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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of
some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons
and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the
upper and lower extremities. The pathophysiology of CIPN is not completely understood; however,
it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria,
impairing the function of ion channels, triggering immunological mechanisms, and disrupting micro-
tubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological
options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-
channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several
other types of drugs, such as cannabinoids, sigma−1 receptor antagonists, and nicotinamides ribose,
are being evaluated in preclinical and clinical studies. This paper summarizes the information related
to the physiology of CIPN and medicines that could be used for treating this condition.

Keywords: chemotherapy-induced peripheral neuropathy; pathophysiology; duloxetine; cannabinoid; pain

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is defined as an injury of the
somatosensory nervous system after treatment with chemotherapy [1]. There are two types
of sensory abnormalities contributing to the development of motor and autonomic changes
in CIPN: these include abnormal sensory discrimination of touch, vibration, and thermal
information and a tingling or burning sensation also referred to as mechanical allodynia [2].
The severity and the duration of CIPN depends on, treatment agent, chemotherapy dose,
duration, a combination of neurotoxic drugs, and the presence of preexisting diseases such
as diabetes or chronic kidney disease [3]. In most cases, the sensation happens in the hands
and feet known as “gloves and stocking” distribution [4]. These symptoms can happen
with just one high single dose or after accumulation of chemotherapy drugs [1]. Symptoms
usually stabilize during treatment and relieve with time after termination. However, about
one-third of patients experience symptoms after 6 months of treatment cessation [5]. In
some cases, the chemotherapy drugs can persist in the nerve axon after treatment and
worsen the neuropathic symptoms, and this is known as the “Coasting Phenomena” [3,6].
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CIPN is a serious problem that ranks as a major long-lasting adverse effect related
to chemotherapy medications, such as platinum, ixabepilone, and thalidomide [7,8]. It
is estimated that 30–40% of patients undergoing chemotherapy will experience CIPN
each year and can lead to either premature treatment termination or chemotherapy dose
reduction that influences the treatment efficacy and survival rate [9,10]. The prevalence
range of CIPN is from 19% to more than 85%. The severity of CIPN depends on the
length and agent used with some chemotherapeutic agents having the highest rates such as
platinum agents, taxanes, vinca alkaloids, proteasome inhibitors, and immunomodulatory
drugs [11]. Seventy percent of patients who received paclitaxel and 90% of those who
received oxaliplatin develop the symptoms of CIPN [12].

The treatment of CIPN has been a medical challenge. The foremost challenge is the
lack of agents recommended for CIPN prevention and management in the American Society
for Clinical Oncology clinical practice (ASCO) guidelines [13]. Current recommendations
suggest a focus on symptoms affecting quality of life by using pharmacological interven-
tions for pain and physiotherapy solutions like exercise, acupuncture, massage therapy for
functional impairment, and in some cases provision relief [14]. However, despite current
efforts, CIPN is still not well managed in the majority of patients and has a negative impact
on quality of life [13]. Duloxetine is the only off-label FDA-approved drug that has shown
efficacy in treating CIPN when compared to antidepressants and anticonvulsants [13,15].
In addition, CIPN also increases the economic burden, while decreasing quality of life
(QOL) [13]. A study carried out where both physical and mental health were evaluated to
measure QOL showed that a higher symptom burden is associated with a lower QOL [16].
On cost, a 2022 review of studies carried out on CIPN treatment indicated that the monthly
drug cost of treating CIPN has a range of USD 15 to USD 1425 [17]. Further, the symp-
toms of CIPN reduce work efficiency resulting in loss of job, which adds to the economic
burden [2].

Treating CIPN is a challenge due in part to the prioritization of life-threatening
chemotherapy side effects over CIPN, discussions of side effects are more centered around
acute issues like nausea, vomiting, hair loss, and infections [18]. Even though there are
advances in understanding the biological mechanisms of chemotherapy-induced periph-
eral neuropathy, few prevention or treatment options exist [10,15]. Therefore, discovering
efficient approaches for CIPN management is highly demanding.

In this paper, we will discuss the pathology of CIPN and summarize the current phar-
macological therapy utilized in CIPN. Further, the medicines under clinical and preclinical
investigation will be discussed. We also summarize the recent findings of the mechanism of
action, safety, and efficacy of drugs for treating CIPN. In addition, this paper will list some
limitations and future directions related to these options based on data from clinical trials.

2. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

Chemotherapy medications induce peripheral neuropathy via different mechanisms:
changes in neuronal cytoskeleton, directly damaging neuron/DRG mitochondria, im-
pairing the function of ion channels, triggering immunological mechanisms via glial cell
activation, and disrupting microtubules [4].

2.1. Cytoskeleton Changes

A functional cytoskeleton is required to maintain the function and integrity of the
nervous system [19]. Chemotherapy medications promote major modifications in the
neuronal cytoskeleton, resulting in the fragmentation of axons in sensory neurons leading
to changes in the microtubule network [19,20]. These changes compromise the structural
integrity of sensory neurons, resulting in impaired axonal transport of mitochondria and
mRNA [21]. For example, paclitaxel and vincristine can cross the blood-nerve-barrier
and bind to beta-tubulin of sensory nerve fibers where they affect the structure of the
cytoskeleton of healthy peripheral neurons, such as the primary afferent neurons of the
dorsal root ganglia [19,20].
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2.2. Oxidative Stress

Mitochondria are membrane-bound cell organelles responsible for producing energy
through the oxidative phosphorylation process [22]. Chemotherapy can cause mitochon-
drial dysfunction through different mechanisms [23]. Platinum binds to mitochondrial
DNA and impairs replication, transcription, and protein synthesis, resulting in respiratory
chain damage, reduction of cellular metabolism, and increased oxidative stress which leads
to damage to peripheral nerves [24–31]. Taxanes can alter mitochondrial membrane perme-
ability pores leading to the release of calcium, which further activates calpain that catalyzes
protein degeneration including neuronal calcium sensor 1 (NCS1). These changes lead
to mitochondrial depolarization, impaired energy production, and neuronal dysfunction
which plays a role in the induction of neuropathic pain [32].

