our model predicted chronic painspreading across
multiple body sites in nearly 50,000 out-of-sample individuals. We
showed that high sensitivity and specificity could still be obtained for
certain chronic pain conditions using only six questions. The ability
to predict chronic pain, particularly COPCs and its severe forms, with
minimal effort has the potential to benefit both research and clinical
practice.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-023-02430-4.
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Methods

Overview of the UK Biobank population

The UKB project is a large-scale, prospective and ongoing study ini-
tially established to allow extensive investigation of genetic factors
and lifestyle determinants of a diverse range of common diseases in
middle-aged and older adults”. Torecruit the intended sample size of
approximately 500,000 participants, over 9 million invitations were
sent to individuals registered in the UK National Health Service aged
40-69yearsoldand living withinareasonable distance from an assess-
ment center. Baseline recruitment and data collection from 503,317
participants who consented tojoin the study took place between 2006
and 2010 in22 assessment centers throughout Scotland, England and
Wales. Subsets of baseline participants were invited later for follow-up
visits and/or were asked to provide data on online questionnaires at
certain time points. The following datasets from different time points
are used to address different aims of our study.

Baseline UK Biobank (in-person assessment visit, 2006-2010,
n=502,494). Data collection at recruitment included (1) a touch-
screen questionnaire, where participants provided information on
their sociodemographic, lifestyle, psychosocial factors (social support
and mental health), as well as their health and medical history; (2) a
verbalinterview by atrained nurse, including data on early life factors,
employment, medical conditions, medications and operations; (3)
physical measurements; and (4) biological sampling. For the purposes
of this study, our study sample was restricted to 502,494 participants
that contained data available at the date of our datarequest.

Imaging UK Biobank (imaging follow-up visit, 2014-2020,
n=49,001). Asubsample of baseline participants was invited to attend
afollow-up visit 3-13 years later (median 9 years). This visit included
an MRIscanonthebrainas well as the same questionnaires and assess-
ments as the baseline®. After exclusionbased onbothvisits, the sample
for this follow-up visit was restricted to the 48,079 participants. More
details regarding brain imaging is provided in Methods, Brain MRI
measures.

Online UK Biobank (online pain questionnaire, 2019-2020,
n=167,255). Additional assessments in a subset of participants
recruited at baseline were conducted by the UKB using online ques-
tionnaires. Experience of pain questionnaires were administered about
8-13 years (median 10 years) after the baseline visit to allow better
phenotyping of individuals with chronic pain. A subset of 332,587
participants were sent invitations and 167,255 filled out the online
questionnaire. Subsections were used to validate the in-person pain
phenotype using the same anatomical sites asked at the UKB baseline
visit (tensections, https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/
pain_questionnaire.pdf). About 94,074 of these individuals reported
pain or discomfort lasting for more than 3 months (chronic pain).

UK Biobank participants and data exclusion

From the initial 502,494 participants from the baseline assessment
visit (baseline UKB), those with more than 20% of features missing
amongthe 99 features selected for the pain risk score (as explained in
Methods, Feature selection for the pain risk score) were excluded, as
were participants with missing data at any of the acute or chronic pain
sites (equivalent to atotal of <2.5% of the participants). These exclusion
criteria were implemented to ensure high confidence regarding the
number of pain sites, the primary outcome of this study. Toensure the
findings of the study were as generalizable as possible to the greater
population, no other exclusion criteria were applied. This resulted in
atotal study population of 493,211 individuals. The total study sample
was then divided into a discovery cohort of 445,132 participants who
did not attend the imaging follow-up visit and a validation cohort of
48,079 participants who did attend the imaging visit (imaging UKB). As

thevalidation cohortincludes participants from theimaging follow-up
visitand longitudinal dataare available for these participants, this sub-
sample was used for the purposes of longitudinal analysesin this study.

To minimize potential bias from incomplete questionnaires, a
data-driven Bayesian ridge regression model was applied forimputa-
tion of missing data as a function of all other features in the model,
using themedian asaprior. Amedian-only feature imputation method
was also tried and presented congruent results. Features were then
standardized across the participants by centering the mean to zero
and scaling the variance to one. The same process (exclusion followed
by animputation for missing data and standardization with the same
mean and variance) was applied separately for the validation dataset.

Of the participants from the online UKB, only those reporting
chronic pain (as explained in Methods, Pain phenotype in the UK
Biobank, n=94,074) were included in this study. Participants report-
ing PAO were not exposed to a subset of the questionnaire and were
therefore excluded from the related analyses. Similarly, participants
missing dataatany of the pain sites examined were excluded (in-person
7 or full12 pain sites available).

Pain phenotypein the UK Biobank

Pain phenotype: baseline and imaging UK Biobank. One-month pain.
Participants were asked whether they experienced pain thatinterfered
with their usual activities at any major anatomical sites (head, face,
neck or shoulder, back, stomach or abdominal, hip, knee or PAO) in
the last month. Participants who answered PAO could not choose any
other painsites. This category consists of both chronic and acute pain.

Acute and chronic pain sites. Participants who reported having a
given pain site in the last month were then asked whether this pain at
thegivensite had persisted for more than 3 months. This question was
used to distinguish between a chronic pain site, one present for more
than 3 months according to the classification from the International
Association for the Study of Pain*® and an acute pain site, one present
for 3 months or less.

Pain phenotype: online pain questionnaire (online UK Biobank).
Chronic pain. Participants were asked whether they were troubled
by pain or discomfort either all the time or intermittently for more
than 3 months. This was followed by a question asking about where
they had experienced this pain or discomfortin the last three months.
The options for pain sites were the head, face, neck or shoulders,
chest, stomach and abdomen, back, hip, legs, knees, feet, arms, hands
and PAO.

Length of pain or discomfort. The online questionnaireinquired about
the duration of the pain or discomfort (3-12 months, 1-5 years or more
than 5 years) for participants reporting chronic pain.

Pain rating in the last 24 h. Participants were asked to rate their pain
overthelast 24 hforeachreported chronic painsite ona0-10scale (O,
no painand 10, asbad as it could be).

Worst pain rating experienced in the last 24 h. Participants were
asked to rate the pain that bothered them most at its worst in the
last 24 h, from O (no pain) to 10 (pain as bad as you canimagine). Only
participants reporting chronic pain at a specific body site (not PAO)
were exposed to this question.

Pain interference in the last 24 h. Using the BPI*’, the impact of pain
functioning was assessed across sevenitems, including general activity,
mood, walking ability, normal work, relations with other people, sleep
and enjoyment of life, each rated out of 10 (0, does not interfere and
10, completely interferes). This was assessed for the most bothersome
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painand only participants reporting chronic painat aspecific body site
(not PAO) were exposed to this question.

Depressive symptoms in the last 2 weeks. Presence or absence and
the severity of current depression as a common comorbidity with
chronic pain was assessed using the PHQ-9 (ref. 40), where 0-4 indi-
cates no/minimal depression severity and 5-9 indicates mild depres-
sion severity).

Symptom severity over the last week. Participants were asked to
indicate thelevel of severity they experienced over the past week across
three symptoms of the fibromyalgia symptom severity scale, includ-
ing fatigue, sleep quality and cognitive symptoms (O indicates no
problemand3indicates severe, pervasive, continuous, life-disturbing
problems).

Pain or discomfort today. Participants were asked to describe their
health ‘today’ (choosing one of the following options: no pain/discom-
fort, slight pain/discomfort, moderate pain/discomfort, severe pain/
discomfort or extreme pain/discomfort).

Feature selection for the risk score for pain

Atotal of 99 features collected at the baseline in-person visit (baseline
UKB) were selected a priori based on their relevance to chronic pain.
The selection was based on the Prognosis Research Strategy (PRO-
GRESS) group thatrecently provided aframework for the development
of a prognostic model to determine risk profile*. Variables were organ-
ized through an iterative approach along a hierarchical framework
from 99 variables into ten categories forming three distinct domains
(mental health, physical health and sociodemographics). The three
domains are as follows:

Mental health. The mental health domain includes three categories
(1) neuroticism (all individual items and their total sum-score) based
on12neurotic behaviors closely linked to negative effect; (2) traumas
(illness, injury, bereavement or stress in the last 2 years) including six
events; and (3) mood (reported frequency of certain moods in the past
2 weeks and visits to a GP or psychiatrist for nerves, anxiety, tension
or depression).