2.3. Ion Channel

Altered expression of the voltage-gated sodium channel (NaV), voltage-gated potas-
sium channel (Kv), and voltage-gated calcium channel (CaV) leads to a change in neuronal
excitability [33,34]. NaV is essential to initiate and propagate action potential in neu-
rons [25]. Chemotherapeutic drugs can increase the expression of NaV in nociceptive
neurons increasing action potential [34]. The amplification of action potential in nociceptive
neurons results in hyperexcitability and spontaneous firing of neurons which results in
increased pain sensitivity and neuropathic pain [35]. Treatment with paclitaxel increases
the expression of NaV in DRG causing increased action potential firing resulting in hyperex-
citability [36,37]. Significant downregulation of voltage-gated potassium channels has been
found in patients after oxaliplatin treatment, leading to increased membrane excitability in
neurons [38,39]. Chemotherapy can also upregulate voltage-gated calcium channels that
change peripheral neurons’ action potential threshold, causing hyperexcitability [40–42].

2.4. Triggering Immunological Responses

Previous studies have demonstrated a strong correlation between CIPN and increased
levels of pro-inflammatory cytokines. This is because cytokine signaling, crucial for
neuroinflammation and sensitization in the sensory nervous system, plays a key role
in chemotherapy-induced peripheral neuropathy (CIPN) [33]. CIPN is characterized by
increased levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and reduced levels of
the anti-inflammatory cytokine IL-10 [36,43]. Oxaliplatin can activate astrocytes leading
to the activation of the pro-inflammatory cascade and production of pro-inflammatory
cytokines such as IL-Iβ, TNF-α, and IL-6 [44–46]. Taxanes can bind to toll-like receptor 4
(TLR-4) triggering activation of NF-κB [42].

2.5. Disruption of Microtubules

Taxanes and Vinca Alkaloids also induce peripheral neuropathy by interrupting
tubulin polymerization. After binding to tubulin, Taxanes and Vinca Alkaloids cause
microtubule dysfunction leading to alteration of axonal synaptic vesicle transportation as
well as interfering with the regeneration and remodeling of axons [47–50].

3. Current Approach for CIPN Management

Based on the most up to date ASCO guidelines, there is no agent recommended for the
prevention of CIPN [13]. However, the ASCO does recommend that patients with CIPN
should receive reduced or delayed doses and substitute or terminate the chemo agent [13].
Duloxetine (brand name Cymbalta), an agent off-label used to treat CIPN, is the only
agent with moderate efficacy [13,51]. Duloxetine inhibits serotonin and norepinephrine
reuptakes, which increases the availability of the key neurotransmitters to activate the
descending pathway [52]. Duloxetine could also reduce inflammation and nerve injury by
inhibiting the activation of p38 and NF-kB [53]. Duloxetine has been tested in many clinical
trials and has been approved to reduce pain compared with placebo and other classes of
medications [29,41].
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Several complementary and alternative medicines have been tested for treating CIPN.
Nonpharmacological approaches, including acupuncture, exercise, mindfulness practices,
yoga, meditation, and touch therapies like acupressure, reflexology, and massage, have
been found to reduce chemotherapy-related symptoms and improve quality of life [54]. In
addition, some nutrients and Chinese herbal medicines have shown potential therapeutic
effects in patients with neuropathic pain [14].

There are major limitations in the current treatment of CIPN. A major limitation of du-
loxetine use is that insurance companies recommend using either pregabalin or gabapentin
before the usage of duloxetine even though that is contradictory to the recommendation of
ASCO guidelines [13]. By far, none of the complementary and alternative approaches has
shown promising results for treating CIPN [54]. In addition, there is a lack of guidelines for
using nutrients and herbs for the treatment of CIPN in clinics.

4. Medications under Clinical Trials

With no effective therapies to treat CIPN, several clinical trials have been carried out
and continue to be carried out to find a clinical solution (Table 1). Therapies used for
other disease states have been studied to ascertain their effectiveness in alleviating CIPN.
However, we only include the clinical trials of which the results have been published.

4.1. Serotonin and Norepinephrine Reuptake Inhibitors

Venlafaxine is a second-generation tricyclic antidepressant (TCA) that works by in-
hibiting neuronal serotonin activity, and norepinephrine and serotonin reuptake [55]. It is a
good alternative for patients who cannot afford duloxetine [56]. A clinical trial conducted
in 2018 found that venlafaxine effectively reduced the grade of cranial, motor, sensory,
and neuropathic pain in the patients who had CIPN, but with less efficacy compared to
Duloxetine [57]. In a phase III randomized double-blinded control trial, venlafaxine was
effective in relieving acute neurotoxicity and improving functional status in patients who
suffered from oxaliplatin-induced neuropathy [58]. However, in a pilot trial, Venlafaxine
was not effective in preventing either acute or chronic neuropathy symptoms, such as throat
discomfort and discomfort swallowing cold liquids, induced by oxaliplatin treatment [59].
Original guideline commentary for venlafaxine has shown its use as a preventative agent,
however, longer follow-up data do not support this use [58].

Amitriptyline is a tricyclic TCA medication being tested in clinical trials [60]. One
study showed that systemic treatment with amitriptyline was unable to relieve CIPN
symptoms, including tingling, numbness, impaired sensory function, and pain in hands
and feet [61]. In contrast, another clinical trial found that topical amitriptyline alone or
with baclofen and ketamine effectively reduced the neuropathic pain associated with CIPN
in patients who had received vinca alkaloids, oxaliplatin, cisplatin, taxanes, thalidomide or
other neurotoxic agents [62,63]. Both amitriptyline and venlafaxine are not FDA approved
nor have definite doses for treating CIPN [13,58,62]. In addition, they have more side effects
compared to duloxetine. Thus, more trials need to be carried out to provide guidance on
optimal doses with fewer side effects to treat CIPN [45].

4.2. Ion Channel Targeted Therapy

Studies have shown that ion channel targeted therapies, such as lidocaine, gabapentin,
and pregabalin, have also been successful in reducing CIPN [9]. Lidocaine is an antiarrhyth-
mic drug that can non-selectively block sodium, potassium, and calcium channels [64].
Systemic treatment with lidocaine via intravenous injection was effective in pain reduction
with an analgesic effect that persisted for an average of 23 days in patients [65]. This is
further supported by a case where neuropathy symptoms were completely relieved by
intravenous lidocaine infusion [66]. A recent randomized controlled study also found that
lidocaine infusion showed a similar effect as duloxetine on reducing the incidence and
severity of taxane-induced peripheral neuropathy [67].
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Gabapentin and pregabalin are anticonvulsant agents that block presynaptic voltage-
gated calcium channels and down-regulate excitatory [68]. Several clinical trials have
evaluated the efficacy of gabapentin and pregabalin in CIPN prevention and treatment.
A phase 3 randomized controlled trial found that treatment with gabapentin for 6 weeks
failed to relieve the CIPN symptoms [69]. Another randomized trial also had similar results.
Gabapentin (20 mg/kg/day) increased the pain scores and opioid consumption in pediatric
patients with vincristine-induced neuropathy [70]. Treatment with pregabalin (75 mg) twice
daily showed a trend to reduce numbness, but not any other paclitaxel-induced neuropathy
symptoms [71]. More trials are needed to definitively provide indications of these drugs’
use in CIPN treatment [69].

4.3. Anti-Inflammatory Medications

Typically, these drugs are used in other disease states but also exhibit anti-inflammatory
effects that have shown efficacy in decreasing CIPN. Metformin, a drug commonly used
for treating diabetes, has shown anti-inflammatory effects on endothelial cells by inhibiting
the production of IL-6 and TNF-α thus reducing the phosphorylation of mitogen-activated
protein kinase (MAPK) [68]. Additionally, Metformin activates adenosine monophosphate-
activated protein kinase (AMPK) which could inhibit the mammalian target of the ra-
pamycin (mTOR) pathway causing nociception blockage [72]. A study was conducted
using cisplatin and Paclitaxel, which are drugs known to induce mechanical allodynia. One
arm had co-administration of Metformin with cisplatin and the other arm administered
Metformin with Paclitaxel [45,72,73]. In a randomized controlled study, metformin 500 mg
three times a day was given to patients receiving oxaliplatin in the FOLFOX-4 regimen
for colorectal cancer. Metformin offered protection against oxaliplatin-induced chronic
peripheral sensory neuropathy [74].

Minocycline is an antibiotic that inhibits the production of pro-inflammatory cytokines
in monocytes and microglia to reduce mechanical sensitivity [75]. In the Academic and
Community Cancer Research United (ACCRU) pilot study, Minocycline reduced the daily
average pain score but no prevention of CIPN was found. However, when dosed based
on weight, minocycline prevented chemotherapy-induced neuropathy in mice receiving
paclitaxel [76,77]. In contrast, in a phase II randomized clinical trial where an oxaliplatin
chemotherapy regimen was used, minocycline did not relieve fatigue or numbness/tingling
symptoms and failed to reduce pro-inflammatory cytokines compared to placebo [78].

4.4. Antioxidant Medications

It has been shown that the antineoplastic agent oxaliplatin does induce peripheral
neurotoxicity. One of the ways suggested on how this neurotoxicity occurs is oxidative
stress, where there’s an increase of reactive oxygen species and reactive nitrogen species
creating an imbalance between their production and removal. Mitochondrial superoxide
dismutase (MnSOD) is what keeps the balance on these species. Mangafodipir, a contrast
agent, was discovered to have mitochondrial superoxide dismutase mimetic activity and
was therefore tested as a cytoprotectant [79].

In the PLIANT phase II placebo-controlled study, patients treated with oxaliplatin
were given calmangafodipir (Pledox) which is derived from mangafodipir [80–84]. It
was observed that there was a delay of onset and a reduction in intensity of the CIPN
symptoms, in particular the cold allodynia symptoms, with calamangafodipir at a dose of
5 µmol/kg [83].

Amifostine is a potent free radical scavenger pro-drug and has been shown to protect
healthy tissues during chemotherapy and radiation [85]. The active metabolite (WR-1065)
demonstrated the prevention of oxaliplatin-induced neurotoxicity [86]. This protection
is selective for non-tumor tissues [10,13]. However, in a phase II clinical trial, where
cisplatin and 3-hour paclitaxel were the chemotherapy agents used [87]. Amifostine had a
diminished effect on preventing CIPN [83]. These two trials demonstrate that amifostine is
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a strategy to be used specifically in oxaliplatin-induced neurotoxicity, however, it was not
so in other platinum compounds like cisplatin and paclitaxel [83,87].

4.5. Sigma-1 Receptors (S1R)

Sigma-1 receptors (S1R) play an important role in modulating several types of ion
channels such as NaV 1.2, NaV 1.4, KV 1.2, KV 1.3, and KV 1.4 [88,89]. They also can
modulate intramitochondrial calcium homeostasis and trafficking of functional transient
receptor potential ankyrin 1 (TRPA1), which play a critical role in the development of
CIPN [90,91]. MR309 is a selective S1R antagonist that has shown efficacy in reducing
allodynia and cold hypersensitivity [92]. A phase 1 trial found that MR309 has shown good
safety and tolerability in healthy people [93]. In two other clinical studies, MR309 showed
a significant reduction in cold allodynia and hyperexcitability motor symptoms compared
to placebo [88,89].