Physical health. The physical healthdomainincludes four categories
(1) physical activity based on MET scores computed using the IPAQ*;
(2) sleep, such as questions regarding duration, napping, snoring and
sleeplessness; (3) substance use, such as smoking and alcohol use; and
(4) anthropometric measures such as BMI, fractures that occurred over
thelast 5years and blood pressure.

Sociodemographics. The sociodemographic domainincludes three
categories (1) socioeconomic status, such as education completed,
incomeandemployment; (2) occupational measures, suchasindividuals
present within household, social entourage and manual or physical
job; and (3) demographics such as age, sex and ethnicity.

A fulllist of all pain risk score measures and their corresponding
UKB data fields are provided in Supplementary Table 1.

Diagnoses of pain-related medical conditions

Medical conditions collected at each visit: baseline and imaging
UK Biobank. Participants underwent a verbal interview about past
and current medical conditions, in which a trained nurse confirmed or
amended the type of medical condition that the participant reported
throughthetouchscreen questionnaire. If the participants were uncer-
tain of the type of illness they had, they would describe it to the nurse
who would attempt to place it within the coding tree or enter it as a
free-text description to be subsequently matched to a specific entry
by adoctor. Only noncancer illnesses were investigated.

Medical conditions collected online: online UK Biobank. The online
pain questionnaire includes self-reported diagnoses of 14 common
pain medical conditions. These included osteoarthritis affecting one
or more joints, rheumatoid arthritis affecting one or more joints, can-
cer pain, carpal tunnel syndrome, complex regional pain syndrome,
chronicpost-surgical pain, diabetes, nerve damage/neuropathy, fibro-
myalgia syndrome, chronic fatigue syndrome or myalgic encephalo-
myelitis, gout, migraine, pelvic pain and post-herpetic neuralgia.

High-impact chronic pain measurements

Overall health rating. The self-reported health rating was assessed
through the touchscreen questionnaire at the baseline visit and the
imaging follow-up visit (baseline and imaging UKB).

Use of opioid medication. Medication was obtained fromself-reported
regular use (most days of the week for the last 4 weeks) of prescrip-
tion medications at the baseline visit and the imaging follow-up visit
(baseline and imaging UKB) and was coded according to the ATC clas-
sification system of the World Health Organization obtained fromthe
Wu et al. (2019) stratification®. Opioid medication use was extracted
at each visit from the ATC-WHO coded data (ATC codes NO2A and
RO5SDAO04).

Unable to work due to sickness disability. This measure wasincluded
asasectionof the participants’ current employment status at the base-
line visit and the imaging follow-up visit (baseline and imaging UKB).

Overview of the replication study cohorts

NFBC replication. The NFBC1966 was originally composed of 12,068
newborns in 1966 representing 96.3% of births in the target region
that year at the University of Oulu*. The data utilized for this study
were obtained at the 31-year and 46-year follow-up visits conducted
from 1997 to 1998 and 2012 to 2014, respectively®. Cross-sectional
analysis was conducted at the 46-year follow-up with afinal population
of 5,525 and only participants with complete datain the required pain
questionnaires were included. A longitudinal analysis of participants
present at both the 31-year and 46-year visit was also conducted with
atotal population of 4,710.

PREVENT-AD replication. The PREVENT-AD datasetis an observational
cohort composed of healthy individuals at risk of developing Alzhei-
mer’s disease due to afirst-degree family of Alzheimer’s disease. This
sample originally consisted of 349 adults aged older than 60 years at
baseline visit (between 2011 and 2017) who met the eligibility criteria of
investigation explained elsewhere*’. Cross-sectional analysis was con-
ducted on dataavailable fromatotal of 178 individuals who answered
the most recent questionnaire (only participants with complete data
intherequired pain questionnaires were included).

Pain phenotypeinthereplication cohorts

Pain phenotype: NFBC. At the 46-year follow-up participants were
asked whether they have had ‘pain or achesin thelast 12 months’ (ques-
tion (Q) 46) of the complimentary questionnaire), at which body sites
they experienced this pain and for how long. Pain lasting longer than
3 months was considered chronic. Pain lasting less than 3 months was
considered acute. Facial and stomach/abdominal pain were collected
ina separate questionnaire. Participants reporting both chronic pain
on the previously mentioned questionnaire and pain at the stomach/
abdomen (reported in Q96 of the background, lifestyle and health
survey) were defined as having chronic stomach/abdominal pain.
Similarly, participants with chronic or acute facial pain were defined as
participants reporting chronic or acute painin Q46 and jaw or face pain
onceaweek ormore (Q101of the background, lifestyle and health sur-
vey). Healthy controls were defined as those who reported no pain over
the last year. Self-reported pain intensity, impact of pain, likelihood
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of returning to work and depressive symptoms were recorded on a
0-10 scale. Participants also reported whether they had pain-related
illnesses, suchas fibromyalgia, diagnosed by adoctor. PAO was defined
asreporting five or more pain sites.

At an earlier visit (31-year follow-up) participants reported fre-
quency of pain or aches over the past year at a variety of body sites
as well as frequency of headaches in the past week. Although these
items were unable to differentiate acute from chronic pain sufferers,
we utilized this item to select participants who never experienced pain
at a given site during the 31-year visit and tracked who among these
participants developed pain at the next follow-up visit 15 years later.

Pain phenotype: PREVENT-AD cohort. The experience of physical pain
was evaluated using the MPQ". Participants were asked whether they
had suffered from chronic pain (any pain lasting more than 3 months)
in the past year. If they answered ‘yes’ they were considered to have
chronic pain. This was followed by a question asking about the area
where their pain occurs on acomplete body template divided into 50
anatomical areas, which for the purposes of this study were combined
and categorized into 11 different pain sites (arm or elbow, hand, leg,
foot, chest, buttock, knee, back, abdominal, neck or shoulder, and
head). This phenotype was used to define PAO as five or more sites
and/or report of fibromyalgia. Other measures were used, including
present pain intensity scale, sensory and affective ratings of the pain
experience from the MPQ, GAl, GDS, as well as demographic-specific
questionnaires.

Data analyses in the UK Biobank
Number of coexisting pain sites characterizing different chronic
pain conditions. In Fig. 1c, the co-occurrence of acute and chronic
painsites was measured using ORs from the exponential function of a
logistic regression coefficient estimated for each combination of sites
(excluding PAO). As conducted by Khoury et al. (2022)*, each reported
pain site was assigned a number 1-7 for the baseline UKB and 1-10 for
the online UKB data, starting from the highest point toward the low-
est point. Distances between sites were measured as the number of
sites setting apart each combination of the corresponding numbers.
Explained variance (R?) between the distance and logarithmic value
of the ORs between sites was assessed. To ensure the significance of
the association between co-occurrence and distance, our results were
compared to anull model generated from 10,000 two-sided permuta-
tion tests, using two-sided tests as indicated in the figure legends.
The prevalence of pain sites among self-reported medical condi-
tions was assessed for each pain site (Fig. 1d). The associations were
independently assessed between the total number of pain sites expe-
rienced as a continuum (excluding PAO) and pain duration, worst pain
rating, paininterference, depressive symptoms and symptom severity
using two-sided Pearson’sr correlation test and explained variance (R?)
areshowninFig. le-i.

Developing the predictive model predicting number of chronic pain
sites. ANIPALS regression algorithm (implemented using scikit-learn.
org/)was used to derive an epidemiological model that explained the
number of pain sites reported at the baseline visit.

Briefly, NIPALS identifies latent patterns that maximize the covari-
ance between two matrices. Here, the NIPALS method was trained
within the discovery dataset to identify latent scores (E and Z) and
loadings (P and H) that maximize the covariance between a (445504,
99) matrix of standardized psychosocial features (X;) and a (445504, 1)
vector of self-reported number of pain sites (Y):

1. Compute singular vectors p, v (weights) of covariance matrix
c=X"Y

2. Obtainthelatent scores E and Z by projecting Xand Y onto
singular vectorspand v

3. Compute loadings P and H by iteratively regressing X onto E
(power iteration)

4. DeflateXand YusingX+1=X-EP"andY+1=Y-ZH",
respectively

5. Fittraining (discovery) data X using the projection matrix P to
obtain latent space X so that x = XP

6. Usethelatent space to predict left-out data (47708,1) Y, using
the coefficient matrix feR™* g such that Y, = X8, where X,
denotes the (47708, 99) matrix of psychosocial features in the
validation set

Further information on the implementation can be found at
https://scikit-learn.org/stable/modules/cross_decomposition.
html#cross-decomposition.