4.6. Cannabinoids

The endocannabinoid system is an endogenous system responsible for pain perception
modulation and has attracted interest in the management of CIPN [94]. It consists of two
types of receptors, CB1 dominant in the brain and CB2 dominant in peripheral immune
systems and central nervous systems [95]. Both CB1 and CB2 are G-protein coupled
receptors and can modulate the activities of numerous intracellular signaling pathways,
such as MAPK, phosphoinositide 3-kinase (PI3K)/Akt, Nrf2, and Ca2+-regulated signaling
cascades [96]. Endocannabinoid system homeostasis is maintained via transporters that
control the transport of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) from the
cells to synapse and vice versa [97]. The activity of the endocannabinoid system is also
controlled by enzymes, such as fatty acid amino hydrolase, cyclooxygenase-2 (COX-2), and
N-acylethanolamine-hydrolyzing acid amidase, which are involved in the degradation of
the endocannabinoid [98].

The safety, efficacy, and pharmacokinetics of cannabinoids have been studied in sev-
eral clinical trials [99–105]. A double-blind placebo-controlled study determined that
oral mucosal spray containing cannabinoids had no significant difference in treating
CIPN [106]. However, the five “responders” had 2.6 of 11-point NRS-PI lower than the
placebo group [103]. Treatment with CBD oil (300 mg/daily) had lower scores on cold
sensitivity to touch, discomfort swallowing cold liquids, and throat discomfort in patients
with CIPN [105]. A case series reported that topical use of CBD alone or with THC reduced
neuropathic pain in patients with CIPN [107]. Numerous clinical trials are ongoing to test
the effect of cannabinoids on treating and preventing CIPN.

Table 1. Medications under clinical trials for the treatment of CIPN.

Intervention Chemotherapy Sample Size Dose Results Reference

Amitriptyline 44 1 g of 10% amitriptyline
cream twice a day

Topical amitriptyline was
effective in reducing VAS
pain score

[56]

Amitriptyline Taxane, vinca
alkaloid, or platinum 114 25 mg daily up to

100 mg daily

Amitriptyline was not
effective in
CIPN prevention

[61]

Amitriptyline and
ketamine Taxane 462

Apply 4 g of 2% ketamine
plus 4% amitriptyline (KA)
cream BID

No difference in 6-week
pain score, numbness,
and tingling

[63]

Amitriptyline
Baclofen
ketamine

208
baclofen 10 mg, amitriptyline
HCL 40 mg, and ketamine
20 mg

BAK gel was statistically
significant in motor
neuropathy improvement
but not statistically
significant in sensory
neuropathy

[62]
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Table 1. Cont.

Intervention Chemotherapy Sample Size Dose Results Reference

Amifostine Cisplatin or
paclitaxel 27 amifostine 740 mg/m2 Not effective in

protection against CIPN [87]

Calmangafodipir Oxaliplatin 173 calmangafodipir 2 µmol/kg
or 5 µmol/kg

Calmangafodipir can
prevent CIPN during the
1st 6 months

[83]

Calmangafodipir Oxaliplatin 592 Calmangafodipir 2 µmol/kg,
or 5 µmol/kg, or placebo

Month 9 of treatment
data shows 54% with
moderate-severe CIPN
and higher percentage(s)
of hypersensitivity
reactions

[84]

Cannabidiol

Carboplatin and
paclitaxel, or
capecitabine and
oxaliplatin

54 150 mg CBD oil twice daily
(300 mg/daily) for 8 days

Reduce cold sensitivity to
touch, discomfort
swallowing cold liquids,
and throat discomfort

[105]

Cannabidiol 40 Topical use for 2 weeks No improvement on
painful established CIPN [108]

Cannabinoid extract
(Nabiximols)

Paclitaxel, vincristine,
or cisplatin 16 Two to twelve sprays per day

for a week

An average decrease of
2.6 on an 11-point NRS-PI
in five “responders”

[106]

Capsaicin Oxaliplatin 18 High dose 8% patch Effective in treating pain
associated with CIPN [109]

l-carnosine Oxaliplatin 65 L-carnosine 500 mg daily
Significant reduction in
NF-κB and TNFα;
Neuroprotective

[110]

Duloxetine 231 30 mg QD 7D, then 30 mg BID
Use for 5 weeks resulted
in greater overall pain
reduction

[51]

Duloxetine Taxane 47

30 mg daily in the first week
following the injection of
paclitaxel and 60 mg during
the second week

Reduces the scores of
neuropathies, but not
paresthesia, numbness,
cold sensitivity, and other
nerve conduction velocity
(NCV) values

[111]

Gabapentin
Taxane,
platinum, or
vinca alkaloid

115 300 mg up to 2700 mg daily
Not effective in
controlling CIPN
symptoms

[69]

Gabapentin Vincristine 49 20 mg/kg/day

Gabapentin was
associated with more
opioid consumption and
high pain score compared
to placebo

[70]

Glutamine Vincristine 56 Glutamine 6 g/m2 BID
Well tolerated
Sensory function and
QOL improvement

[112]

Glutathione Paclitaxel and
carboplatin 185

1.5 g/m2 IV over 15 min
immediately before
chemotherapy

No significant difference
in peripheral neuropathy [113]

Glutathione and
Mecobalamin 158

2.4 g of glutathione IV once
daily 2–3 days before
chemotherapy, plus 500 µg
mecobalamin IV once every
other day

Significant reduction in
incidence and severity
of CIPN

[114]

Huangqi Guizhi
Wuwu Decoction
(HGWD)

Paclitaxel 92
Washing limbs with HGWD
for 20 min twice a day for
consecutive 14 days

Largely reduces the CIPN
sensory scores, but not
the autonomic scores

[115]

Lafutidine Carboplatin or
paclitaxel 18 10 mg twice daily Shows a trend to

reduce neurotoxicity [116]
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Table 1. Cont.