This model excluded individuals reporting PAO to avoid making
assumptions about the equivalence of PAO and some number of pain
sites experienced. This specific algorithm was chosento reduce the 99
featuresinto afew sets of distincthomogenous components associated
with self-reported number of pain sites. A common rule of thumb in
multiple regression suggests that the minimum ratio of sample size
per variable is 10:1, with greater ratios equivalent to greater stability.
Here, we observed a 4,500:1 ratio of sample size per variable giving
us confidence in our stability. Tenfold cross-validation was used to
assess the number of components to usein the model. A total of three
components were selected based onthe largestincreasein the variance
explained and the largest decrease in RMSE according to the elbow
criterion. The model was then applied in the validation dataset.

In Fig. 2b,c the model’s explained variance (R?) in the number of
pain sites was assessed by organizing the 99 features into ten cate-
gories and three domains (physical health, mental health and soci-
odemographics). The category contributing the least (occupational)
was still significant compared to a null model generated from 10,000
two-sided permutations. The model fit for predicting the number of
painsitesin the testing set was assessed using explained variance (R?)
and RMSE; Fig. 2d,). The risk scores of individuals with each pain site
were compared to the score of pain-free participants to examine the
impact of acute and chronic pain sites using Cohen’s d effect sizes
(pooled s.d.; Fig. 2e) and the AUC-ROC for discrimination (Fig. 2f).
The AUC-ROCs were used to estimate model accuracy because they
are (1) threshold-unspecificand (2) resilient to classimbalance, which
isinherent to less frequent pain conditions or clinical outcomes. The
performance of the model was also tested across 25 different medical
conditions commonly associated with chronic pain using the same
metrics: Cohen’s d and AUC-ROC (Fig. 2g). To ensure the robustness
of the results in less frequent medical conditions, 10,000 bootstrap
samples were performed to estimate the Clin the observed effect sizes.
Statistics calculated in the discovery data to evaluate the model per-
formance and modelinterpretation areshownin Extended Data Fig. 3.

Network analysis. Networks were estimated from partial correlations
between pain and the ten categories (Extended Data Fig. 5d). Partial
correlations were used to measure conditional dependence between
categories (defined as nodes) while controlling for all other potential
edges. The number of acute pain sites and chronic pain sites were
integrated into the network to assess the relative contributions of our
model’s categories onboth paintypes. The networks were constructed
and studied at three different densities. A threshold was first applied
to obtain a sparse model and conserve connections equivalent to a
small effect size (partial correlation>0.1). Anintermediate model was
then constructed using a more liberal threshold equivalent to a very
small effect size (partial correlation >0.05). A full model was finally
constructed by including all the edges surviving Bonferroni correction.
Nodes were placed using a force-displacement layout (spring layout,
using a Fruchterman-Reingold algorithm) using qgraph*. Starting
ina circular layout and through various iterations, more-connected
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nodesare placed closer together, whereas less-connected or negatively
linked nodes are placed further apart. Finally, node-weighted centrality,
a measure of the mean number of edges passing through each node,
was computed to estimate the centrality of both categories and pain
outcomes. The procedure was conducted on both the discovery and
validation datasets.

Spreading and recovery of chronic pain. The prognostic value of the
painrisk score to predict the development, persistence and worsening
of chronic pain was assessed using the left-out participantsinthe valida-
tionfor whom the longitudinal data were available. After examining the
stability of number of pain sites (0-4 or more, including PAO; Fig. 3a), the
association between the risk of chronic pain at each anatomical site at
follow-up and the risk of chronic pain at each site at baseline was calcu-
lated using ORs from the exponential function of the logistic regression
coefficients. Explained variance (R?) between the distance from site at
baseline and logarithmic value of the ORs between sites was calculated
(Fig.3b). To ensure the significance of the association, our results were
compared toanullmodel generated from 10,000 two-sided permutation
tests. The risk of chronic pain at each anatomical site at follow-up was
then examined by calculating the OR associated with one unit increase
intherisk score for each chronic pain site at baseline (Fig. 3c).

Spreading was measured using the change in number of chronic
painsites (from—4 orless to4 or more). To examine the prognostic value
of our risk score, we regressed out the number of chronic painsites (and
their squared values) reported at baseline, age at baseline and years to
follow-up from the risk score calculated at baseline. Making the score
orthogonalto the baseline pain allowed us tointerpretinterindividual
deviationsin this adjusted score asrisk of recovery or spreading of pain
at the follow-up visit (Fig. 3d). Effect sizes (Cohen’s d) were computed
for the adjusted pain risk score between individuals without chronic
pain and individuals with chronic pain based on changes in the num-
ber of chronic pain sites (for example, +1 sites versus pain free). The
AUC-ROCs were also used to estimate whether these changes in the
number of pain site can be predicted based on the adjusted risk score
at baseline (Fig. 3e). The same approach was also used to predict the
developmentor recovery of medical conditions longitudinally (Fig. 3f).

Atemporal ordering of predictedrisk across the ten categories was
performed after adjusting for the number of pain sites (and squared
values) at baseline. The effects sizes were calculated for the adjusted
risk score within each category between participants reporting chronic
painand pain-free participants for different rates of spreading (+1sites
versus pain free, +2 sites versus pain free, +3 sites versus pain free and
+4 sites versus pain free) and recovery (-1sites versus pain free, -2 sites
versus pain free, -3 sites versus pain free and —4 sites versus pain free).
The categories were then ranked based on the magnitude of their effect
sizes, asillustrated in Fig. 3g, after adjusting for the FDR. The ranking
was calculated using the absolute sum of effect sizes across all rates of
spreading or recovery, providing atemporal progression of risk across
categories from early-to-late pain site development.

Sex-based analyses. Sex was collected by the UKB from central regis-
tryatrecruitment and were updated by the participantif necessary. For
both the NFBC and PREVENT-AD, sex was self-reported. No exclusion
was made based onbiological sex or gender. Sex ratio was reported for
each cohortandincludedinthe full partial least squares model applied
inthe UKB. Sex-stratified analyses performed for the fullmodel and the
ROPS are shown in Extended Data Fig. 9.

Exploratory analyses

High-impact pain. The cross-sectional and longitudinal performance
of the model for predicting secondary outcomes associated with
high-impact chronic pain was assessed using self-reported ratings
of overall health, opioid medication use and inability to work due to
sickness or disability. InFig. 4b, modelfitin predicting secondary pain

outcomes was assessed using Cohen'’s d effect sizes and explained
variance (R?) across self-reported ratings of overall health and using
Cohen’sdand AUC-ROC discriminations for opioid medication use and
inability to work due to sickness or disability. The longitudinal changes
inopioid use and changesin ability to work were also calculated using
Cohen’sdand AUC-ROC discriminations (Fig. 4c). Statistics calculated
inthe discovery data are shown in Extended Data Fig. 4b.

Candidate models. The same statistical procedure (NIPALS) performed
onthesame 99 clinical features was used to derive 16 candidate models
classifyingacute or chronic painsites (versus all else; Fig. 5). Model speci-
fication was performed through tenfold cross-validation to maximize
thevariance explained (R?) while minimizing the RMSE. This allowed us
todecide onthesparsity of components toincludein the models using
the elbow criterion from the largest drop in explained variance. The
same parameters (three components, used as regularization) were used
to predict the pain sites using NIPALS. Features for each model were visu-
alized using two methods (1) by computing the Pearson’s r correlation
equivalent to theloadings of each feature onto their projected score or
(2) by comparing the z-normalized weights used to obtain the projected
score. The former approach was preferred for interpretability (Fig. 5a).

The sensitivity of these candidate models was evaluated using
AUC-ROC discrimination in comparison to pain-free individuals. The
specificity of these models was assessed by comparing their AUC-ROCs
with the one of our initial pain risk score (black) and the one from
other candidate models trained on another pain site (gray). This was
performed cross-sectionally (Fig. 5d) and longitudinally (Fig. Se). For
thelongitudinal analyses, we assessed the capacity of therisk score to
predict the development of pain in pain free individuals at baseline.

Figure 5f shows a post hoc analysis that was performed to examine
the similarity of the 99 loadings (or normalized weights) across models
using Pearson’s rcorrelation coefficients. Thisapproach allowed us to
compare the similarity between risk factors for acute and chronic pain
separately. The correlation coefficients were then normalized using
z-Fisher transformations and the explained variance (R*) was calculated
using the similarity between models and the distance between pain
sites. This procedure was also performed in the discovery datashown
in Extended Data Fig. 8d-g.

The risk of pain spreading. Deriving the ROPS in the UK Biobank.
A simplified model containing six features was derived from the full
risk model containing 99 features in the training cohort of the UKB
baseline dataset (n = 445,132). We trained alinear forward feature selec-
tion algorithm, implemented using scikit-learn, to select the core six
features that presented the highest explained variance based on the full
risk model. Forward feature selectioninitially finds the one feature that
maximizes a cross-validated score in an outcome of interest (number
of pain sites). Then, a second feature is added and the procedure is
repeated for a prespecified combination of features in a feature pool
(99 features from the original model) until there isnoimprovementin
the model’s performance. Here, six features provided the best trade-off
between sparsity and variance explained.

Theidentified features were then calibrated based on thresholds
that maximized the discrimination performance (AUC-ROC) between
individuals reporting PAO in the baseline UKB data and those not
reporting PAO (n=159,663). This procedure allowed us to generate
binarized scores for each feature that facilitated the use of such a
screening tool. For example, we evaluated thresholds ranging from
0-40inincrements of 5and found thata BMI threshold of 30 led to the
highest discrimination performance. Thus, individuals witha BMI>30
were coded as aland those <30 were coded as 0. This procedure was
repeated for all features on a categorical or continuous scale (sleepless-
ness, tiredness and traumas). This led to the formation of a six-item
short questionnaire (ROPS) capturing 63% of the variance explained
by the full risk model. In Fig. 6¢, the cross-sectional and longitudinal
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performance of the ROPS was assessed in the discovery set for acute and
chronic conditions for the number of pain sites using explained vari-
ance (R?) and for group differences between pain and pain-free groups
using AUC-ROC matrices. In Fig. 6d, the longitudinal performance of
ROPS was evaluated in the online UKB data in a subsample of 80,528
participants calculating the association between baseline risk scores
and each of interference of pain ratings (BPI), depressive symptoms
inthelast 2 weeks and the severity of symptoms using Pearson’s r cor-
relation and R* metrics.

ROPS replication: Northern Finland Birth Cohort. Anequivalent to
the ROPS was constructed at both the 31-year and 46-year time points
in the NFBC to determine both the cross-sectional and longitudinal
validity of the score. The score was derived using six binarized items:

1. Doyou have difficulty falling asleep, quite alot or very much?

2. Doyou have afeeling that your life has been a constant effort,
quite alot or very much?

3. Doyoufeelalack of energy or powerlessness, quite a lot or very
much?

4. Have you had a mental health problem diagnosed or treated by
adoctor?

5. Haveyouexperienced any of the following:

a. Divorce

b. Death of a partner

c. The following work history: unemployed more than employed,
obtained almost all my employment through employment
support measures or | have never been gainfully employed

6. Measured BMI greater than 30

In Fig. 6e, the performance of the ROPS was assessed for num-
ber of acute and chronic pain sites using R* and RMSE and AUC-ROC
scores showed the model’s ability to differentiate between pain free
individuals and pain participants as well as differentiating between
individuals with pain diagnoses and individuals without diagnoses
cross-sectionally. AROPS model derived at the 31-year visit was then
utilized to predict participants reporting no pain at the 31-year visit
who will develop pain at the equivalent site at the 46-year visit (stom-
ach pain was excluded in longitudinal analysis due to the absence of a
sufficiently similar itemin the 31-year visit).

Theassociation betweenthe ROPS derived at the 46-year visit and
the number of pain sites was determined for acute and chronic pain
patients separately, with healthy controls counting as O pain sites in
each correlation. Pain intensity was binned into four groups (no pain
(0), mild pain (1-3), moderate pain (4-6) and severe pain (7+)) and the
correlation between pain intensity and the sparse risk score across
participants was calculated using Pearson’s rand R In Fig. 6f, impact
of pain, likelihood of returning to work and depressive symptoms were
correlated with the ROPS score in chronic pain participants.

ROPS replication: PREVENT-AD. For the purposes of this study, the
same six items of the ROPS (as shown in Fig. 5b) were administered to
the participants from the PREVENT-AD cohort. As conductedin the UKB
data, in Fig. 6g, the cross-sectional performance of the sparse model
was assessed for predicting the number of pain sites using explained
variance (R%). The AUC-ROC was then used to differentiate participants
reporting chronic pain from pain-free participants, at each painssite. In
Fig.6h,the ROPS was also evaluated on pain intensity scores, affective
and sensory ratings of the MPQ, the total score on the GDS and the total
score of the GAl using Pearson’s r correlation and R> metrics.

Biological measures and analyses

Immune-inflammatory profile. The baseline assessment visit data
(baseline UKB) include a complete blood count (https://biobank.
ctsu.ox.ac.uk/crystal/crystal/docs/haematology.pdf). The sample

handling and storage has been described by Elitt and Peakman®. For
the purposes of this study, inflammation was estimated using CRP
obtained through saliva samples and measured by immunoturbidi-
metric assay using a high-sensitivity analysis on a Beckman Coulter
Analyzer. Immune cell count included neutrophils, platelets, reticu-
locytes, basophils, lymphocytes, eosinophiles and monocytes, most
of which have been shown to beindependently linked to chronic pain,
the sickness response and associated depressive profile™.

Alogarithmic transformation was applied to the raw measures of
CRPtoaccount for the positive skewness (https://biobank.ndph.ox.ac.
uk/showcase/field.cgi?id=30710). The association between CRP and
the number of pain sites was evaluated using Pearson’s r correlation
and Cohen’s d effect sizes comparing each pain site with pain-free
individuals (Extended Data Fig. 6). Pearson’s r correlation between
CRP and the risk score was assessed in both discovery and validation
datasets (Extended Data Fig. 7). The associations between specific
immune cell counts and CRP, pain risk score and the number of pain
sites are reported in Supplementary Fig. 3.

Genetics. Blood samples collected at the baseline visit (baseline UKB)
allowed different types of assays to be performed, including genetic
analyses. A genome-wide association study of number of pain sites,
includingbothacute and chronic was conducted. A thresholding proce-
durewas conducted across seven statistical thresholds of significance
(fromP=5x107to5 x 107®) for each single nucleotide polymorphism.
The association of each threshold with the risk score, CRP and pain
phenotype was also examined in the discovery and validation datasets
(Extended DataFig. 6).

Partitioned heritability in tissues was used to investigate the
genetic architecture of our polygenic risk score. The top 1,000
most-enriched genes per tissue were extracted from the gene expres-
sion database features in Benita et al. (2010) using the computer
program ‘Idsc”""%. A total of 78 tissues grouped into eight tissue
classes (central nervous system, peripheral nervous system, endo-
crine, myeloid, B cells, T cells, adipose and muscle) were examined
for enrichment. The methodologyis described in greater detailin our
previous publication®. Pearson’s rcorrelation between our normalized
polygenicscore and therisk score was assessed in both discovery and
validation datasets (Extended Data Fig. 7).

Brain MRI measures. Resting-state functional MRI data available from
the imaging follow-up visit (imaging UKB) were obtained from the UKB.
The datawere based on the minimally preprocessed pipeline designed
and carried out by the FMRIB group, Oxford University. The minimally
preprocessed resting-state fMRI data from the UKB were analyzed
using the following pre-processing steps: motion correction with
MCFLIRT**, grand-mean intensity normalization, high-pass temporal
filter, fieldmap unwarping and gradient distortion correction. Noise
terms wereidentified and removed using FSLICA-FIX. Fullinformation
on the UKB pre-processing is published. Additional pre-processing
included warping theimage in native space to the 3-mm MNItemplate
(FSL), despiking using 3DDespike (AFNI from Nipype), 6-mm kernel
smoothing (Nilearn) and resampling to 3 mm (for storage purposes). A
modified Brainnetome atlas*® was used to parcel the braininto 279 dis-
tinct regionsto apply the weights from the ToPS*, a capsaicin-induced
tonic painsignature of pain derived from the brain that was associated
withboth experimental and clinical pain. The modified atlas includes
additional midbrain, brainstem and cerebellar regions.