Intervention Chemotherapy Sample Size Dose Results Reference

Lamotrigine 131 Target dose 300 mg/day
Lamotrigine is not
effective as
CIPN treatment

[117]

Lidocaine 9
1.5 mg/kg for 10 min
followed by 1.5 mg/kg/h
over 5 h

Pain reduction that
persists for
23 days average

[65]

Lidocaine Taxane 60
2 mg/kg with saline infusion
40 min prior to taxane
therapy

Decreased the incidence
and severity of
taxane-induced
peripheral neuropathy

[67]

Lithium Taxane 37 300 mg daily for 5 days Not effective in CIPN
prevention [118]

Melissa officinalis
(MO)

Cisplatin,
oxaliplatin),
vincristine,
bortezomib, or
taxanes

80 500 mg 2 times a day for
3 months

MO reduces pain and
diarrhea based on the
scores of EORTC
QLQ-C30 (Integrated
System for Quality of
Life Assessment)

[119]

Metformin Oxaliplatin 55 Metformin 500 mg TID

Less incidence of grade
2/3 neuropathy
Significantly low pain
score
Low serum level of
malondialdehyde and
neurotensin
High Ntx-12 score

[74]

Minocycline Paclitaxel 47 200 mg on day 1 followed by
100 mg BID

Not effective in CIPN
prevention, however, it is
effective in p-APS score
and fatigue reduction

[76]

Minocycline Paclitaxel 66 100 mg BID

No significant reduction
in fatigue/numbness
symptoms with no
difference in serum
pro-inflammatory
markers

[120]

Mirogabalin Oxaliplatin or taxane 58 Between 5 and 15 mg
twice daily

Reduce numeric rating
scale (NRS) score [121]

Mirogabalin Taxane 43 5–30 mg daily Relieve the CIPN
symptoms [122]

N-acetyl cysteine Paclitaxel 75 1200 mg daily or 1200 BID

Significant reduction in
peripheral neuropathy in
high-dose group
QOL, mTNS were
significantly improved.
Significant elevation of
NGF serum level

[123]

Omega-3 fatty acids Paclitaxel 60 4 g No benefit [124]

Pregabalin (children) 30 150–300 mg
Pregabalin improved
pain symptoms
significantly

[125]

Pregabalin Paclitaxel 46 75 mg BID

Pregabalin not effective
in reducing tingling pain,
or EORTC QLQ-CIPN20
subscale scores

[71]

Pregabalin Paclitaxel, docetaxel,
or oxaliplatin 26

75 mg BID for 3 days, 150 mg
BID for 3 days, then 300 mg
BID until and including
day 28

Pregabalin was not
effective in reduction of
average or worst pain
compared to placebo

[126]
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Table 1. Cont.

Intervention Chemotherapy Sample Size Dose Results Reference

Pregabalin vs.
duloxetine Taxane 82 Pregabalin 150 mg once

duloxetine 60 mg
Both were efficacious in
decreasing CIPN [127]

Renin-angiotensin-
aldosterone system
inhibitors

Paclitaxel 5886

Decreases the incidence
of paclitaxel-induced
CIPN in patients with
lung cancer

[128]

Sigma-1 receptor
antagonist Oxaliplatin 124

400 mg MR309 daily dose
during the first 5 days of each
chemotherapy cycle

MR309 reduces sensory
and motor
hyperexcitability
Patients able to get higher
dose of oxaliplatin

[89]

Silybum marianum
(SM) Cisplatin 60 140 mg three times daily for

90 days

SM reduces the scores of
DN4 (Douleur
neuropathique
4 questions) and CIPNAT
(chemotherapy-induced
peripheral neuropathy
assessment tool)

[129]

Venlafaxine Oxaliplatin 50 37.5 mg XR BID
Not effective in
prevention of either acute
or chronic neuropathy

[59]

Venlafaxine Oxaliplatin 48
50 mg 1 h prior oxaliplatin
infusion then 37.5 mg BID
from day 21 to 1

Effective in relieving
acute neurotoxicity as
well as improving
functional status

[58]

Vitamin E Taxane 140 Vit E 400 mg BID

Vit E is not effective in
CIPN prevention;
however, it helps with
shortening of neuropathy

[130]

5. Preclinical Studies

Discovering novel treatments for CIPN has attracted a lot of interest since most of
the medications tested in clinical trials are unsatisfactory. A meta-analysis conducted in
2015 determined that no drug showed promising effects in terms of preventing or treating
CIPN [131]. Therefore, developing novel approaches is in high demand for improving the
treatment of CIPN. Numerous compounds and targets have been tested in different animal
models, even though these findings may not always be able to translate into patient care in
clinics (Table 2).

5.1. Sphingosine-1-Phosphate (S1P) Receptor 1 Antagonist

Sphingosine-1-phosphate is a lipid that alters numerous cellular functions [132]. S1P
binds to a group of G protein-coupled receptors (S1PR1-5), and increased activity of
S1PR1 could contribute to the development of CIPN [133,134]. Fingolimod is a functional
antagonist of S1PR1 and has been approved by the FDA for treating multiple sclerosis [134,
135]. It downregulates the expression of the S1P1R receptor to inhibit the NF-kB pathway,
which can alleviate [136,137]. Treatment with bortezomib alters S1PRI receptor activity
in astrocytes leading to diminishing neuropathic pain [133]. Intrathecal administration of
S1PR1 agonist leads to mechanical allodynia in wild-type mice and knocking out S1PR1
receptors in astrocytes does [138]. However, the effects of S1P1R inhibition on preventing
and treating CIPN may not work in females [134]. More studies are required to further
confirm the therapeutic effect of S1P1R antagonists.

5.2. Cannabinoids

Several animal studies have shown the correlation between endocannabinoid systems
and peripheral neuropathy induced by several chemotherapy reagents. Both cannabinoid
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agonists and cannabinoid enzyme degradation inhibitors (fatty acid amide hydrolase and
monoacylglycerol lipase) were efficacious in controlling CIPN. Treatment with cannabigerol,
a bioactive compound from Cannabis, diminished the mechanical hypersensitivity by
activating α2-adrenergic, CB1, and CB2 receptors in mice receiving cisplatin [139,140].
Administration of cannabidiol and anandamide prevents the development of neurotox-
icity induced by paclitaxel via activating the serotonin 1A receptor and reducing the
expression of toll-like receptor (TLR)-4 and Iba1 [141–143]. Some synthetic cannabinoids,
GAT229, WIN55212, and PrNMI, can activate the CB1 receptors to allodynia induced by
cisplatin [144–146]. Seminally, treatment with synthetic CB2 agonists, such as LY2828360,
AM1710, JWH133, and MDA7, attenuates paclitaxel-induced mechanical and cold hyper-
sensitivity by reducing the expression of TNF-α, brain-derived neurotrophic factor (BDNF),
and MCP-1 in the lumbar spinal cord [146–152].

The transporters and enzymes, such as fatty acid amide hydrolase (FAAH), which
are involved in cannabinoid receptor function, have been targets for discovering drugs for
preventing and treating CIPN [97,98]. A few FAAH inhibitors, including ST4070, URB597,
URB937, JZL184, and MJN110, have been tested in animal models of CIPN. Administration
of these inhibitors reduces the mechanical hypersensitivity and spontaneous pain behavior
evoked by cisplatin [153–159].

The analgesic effect of crude extract of Cannabis and some minor cannabinoids pro-
duced by Cannabis has also been studied in CIPN [160–162]. The supercritical fluid carbon
dioxide extract of Cannabis sativa L. (Hemp) reduced the mechanical and thermal hypersen-
sitivity by altering the neuroactive ligand–receptor interaction pathway, PPAR signaling
pathway, and cAMP signaling pathway [162]. However, some minor cannabinoids, such as
cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), ∆8-tetrahydrocannabinol
(∆8-THC), and ∆9-tetrahydrocannabivarin (THCV), separated from Cannabis had a dif-
ferent analgesic effect. Only CBN was able to relieve the CIPN symptoms in a particular
study [161].

Cannabinoids may enhance the analgesic effect of drugs for relieving the CIPN symp-
toms. Haddad et al. (2023) found that co-treatment with WIN55212 exhibited a great
inhibitory effect on capsaicin-induced calcium responses which contributed to the develop-
ment of nociception [163]. A combination of HU-210 (a CB1R agonist) and SNC80 (DOR
agonist) reduced the allodynia in mice treated with paclitaxel [164]. CB2 agonist LY2828360
not only delays the development of neuropathy symptoms but also inhibits morphine
tolerance in the CIPN model [152,165]. The combination of cannabidiol and mitragynine
significantly reduces thermal hypersensitivity in mice treated with paclitaxel [166]. Some
other compounds, including mitragynine, ART26.12, and hyperbaric oxygen, also prevent
the CIPN symptoms by activating the cannabinoid receptors [167–169].

5.3. Histone Deacetylase 6 (HDAC6) Inhibition

Histone deacetylase 6 (HDAC6) is an enzyme that regulates multiple intracellular func-
tions via deacetylate non-histone proteins [170]. Studies have found that HDAC6 inhibitors,
such as ACY-1215, ACY-1083, and ACY738, can prevent and reverse the development of
CIPN [40,171–174]. Treatment with ACY-1215 or ACY-1083 blocks the cisplatin-induced
mechanical allodynia by preventing the loss of intraepidermal nerve fibers and mitochon-
drial damage in peripheral nerves and dorsal root ganglia neurons [40,171]. ACY-1215 and
ACY-1083 can also increase the population of M2-macrophages to promote the production
of IL-10 leading to a neuroprotective effect in the DRG neurons [172]. In addition, ACY-1083
enhances the tonic enkephalin-DOR (delta opioid receptor) signaling sensory neurons to
prevent CIPN [173]. Those findings indicate that HDAC6 inhibitors could be promising
drugs to prevent and treat CIPN.

5.4. Interleukin (IL)-10

Interleukin 10 is a classic anti-inflammatory cytokine produced by different types of
immune cells [175]. It is a negative feedback regulator that regulates the inflammatory
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responses to different physiological and pathological conditions [176]. In the last few
years, increased IL-10 has been found in different approaches to prevent and treat CIPN.
Chemotherapy drugs, such as cisplatin and paclitaxel, can activate CD8+ T cells and CD4+
T cells or trigger receptors expressed on the myeloid cells 2 (TREM2)/DNAX-activating
protein of 12 kDa (DAP12), signaling to increase production of IL-10 and leading to the
resolution of CIPN [177–181]. Treatment with trimetazidine, inducible co-stimulatory
molecule (ICOS) agonist antibody, or adenosine receptor (A3AR) agonist increases the
production of IL-10 in the DRG to reduce the mechanical hypersensitivity induced by
paclitaxel [44,182,183]. Interestingly, nasal administration of mesenchymal stem cells
increases the production of IL-10 to reverse paclitaxel-induced neuropathy [184].