Dynamic connectivity was estimated to derive ToPS using dynamic
conditional correlation, whichisbased on generalized autoregressive
condition heteroscedastic and exponential weighted moving average
models (implemented by https://cocoanlab.github.io/tops/). The
preprocessing aimed to be as similar as possible to the original ToPS
study without diverging from the minimally preprocessed data from
the UKB. The weights of the signature were thresholded to the top 5% to
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avoid overfitting and to minimize relation with head motion before the
examination of the full dataset (early subsample of n =200). Multiple
thresholds (1,2.5,5,10, 25,50 and100%) were also tested to ensure gen-
eralizability. Absolute connectivity from the signature for visualization
andinterpretation purposes was computed using the normalized sum
of absolute connectivity values for each brain region within the top 5%
threshold, using a cutoff of 100 as the maximum (Supplementary Fig.
4). Surface rendering was conducted using the SurfIce tool (https://
www.nitrc.org/projects/surfice/).

Two frameworks were evaluated to control for the effects of con-
founding variables (1) adjusting confounding variance that does not
overlap withpainand (2) adjusting total confounding variance. The first
approach allows the brain signature to be compared to other polygenic
andinflammatory markers that were leftintact given the research focus
onprediction, whereas the second ensures that our results do not over-
lap with confounds commonly reported as higher in patients with pain,
such as motion. Results were very similarinbothapproaches, with the
former presenting slightly smaller probability values.

The MRI-based covariates included head motion (linear, squared
and cubed), imagingsite, positioninthe scanner and coil position (x, y
andz, respectively). Both covariates and brain features were normalized
toamean of zero and variance of one unit across participants. To exam-
ine confounding variance that did not overlap with pain, the number
of pain sites was regressed out from confounds. A confound-removal
procedure, conducted on the original confounds or pain-regressed
confounds was applied by deriving a multivariate regression model to
predict each normalized brain feature as a function of the normalized
confounds. The procedure was carried out for each of the brain features,
making them strongly or perfectly orthogonal to confounds. Pearson’s r
correlation value between our normalized ToPS and the risk score as well
as across each domain from the model was assessed in the validation
dataset (Extended Data Fig. 7). The results were further displayed for
each one of the nine brain networks separately (Supplementary Fig. 5).

Statistical analysis

Data pre-processing and statistical analyses were performed using
Python v.3.7 (including Numpy (v.1.22.0), Pandas (v.1.3.5), Sklearn
(v.1.0.2), Nilearn (v.0.9.0) and Nltools (v.0.4.5)) and R software (Qgraph
(v.1.9.2)). Permutation tests (with 10,000 iterations) were used to test
whether the associations assessed by calculating Pearson’s r correlation
were significantly higher than a null association. We used bootstrap
resampling with 10,000 iterations to indicate the estimated error in
the Cohen’s d effect sizes. Tenfold cross-validation was used to obtain
unbiased model performance results. In all analyses, significance was
based on P < 0.05for single testing and FDR < 0.05 for multiple testing.
Further details of the statistical methods are specified in each relevant
sectionabove.

Ethical approval

The UKB was approved by the National Information Governance Board
for Health and Social Care and the National Health Service North West
Multicenter Research Ethics Committee (ref. no. 06/MRE08/65). All par-
ticipants gave written, informed consent and the study was approved by
the Research Ethics Committee (no.11/NW/0382). Further information
ontheconsent procedure canbe found at https://biobank.ctsu.ox.ac.
uk/crystal/field.cgi?id=200. Each follow-up study of the NFBC1966
was evaluated by the regional ethical committee of the Norther Ostro-
bothniaHospital District (EETTMK 94/11,17.09.2012). The use of NFBC
dataisbased on cohort participants’ writteninformed consent at their
latest follow-up study. Participantsinthe PREVENT-AD cohort provided
writteninformed consent to participate at each follow-up visit, includ-
ing questionnaires and multimodal imaging assessments. Protocols,
consent forms and study procedures were approved by McGill Institu-
tional Review Board and/or Douglas Mental Health University Institute
Research Ethics Board.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data provided from the UKB are available to other investigators
online upon permission granted by www.ukbiobank.ac.uk. Restric-
tions apply to the availability of these data, which were used under
license for the current study (project ID 20802). The NFBC data are
available upon request from the University of Oulu, Infrastruc-
ture for Population Studies (https://www.oulu.fi/en/university/
faculties-and-units/faculty-medicine/northern-finland-birth-
cohorts-and-arctic-biobank). Permission to use the data can
be requested for research purposes via an electronic material
request portal (Greip). PREVENT-AD data can be accessed openly at
https://openpreventad.loris.ca, whereas most of the other informa-
tion thatis sensitive by natureis accessible by qualified researchers at
https://registeredpreventad.loris.ca.

Code availability

Detailed code and annotation will be available at GitHub (https://
github.com/EVPIlab). The medication classification performed by
Wu et al.”* can be found in supplementary data from the original arti-
cle (https://www.nature.com/articles/s41467-019-09572-5). Code to
extract the ToPS by Lee et al.’® canbe found online (https://cocoanlab.
github.io/tops/).

References

37. Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203-209 (2018).

38. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of
100,000 participants: rationale, data collection, management
and future directions. Nat. Commun. 11, 1-12 (2020).

39. Tan, G, Jensen, M. P,, Thornby, J. |. & Shanti, B. F. Validation of
the Brief Pain Inventory for chronic nonmalignant pain.J. Pain. 5,
133-137 (2004).

40. Lowe, B., Kroenke, K., Herzog, W. & Grafe, K. Measuring
depression outcome with a brief self-report instrument: sensitivity
to change of the Patient Health Questionnaire (PHQ-9). J. Affect.
Disord. 81, 61-66 (2004).

41. Steyerberg, E. W. et al. Prognosis Research Strategy (PROGRESS)
3: prognostic model research. PLoS Med. 10, e1001381
(2013).

42. Cassidy, S., Chau, J. Y., Catt, M., Bauman, A. & Trenell, M. I.
Cross-sectional study of diet, physical activity, television viewing
and sleep duration in 233 110 adults from the UK Biobank; the
behavioural phenotype of cardiovascular disease and type 2
diabetes. BMJ Open. 6, e010038 (2016).

43. Wu, Y. et al. Genome-wide association study of medication-use
and associated disease in the UK Biobank. Nat. Commun. 10, 1-10
(2019).

44. University of Oulu. Northern Finland Birth Cohort 1966. http://urn.
fi/urn:nbn:fi:att:bc1e5408-980e-4a62-b899-43bec3755243

45. Nordstrom, T. et al. Cohort profile: 46 years of follow-up of the
Northern Finland Birth Cohort 1966 (NFBC19686). Int. J. Epidemiol.
50, 1786-1787j (2021).

46. Tremblay-Mercier, J. et al. Open science datasets from
PREVENT-AD, a longitudinal cohort of pre-symptomatic
Alzheimer’s disease. Neurolmage Clin. 31, 102733 (2021).

47. Melzack, R. & Raja Srinivasa, N. The McGill pain questionnaire:
from description to measurement. Anesthesiology 103, 199-202
(2005).

48. Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D. &
Borsboom, D. ggraph: network visualizations of relationships in
psychometric data. J. Stat. Softw. 48, 1-18 (2012).

Nature Medicine


http://www.nature.com/naturemedicine
https://www.nitrc.org/projects/surfice/
https://www.nitrc.org/projects/surfice/
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://www.ukbiobank.ac.uk
https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank
https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank
https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-cohorts-and-arctic-biobank
https://www.greip.fi/secure/app.dll/public/index.zml
https://www.greip.fi/secure/app.dll/public/index.zml
https://openpreventad.loris.ca
https://registeredpreventad.loris.ca
https://github.com/EVPlab
https://github.com/EVPlab
https://www.nature.com/articles/s41467-019-09572-5
https://cocoanlab.github.io/tops/
https://cocoanlab.github.io/tops/
http://urn.fi/urn:nbn:fi:att:bc1e5408-980e-4a62-b899-43bec3755243
http://urn.fi/urn:nbn:fi:att:bc1e5408-980e-4a62-b899-43bec3755243

Article

https://doi.org/10.1038/s41591-023-02430-4

49. Elliott, P. & Peakman, T. C. The UK Biobank sample handling and
storage protocol for the collection, processing and archiving of
human blood and urine. Int. J. Epidemiol. 37, 234-244 (2008).

50. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune
system in chronic pain. Nat. Rev. Neurosci. 6, 521-532 (2005).

51. Benita, Y. et al. Gene enrichment profiles reveal T-cell
development, differentiation, and lineage-specific transcription
factors including ZBTB25 as a novel NF-AT repressor. Blood J. Am.
Soc. Hematol. 115, 5376-5384 (2010).