5.5. Transient Receptor Potential Vanilloid 1 and Ankyrin 1 (TRPV1 and TRPA1)

TRPV1 and TRPA1 are non-selective cation channels and are well-known nociceptive
receptors for sensing thermal stimulation [185]. The GG-genotype of TRPV1 is associated
with severe CIPN in patients with non-small cell lung cancer [186]. Administration of
chemotherapy drugs can activate the TRPV1 and TRPA1 channels to induce neuropa-
thy [187–190]. Studies have found that some potential treatments can reduce the CIPN
by inhibiting the activities of TRPV1 and TRPA1. Antioxidants, such as henyl N-tert-
butylnitrone and gergenin, reduce the activation of TRP channels to relieve the mechanical
hypersensitivity in the animals receiving paclitaxel [187,191]. Intrathecal administration of
D-series resolvin 5 (RvD5) reduces the mechanical allodynia induced by paclitaxel only
in male mice, but not female ones [192]. Treatment with LPP1 and pregabalin attenuates
thermal hypersensitivity, which is partially contributed by the inhibition of TRPV1 and
TRPA1 [193]. Apolipoprotein A-I binding protein (AIBP) attenuates the toll-like receptor 4
(TLR4)- and TRPV1- induced pathways to prevent the development of CIPN [194].

5.6. Sterile Alpha and TIR Motif Containing 1 (SARM1) Inhibition

The sterile alpha and TIR motif containing 1 (SARM1) is an enzyme that degenerates
axons by increasing intra-axonal calcium flux [195,196]. Pharmacological inhibition or
genetic knockout SARM1 has shown protective effects on axons, blocking the development
of CIPN. Several studies reported that irreversible SARM1 inhibitors or knockout SARM1
prevented chemotherapy drug (i.e., paclitaxel, vincristine, and bortezomib)-induced in-
traepidermal nerve fiber loss to maintain axonal function [197–200]. Knockout SARM1 can
also reduce the changes in gene expression in the DRG to block the mechanical and cold
hypersensitivity induced by oxaliplatin [201].

5.7. Herbal Medicines

Herbal medicines provide great resources for drug discovery [202]. Numerous herbs
have been tested in preventing and treating CIPN. The decoction of Divya-Peedantak-
Kwath (DPK) reduced inflammation and oxidative stress to prevent the allodynia and
hyperalgesia induced by paclitaxel [203]. Goshajinkigan (GJG), a Japanese herbal medicine,
prevented paclitaxel-induced neuropathy by inhibiting the activation of astrocytes in the
primary sensory cortex [204–206]. Oral administration of ginger water extract increased
the expression of 5-HT1A receptors, blocking oxaliplatin-induced cold and mechanical allo-
dynia [207]. Danshen and its bioactive compounds, tanshinone IIA and cryptotanshinone,
dose-dependently diminished oxaliplatin-induced CIPN [208]. Commiphora myrrha (CM)
resin extract upregulates TRPV1 expression in the spinal cord to prevent the pathogen-
esis of paclitaxel-induced thermal hyperalgesia and mechanical allodynia [209]. Herbal
prescriptions normally include several types of herbs. Some studies reveal that herbal
prescriptions, such as SH003 and Siwei Jianbu, show neuroprotective effects, preventing
CIPN symptoms [210–212].
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5.8. Others

Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) and inhibi-
tion of myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) can reduce
chemotherapy-induced mechanical hyperalgesia and prevent the development of CIPN in
mice model [213]. Inhibiting the CXCR1/2 signaling pathway using reparixin or ruxolitinib
attenuated the development of allodynia induced by oxaliplatin, but not vincristine [214].
Nicotinamide Riboside (NR) is a vitamin B3 precursor of NAD+ which shows efficacy in
suppressing tactile and cold hypersensitivity induced by paclitaxel in rats [215]. The NR
blunts the loss of the intraepidermal nerve fiber. A high NAD+ level also helps with the
deacetylation of alpha-tubulin in DRG via normalizing sirtuin Z [216]. Intraperitoneal in-
jection with magnolin can reduce cold allodynia by inhibiting the activation of extracellular
signal-regulated kinase (ERK) in mice with CIPN [217]. Oral treatment with antioxidants,
such as N-acetylcysteine, α-lipoic-acid, Vitamin C, and Vitamin E, can dramatically in-
hibit the neuropathy and neuroinflammation induced by increased production of reactive
oxygen species associated with oxaliplatin [218,219].

Numerous other potential targets have been discovered for treating CIPN. Peroxisome
proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) is important for main-
taining the function of mitochondria and can reduce oxidative stress, leading to the prevention
of CIPN [220]. Treatment with PPARγ activators, such as TZD-A1 and Ursolic acid, decreases
paclitaxel-induced mechanical and thermal hypersensitivity [221,222]. Activation of adeno-
sine monophosphate (AMP)-activated protein kinase (AMPK) can promote the expression of
macrophage scavenger receptor A1 (SR-A1) or suppressors of cytokine signaling (SOCS) 3,
which reduces CIPN in the mice model [223,224]. Vargas-Aliaga A. and colleagues have found
that the development of CIPN could be contributed by the genetic polymorphisms of ATP
binding cassette subfamily B member 1 (ABCB1, C1236T, and C3435T), but not Glutathione-S
Transferase (GST) genes, in patients who received chemotherapy drugs [225,226]. Some other
targets, such as the spinal neuronal microRNA-124 (miR-124), miR-3184-5p, Kinin B1 and B2
Receptors, and major histocompatibility complex II (MHCII), have shown activities that regulate
the development of CIPN [227–231].

Table 2. Medications in preclinical evaluations to treat CIPN.

Intervention Animal Model Chemotherapy Results Reference

Amifostine Mouse oxaliplatin

Amifostine prevents mechanical
hyperplasia and thermal allodynia
development as well as protecting from
neural hyperplasia and damage.

[232]

Anandamide Rat cisplatin Anandamide can prevent mechanical
allodynia induced by cisplatin [143]

αO-Conotoxin
GeXIVA[1,2] Mouse oxaliplatin

GeXIVA[1,2] can attenuate the
development of
oxaliplatin-induced CIPN

[233]

C781 Mouse paclitaxel Reverse the mechanical allodynia [234]

Calmangafodibir Mouse oxaliplatin
Calmangafidipir can protect against
mechanical allodynia and thermal
hyperplasia induced by oxaliplatin

[79]

Cannabinoid Rat cisplatin

Significant reduction of mechanical
allodynia threshold in rats treated with
cannabinoids administered
intraperitoneally or locally

[146]

Cannabigerol (CBG) and
Cannabidiol (CBD) Mouse oxaliplatin CBG, CBD, or a combination of both can

reverse the mechanical hypersensitivity [235]
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Table 2. Cont.

Intervention Animal Model Chemotherapy Results Reference

CB2 agonist Mouse paclitaxel Suppress allodynia induced
by paclitaxel [147]

Cannabigerol (CBG) Mouse cisplatin Attenuates mechanical hypersensitivity [139]

Cannabinoid enzyme
degradation inhibitor

Mouse paclitaxel Suppressed mechanical and
cold allodynia [156]

Rat vincristine Suppressed mechanical allodynia [159]

Mouse cisplatin Suppress mechanical allodynia, prevent
mechanical hyperplasia [158]

CGRP monoclonal
antibody (ZR8 mAb) Mouse & Rat cisplatin

ZR8 mAb reduces mechanical
hypersensitivity and thermal
nociceptive sensitization induced
by cisplatin

[236]

Glutathione Mouse oxaliplatin GSH relieves neuropathic pain by
chelating aluminum [237]

Glycyrrhizic Acid Mouse paclitaxel
GA exhibits neuroprotective activity
and attenuates the development
of CIPN

[238]

Minocycline Mouse vincristine Mechanical hypersensitivity reduction
with no change in thermal threshold [239]

Minocycline Mouse paclitaxel Minocycline can prevent hypoesthesia
and hyperesthesia induced by paclitaxel [77]

Naringenin Mouse paclitaxel Attenuate the neuropathic pain induced
by paclitaxel [240]

Nicotinamide riboside Rat paclitaxel
NR can suppress tactile and cold
hypersensitivity without altering
tumor growth

[215]

Phlomidis radix (P. radix)
ethanol extract Mouse paclitaxel

P. radix and its bioactive compound,
sesamoside, diminish the cold and
mechanical pain

[241]

Phosphosulindac Mouse
paclitaxel,
vincristine, or
oxaliplatin

PS dose-dependently relieves the
allodynia in mice with CIPN [242]

Polyvalent
immunoglobulins Mouse vincristine or

oxaliplatin
Attenuate tactile/cold hypersensitivity
and nerve injuries [243]

Prazosin + duloxetine Rat oxaliplatin
Combination of those drugs reduces
paw withdrawal, but no improvement
in allodynia or hyperalgesia

[244]

PNA6 Mouse oxaliplatin PNA6 relieves mechanical
hypersensitivity [245]

SS-20 Mouse paclitaxel Inhibit the development of CIPN [246]

Synthetic peripherally
restricted cannabinoids Rat cisplatin

Dose-dependently suppress mechanical
and cold allodynia in local and systemic
administration

[144]

Trimethoxyflavanone (Y3) Mouse paclitaxel Y3 reduces the activities of DRG
neurons to reduce the CIPN. [247]
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6. Discussion

In this paper, we have summarized the current information related to the pathophys-
iology and treatment of CIPN. We also discuss the clinical and preclinical trials that test
potential approaches for CIPN management.

The neuropathic pain induced by chemotherapy drugs has attracted a lot of interest in
drug discovery. Cancer patients are treated with at least one type of chemotherapy reagent
after surgically removing the tumor [248]. Thus, CIPN is predictable in cancer survivors
and should be managed with standardized guidelines. Developing an individualized
protocol should be considered to prevent and treat CIPN based on the chemotherapy
agent(s) to be used.

Several drugs, including Duloxetine, TCA medications, and ion channel modifiers,
are used for CIPN treatment, even without FDA approval. Ion channel modifiers have
also been shown to be successful in reducing CIPN. Even drugs exhibiting promising
therapeutic effects still lack sufficient data to support their use for CIPN treatment. Several
potential approaches have been tested in clinical trials. Cannabinoids have risen as a
medication to treat emesis, nausea, and vomiting in cancer patients [249]. According to the
findings from several clinical studies, the National Academies of Sciences, Engineering, and
Medicine have confirmed the promising results of cannabinoids and cannabis in treating
CIPN [42]. Non-opioid analgesics, metformin, minocycline, and Calmangafodipir appear to
be effective in delaying the onset and reducing the intensity of CIPN symptoms in the acute
and chronic phases of neuropathy. However, more clinical trials are required to confirm
their therapeutic effects. The potential adverse effects of those reagents are also unclear.

As discussed above, discovering drugs for preventing and treating CIPN has been a
hot topic. A few directions could be considered. First, prevention and prophylaxis should
be the focus and should be considered in order to reduce the burden on cancer patients who
are already suffering. CIPN is an irreversible side effect [2]; thus, approaches for preventing
the development of CIPN should be prioritized. Appropriate experimental design and
large sample size are required to determine novel approaches for the prevention of CIPN [9].
Second, developing safer chemotherapy drugs with less risk of nerve injury should be
focused on. Third, calcium and magnesium channels could be targets for discovering
approaches to preventing CIPN [80]. Finally, the combination of pharmacological and
nonpharmacological approaches should be applied to patients who have suffered CIPN to
increase the efficacy of treatment and improve the quality of life.

In conclusion, the information summarized in this paper provides a better understand-
ing of the approaches and potential medications for treating CIPN. However, more studies
are required to develop an efficient plan for the management of CIPN. Further, discovering
approaches to preventing the pathogenesis of CIPN should be considered.
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