52. Finucane, H. K. et al. Partitioning heritability by functional
annotation using genome-wide association summary statistics.
Nat. Genet. 47, 1228-1235 (2015).

53. Finucane, H. K. et al. Heritability enrichment of specifically
expressed genes identifies disease-relevant tissues and cell
types. Nat. Genet. 50, 621-629 (2018).

54. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved
optimization for the robust and accurate linear registration and
motion correction of brain images. Neuroimage 17, 825-841
(2002).

55. Miller, K. L. et al. Multimodal population brain imaging in the UK
Biobank prospective epidemiological study. Nat. Neurosci. 19,
1523-1536 (2016).

56. Fan, L. etal. The human brainnetome atlas: a new brain atlas
based on connectional architecture. Cereb. Cortex 26,
3508-3526 (2016).

Acknowledgements

This work was supported by the Canadian Institutes of Health
Research (RN441786-453096), the Fonds de recherche du Québec
en Santé (283687), the Réseau québécois de recherche sur la douleur
and the Louise and Alan Edwards Grants in Pain Research to EV.P.;

by the Healthy Brains Healthy Lives initiative to C.T.S. and M.F.; and

by the Elaine Bélanger Graduate Fellowship in Medical Research at
McGill University to CT.S. The study was also supported by Pfizer
Canada Professorship in Pain Research and the Canadian Excellence
Research Chairs grant (CERC09) and by National Institutes of Health
grant U54 DA049110 to L.D. This study makes use of data from the UKB
(project ID 20802) and we thank the UKB participants and the UKB
team for generating an important research resource. Data used in the
preparation of this article were also obtained from the PREVENT-AD
program. PREVENT-AD was launched in 2011 as a $13.5 million, 7-
year public-private partnership using funds provided by McGill
University, the FRQ-S, an unrestricted research grant from Pfizer
Canada, the Levesque Foundation, the Douglas Hospital Research
Centre and Foundation, the Government of Canada and the Canada
Fund for Innovation. Private sector contributions are facilitated

by the Development Office of the McGill University Faculty of
Medicine and by the Douglas Hospital Research Centre Foundation

(http://www.douglas.qc.ca/). We thank J. Menes for his help in
administering the ROPS to the PREVENT-AD participants. We thank
all the cohort members and their families as well as the researchers
and staff members behind the PREVENT-AD and NFBC study cohorts.
The funders had no role in study design, data collection and analysis,
decision to publish or preparation of the manuscript.

Author contributions

CT.S. and E.V.P. conceived the project, designed the study design and
interpreted the results. CT.S. ran and generated all main analyses and
figures and E.V.P. supervised the project. CT.S., M.F., GW.G. and A.Z.
contributed to the data curation, pre-processing and analysis of the
results. EV.P,, CT.S., M.F., M.R., M.O.M. and A.Z. were involved in draft
paper preparation. EV.P.,, A.Z., M.F., CT.S. and J.N. were involved in
the review and editing. M.F., CT.S. and S.JT. contributed to organizing
and analyzing the brain imaging data. M.P., L.D. and R.D. contributed
to organizing and analyzing the genetic data. L.D. and EV.P. were
involved in obtaining the UKB and acquiring the necessary funding.
G.W.G., J.K. and E.H. were involved in obtaining and curating the
NFBC dataset. SV., EV.P., A.Z. and the PREVENT-AD Research Group
were involved in contacting PREVENT-AD participants and applying
the ROPS. H.S. and J.P. provided continuous external feedback and
expertise as people with lived experience and pain specialists. All
other authors were involved in editing the paper and approved the
final version.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41591-023-02430-4.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41591-023-02430-4.

Correspondence and requests for materials should be addressed to
Christophe Tanguay-Sabourin or Etienne Vachon-Presseau.

Peer review information Nature Medicine thanks Barbara Nicholl,
Luana Colloca, Chongyang Wang and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editor: Ming Yang, in collaboration with the Nature
Medicine team.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Medicine


http://www.nature.com/naturemedicine
http://www.douglas.qc.ca/
https://doi.org/10.1038/s41591-023-02430-4
https://doi.org/10.1038/s41591-023-02430-4
http://www.nature.com/reprints

Article

https://doi.org/10.1038/s41591-023-02430-4

Demographics

Pain Phenotype

a b
( " (" chronic Pain _ 100 —
B Male B Whi . Black W <50 M50-55
Sex o po° o  Ethnicity M As|an - Ma" G Age M55.60 W 60-65
2 M Other = Mixe M65-70 M > 70 75
R
é a 50
c
o & 25
< ~
M No Pain 0 -
M Single-Site Tegoeggx<gr SO
\l Multi-Sites Prevalence (%) per Site 4
1 ~®
Q = L c
< [ 5E
c d gs5yit .
High-Resolution Pain Phenotype g 8 82 2 838
e . . £ L 26 G 5% 2219 i
12 Distinct Pain Body Sites _ 0.75
Headaches 3 Pain Co-Occurrence
Medial Line Facial B R?=0.30, Pperm < 0.0001
Headaches (Ha) - 14,493 Neck/ £ Pain Ratings
i R ec
Facial (Fc) - 4,595 Shoulder [ p @R?=0.21, Pperm < 0.0001 3
Neck/Shoulder (N/S) - 37,982 = 5
Chest (C)- 6,018 Chest £1.5 S
Stomach/Abdo (S/A) - 15,812 Stomach/ O e
Back (B) - 44,887 | Abdominal e . = £
Hip (Hp) - 31,333 3 Back 1.9 1.5 .77 g a
Leg (L) - 26,379 = .- z 10.50 2
Knee (K) - 42,607 Hip 13 13 16 15 1.4 a S
&
Feet (Ft) - 20,850 Leg 13 [14 13 [18 14 [ D éo.a- e
Lateral Line Knee 1.2 1.1 13 12 12 14 3 v Q@
Arm (A) - 18,055 T 3 o
Hand (Hd) - 33,902 Lateral+} Feet 14 15 1.3 13 14 13 14 18 15 S Ot,m E
- ® o
8 ©
Pain All Over - 9,794 3 B Ha Fc N/S C SA B Hp L K Ft 3
No Pain - 73,151 s s Am [17/48 1516 15 18 16 15 A Hd e P
n= 167,255 ) ' :
g Hand (14 15 18] 14 1.3 1.3 1.4 13 [16 PP g
Odd Ratios in Pain Co-Occurrence Distance Between Sites
(Last 3 Months) 17— 5
e Common Pain Dx and Prevalence f Pain Sites and Ratings among Common
of Pain during Online Assessment Pain Dx in Chronic Pain Participants
Pain or Discomfort lastin . .
. more than 3 Months (% )g Counts Prevalence (Stacked) Pain Ratings (Stacked)
N 0 25 50 75 1000 25,000 50,000 0% 100% 200% 300%400% 0 10 20 30 40 50
& Ratings 1 | | | TR I | | 1 | 1 1 1 1 ] 1 I |
14 Pain No Dx No Dx|SNEENEEN Il Knee
Diagnoses Pelvic Pain Pelvic Pain [ [ NI B Back
(Dx) Migraine Migraine [ HNEENI | B Neck/Shoulder
Carpal Tunnel Carpal Tunnel [N .
Neuropathy Neuropathy [ lHip
_ Herpetic Neuralgia Herpetic Neuralgia ["/F 0 I ] Il Headaches
Pain or Postsurgical Pain Postsurgical Pain [7I0 Il stomach/Abdo
(2_:_5;\:/?;2{?1:) Osteoarthritis Osteoarthritis [ [l Facial
n = 167,255 Cancer Pain Cancer Pain |1 Jl Pain All Over
Gout Gout [ l Hand
Rheumatoid Rheumatoid -
Artnitis Arihrits - l Feet
o iabetes iabetes BLe
Pain Sites 9
p CRPS CRPS
and Ratings Chronic Chronic - fAm
n=94,074 ) Fatigue / ME Fatigue / ME l Chest
Fibromyalgia Fibromyalgia

Extended Data Fig.1| Online UK Biobank assessment of the experience of
pain. a. Demographics of participants across sex, ethnicity and age. b. Pain
reported in the past 3 months (chronic pain, >3 months) for single and multi-site
pain. c. High-resolution representation of anatomical body map sites and counts
across a total of 13 sites: 10 along the medial line, 2 along the lateral line (shoulder
toarm-hand) and 1 not localized (widespread). PAO, pain all over; Ha, headache;
Fc, facial; N/S, neck or shoulder; C, chest; S/A, stomach or abdominal; B, back;
Hp, hip; L, leg; K, knee; Ft, feet; A, arm; Hd, hand. d. Cross-sectional analysis of
co-existing pain and pain ratings. Odds ratios (OR) of co-occurrence between
sites in the past 3 months (left diagonal, yellow) and Pearson’s r correlations

between pain ratings in the last 24 hours (right diagonal; green). Both the log-
normalized OR of pain sites (Pye., < 0.0001) and fisher- normalized r correlations
(Pperm < 0.0001, using 10,000 two-sided permutation tests) were negatively
associated with their distance. 95% Confidence interval estimated across 1,000
bootstrap samplesis shown. e-f. A total of 14 common chronic pain diagnoses
wereincluded. e. Counts of diagnoses across the entire online assessment and
the prevalence of those reporting pain or discomfortin the past 3 months. No Dx
includes those without any of the 14 diagnoses. f. Pain prevalence and mean
painratings (10, as bad as you can imagine) across each diagnosis stacked across
body sites.
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Extended Data Fig. 2| Discovery and Validation data for the risk score
development. Pie charts displaying a. demographics, b. acute (<3 months) and c.
chronic (>3 months) pain phenotypes for the discovery data the model s trained
on and the validation data the model is tested on, at baseline and follow-up.

d. Years between baseline and follow-up visit in the validation data (9 years
median). e. Schematic on using NIPALS to predict co-existing pain from

biopsychosocial features. f. Model specification based on tenfold cross-
validation by minimizing the root mean squared error (RMSE) and maximizing
the explained variance (R?) average across tenfolds. Following the scree plot
(elbow rule) criterion and to minimize overfitting, 3 components were selected.
g.Random stratified sampling of 200 participants projected across the

3 components separately and combined as our risk score.
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Extended Data Fig. 3| Model interpretation and performanceinthe
discovery data. a-g.Identical analyses conducted in the original discovery
from which the model was derived (see Fig. 2). a. Classification of 99 clinical
features grouped in three domains and ten categories. b. Venn diagram and bar
graph show the model’s explained variance (ordered based on discovery results)
inthe number of pain sites across the three domains c. The variance explained is
shown for the ten categories d. The model performance is shown in the training
set (thatis, discovery data) using explained variance (R?) and Root Mean Squared
Error (RMSE) for acute and chronic pain conditions separately (n cpyonic = 196,706,
N scuee = 126,313). Mean estimated across number of sites +/-standard errors are

shown. e. Cohen’s d effect sizes in the risk score for each pain site (acute in orange
and chronicinred) compared to pain-free individuals. f. The diagnostic ability

of our model to classify acute and chronic pain conditions is displayed using
AUC-ROC. AUC, area under the curve; ROC, receiver operating characteristic.

g. The diagnostic ability of our model to classify the selected medical conditions
is displayed using Cohen’s d and measured with AUC-ROC (selected Dx compared
to Dx-freeindividuals). Error bars estimated from 10,000 bootstrap resampling
areshown. *Pain all over the body was excluded from model training in the
discovery set. Dx, diagnoses.
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Model Interpretation in the Discovery Data
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centrality. LS, life stressors; N, neuroticism; M, mood; SU, substance use; S, sleep;

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02430-4

a

Secondary Outcomes
Baseline

% NO2A W
Ao 3

Overall Health  Opioid Med Use Unable to Work
Rating (ATC - NO2A) (Sickness
or Disability)

Predicting
High-Impact Pain
Outcomes

Extended Data Fig. 5| Examination of outcomes associated with high-impact
paininthe discovery set. a. Schematic of a selection of three selected secondary
outcomes. ATC, Anatomical Therapeutic Classification; NO2A, opioids ATC
Classification b. Cross-sectional performance of the risk score on the secondary
outcomes in the discovery data. Cohen’s d effect sizes and explained variance (R?,
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inability to work due to sickness or disability. Cohen’s d effect sizes and AUC-ROC
discriminations were used. Sample sizes are included in parentheses.
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Extended Data Fig. 6 | Examination of three prospective biological makers
and their associations with pain. a. Schematic describing the selected
biological markers: c- reactive inflammatory protein, a polygenic risk score for
the number of painssites, and a validated brain signature for sustained pain. b-e.
Genome-wide association study of number of pain sites in the discovery data.

b. The Manhattan plot shows association -logl0 (P) for each single nucleotide
polymorphism. c. The partitioned heritability in tissues of the Benitaet al.
datasetis shown for 78 tissues grouped into eight tissue classes: central nervous
system (CNS), peripheral nervous system (PNS), endocrine (END), myeloid
(MYE), Bcells (B), T cells (T), adipose (ADI) and muscle (MUS). P-values were FDR-
adjusted (10%) for enrichment with significant tissues colored. d. Details shown
for the CNStissue class. e. PRS repeated across an array of thresholds, with the
least stringent threshold taken to maximize prediction. Associations between
each threshold with the number of pain sites, risk score and CRP is shown and
estimated using a two-tailed Pearson’s r correlation (standard error are estimated
from 1,000 bootstrap samples). f. Two-tailed Pearson’s r correlation was also

used to assess the association between CRP (log- transformed for parametric
estimations) and the number of pain sites inboth discovery (P <1.0e-300) and
validation (P < 3.4e-83) datasets. g. The association between the selected PRS
and the number of pain sitesin both discovery (P <1.0e-300) and validation
(P<5.1e-114) datasets. Ha, headache; F, facial; N/S, neck or shoulder; S/A,
stomach or abdominal; B, back; Hp, hip; K, knee. h. Visualization of the absolute
connectivity from the Tonic Pain Signature (ToPS) computed from resting-state
functional Magnetic Resonance Imaging (rsfMRI) and thresholded for the top 5%
of weights. Represents the sum of normalized dynamic conditional correlation
connectivity across each brain parcel. PAG, periaqueductal gray; S1, primary
somatosensory cortex; S2, secondary somatosensory cortex; L, left; R, right.

i. Circular graph representing the links of the computed ToPS across each major
brain networks.j. The association between the ToPS (top 5% weights) and the
number of pain sites in the validation (P < 5.0e-13) dataset. The Cohen’s d effect
sizes for each marker are presented for each pain site compared to pain-free
individuals. Comparisons were FDR-corrected (q < 0.05, ns >0.05).
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association between the selected PRS and our risk score in both d. validation set
(P<1.8e-125),and e. discovery set (P <1.0e-300). f. The association between the
ToPS and our risk score in the validation set (P < 2.6e-45). Venn diagram shows the
correlation between the biological measures with respect to the three domains
and their unions. g. Markers were combined as one variable and examined in

the validation set. The respective contribution of biological markers to pain risk
score and the number of pain sites are reported in the Venn diagrams.
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Extended DataFig. 8 | Deriving candidate models for chronic and acute individuals are shown using AUC-ROC. e. Therisk score derived from each

pain conditions. a. Schematic describing the 99 features to derive a total of 16 candidate model correlated with number of co-existing pain sites. f. Cross-
site-specific candidate models cross-sectionally in the discovery set. b. tenFold sectional discrimination for each pain site in acute (dashed line) and chronic (full
cross-validation was used to estimate the root mean squared error (RMSE) line) pain conditions against the rest of the training cohort (that is, pain-free and
and explained variance (R?). The same number of components were used to other pain sites) using the model specific to the site (in color), to the number
ensure comparability between derived models using NIPALS. c. Weights used of pain sites (black), and to other candidate models trained on a different pain
for each model (normalized to allow comparison) grouped across categories site (gray). g. Post-hoc analyses show that similarities between the weights of
and domains. Ha, headache; F, facial; N/S, neck or shoulder; S/A, stomach the different models (Fisher-normalized) can be explained (R?) by the distance
orabdominal; B, back; Hp, hip; K, knee. d. Candidate models’ capacities to between thesites in chronic (P, = 0.0003) but not acute pain conditions
discriminate between the pain sites they were trained on from pain-free (Pperm=0.51, using 10,000 two-sided permutation tests).
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sex interaction. d. Model fit using explained variance (R?) for bothrisk scores
across each demography is shown. Sample sizes are reported in parentheses

from the entire UK Biobank cohort.
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Extended Data Fig.10 | Validation of the ROPS in two independent cohorts.
Pie charts displaying a. demographics, b. acute (<3 months) and c. chronic

(>3 months) pain phenotypes for the replication data, shown in the Prevent-AD in
the top row, and in the NFBC at 31 and 46 years old shown in the second and third
rows respectively. NFBC, Northern Finland Birth Cohort; Ha, headache; F, facial;

N/S, neck/shoulder; B, back; S/A, stomach/abdominal; Hp, hip; K, knee; A, arm/
elbow; Hd, hand; Ft, feet; C, chest; L, leg. c. Years between baseline (31 years old)
and follow-up visit (46 years old) in the Northern Finland Birth Cohort data
(15-year follow-up). d. Equivalence of the six-item pain risk score (ROPS) in the
NFBC to the original from UK Biobank, also used in Prevent-AD.
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection. Data was obtained from the UK Biobank. The acquisition and collection is public and presented in
great details in previous protocol papers (Bycroft et al. 2018, Nature) or online (https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank).

Data analysis Python softwares (version) used: Numpy (1.22.0), Pandas (1.3.5), Sklearn (1.0.2), Nilearn (0.9.0) and Nltools (0.4.5). R software: Qgraph (1.9.2)
and Matlab custom code: https://github.com/cocoanlab/tops. Manuscript analysis code are currently available (https://github.com/EVPIlab).
The codes are currently being cleaned to be more user friendly. The final version of the cleaned codes will be uploaded prior to the
publication of the manuscript.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data are provided from the UK Biobank and are available to other investigators online upon permission granted by www.ukbiobank.ac.uk. Restrictions apply to
the availability of these data, which were used under license for the current study (Project ID: 20802). The NFBC data are available upon request from the
University of Oulu, Infrastructure for Population Studies (see; https://www.oulu.fi/en/university/faculties-and-units/faculty-medicine/northern-finland-birth-
cohorts-and-arctic-biobank)s. Permission to use the data can be requested for research purposes via an electronic Material request portal (Greip). Prevent-AD data
can be accessed openly at https://openpreventad.loris.ca while most of the other information, sensitive by nature, is accessible by qualified researchers at https://
registeredpreventad.loris.ca.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex of participant (as reported from the UK Biobank) was entered as a feature in our predictive models. We found an effect
of sex on pain conditions, as previously reported in the literature, and we reported it along other demographics. No
information regarding gender identity specifically was collected.

Population characteristics UK Biobank is a large sample of participants recruited in the United Kingdom aged between 40-70 years old at baseline
(51-55% female) with predominantly participants of white ethnicity (94-96%). Participant with chronic pain reported pain at
any of the 8 body sites examined for more than 3 months.

The Northern Finland Birth Cohort (NFBC1966) was originally composed of 12,068 newborns in 1966. The data utilized for
this study was obtained at 31- and 46-year follow-ups conducted in 1997-1998 and 2012-2014, respectively 45. Cross
sectional analysis was conducted at the 46-year follow-up with a final population of 5,525 and only participants with
complete data in the required pain questionnaires were included. A longitudinal analysis of participants present at both the
31-year and 46-year visit was also conducted with a total population of 4,710.

The Prevent-AD dataset is an observational cohort originally comprising 349 adults aged older than 60 years old at baseline
visit (i.e., between 2011 and 2017) who met the eligibility criteria of investigation. Cross-sectional analysis was conducted on
data available from a total of 178 individuals.

Recruitment UK Biobank consist of 9.2M individuals that were invited by mail. About 500,000 participants provided informed consent and
visited an assessment center during a baseline visit. The Northern Finland Birth Cohorts program (NFBC) was initiated in the
1960s in the two northernmost provinces of Finland to study risk factors involved in pre-term birth and intrauterine growth
retardation, and the consequences of these early adverse events on subsequent morbidity and mortality. The NFBC1966
includes 12,068 live births to mothers in the two northern-most provinces of Finland representing 96.3% of births in the
target region. The Prevent-AD dataset is an observational cohort that recruited healthy individuals at-risk of developing
Alzheimer’s disease (AD) due to a first-degree family of AD.

Ethics oversight UK Biobank was approved by the National Information Governance Board for Health and Social Care and the National Health
Service North West Multicenter Research Ethics Committee (reference number 06/MRE08/65). All participants gave written,
informed consent, and the study was approved by the Research Ethics Committee (REC number 11/NW/0382). Further
information on the consent procedure can be found elsewhere (https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). Each
follow-up study of the NFBC1966 has been evaluated by the regional ethical committee of the Norther Ostrobothnia Hospital
District (EETTMK 94/11, 17.09.2012). The use of the NFBC data is based on cohort participants’ written informed consent at
their latest follow-up study. Participants in the Prevent-AD cohort provided written informed consent to participate at each
follow-up visit including questionnaires and multimodal imaging assessments. Protocols, consent forms and study procedures
were approved by McGill Institutional Review Board and/or Douglas Mental Health University Institute Research Ethics Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was done. A total of 493,211 participants were included from the UK Biobank, which is sufficient to train linear
predictive models using 99 features. The models were then tested in two independent cohorts to avoid overfitting.

Data exclusions  Participants with more than 20% of missing data among the 99 features used or with missing data at any of the acute or chronic pain sites
were excluded (< 2.5% exclusion). To ensure the findings of the study to be as generalizable as possible to the greater population, no other

exclusion criteria were applied.

Replication We divided the UK Biobank data in a training set and a testing set to validate our results. The model was derived on individual attending only
the baseline visit (445,132) and validated in an out of sample set of participants attending a 6-10 years follow-up visit (48,079 participants).

Randomization  No randomization was used. Discovery and validation groups were determined according to participant's attendance to a follow-up visit.
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Blinding No blinding was performed. The machine-learning algorithm used cross validation and the results were tested in the out of sample
participants.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
X|[] Antibodies [] chiP-seq

|Z |:| Eukaryotic cell lines |Z |:| Flow cytometry

|:| Palaeontology and archaeology |:| |Z MRI-based neuroimaging
|Z |:| Animals and other organisms

X|[] clinical data

X]|[] Dual use research of concern

Magnetic resonance imaging

Experimental design

Design type UK Biobank brain imaging resting-state functional MRl scans
Design specifications Single 6 minutes resting-state run, eyes open.

Behavioral performance measures  The number of self-reported pain sites, specific pain body sites and our derived risk score.

Acquisition

Imaging type(s) UK Biobank brain imaging data: structural (T1 susceptibility-weighted) and resting-state functional scans.

Field strength 3T

Sequence & imaging parameters The brain imaging protocols implemented in the UKBiobank are described in Miller et al., Nature Neuroscience 2016. In
brief, The T1 structural protocol is acquired at Imm isotropic resolution using a three-dimensional (3D) MPRAGE
acquisition, with inversion and repetition times optimized for maximal contrast. Six minutes resting state resting-state
fMRI used 2.4-mm spatial resolution and TR = 0.735 s, with multiband acceleration factor of 8.

Area of acquisition Whole brain

Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software Minimal processing was done according to Miller et al., Nature Neuroscience 2016. Additional processing was conducted
including despiking (AFNI from Nipype), 6-mm kernel smoothing (Nilearn), and resampling to 3-mm (for storage purposes) to




resemble an a-priori brain-based signature for sustained pain (ToPS; see Lee et al., 2021 Nature Medicine).

Normalization Spatial normalization was done using non-linear registration based on the structural T1 images.
Normalization template FSL's MNI152 and UK Biobank.
Noise and artifact removal MRI-based covariates included head motion (linear, squared, and cubed), imaging site, position in the scanner, and coil

position (Z, Y, Z respectively). Two different deconfounding framework were tested as described in the Methods.

Volume censoring N/A

Statistical modeling & inference

Model type and settings Signature response was obtained by computing a dot product between the DCC and the ToPS weights. Pearson's r correlation
and Cohen's d (pooled standard deviation) between pain and pain-free participants.

Effect(s) tested The associations between the apriori derived brain signature (ToPS) with our derived risk score and the number of pain sites.
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Specify type of analysis: [ Whole brain [ | ROI-based [ ] Both

Statistic type for inference This study used resting state functional connectivity methods.
(See Eklund et al. 2016)

Correction Significance of group comparisons was determined using false discovery rate (q = 0.05).

Models & analysis

n/a | Involved in the study
|:| |Z Functional and/or effective connectivity

|Z| |:| Graph analysis

|:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity DCC was used for Dynamic Connectivity following the same protocol as the one used to derive the Tonic Pain
Signature (see Lee et al., 2021 Nature Medicine).

Multivariate modeling and predictive analysis Dot product was used to extract the ToPS signature response from the DCC connectivity and the weights of
the ToPS signature.
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