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ABSTRACT

therapeutic mechanisms

Resveratrol (RES), a naturally occurring polyphenolic compound, has garnered significant attention due to its diverse biological

activities, which include anti-inflammatory, antioxidant, and antiaging properties. This review synthesizes current evidence
concerning the molecular mechanisms, therapeutic efficacy, and safety profile of RES across a variety of pathologies, with

an emphasis on the latest research conducted in recent years.

Mechanistically, RES is known to modulate critical signaling

pathways such as the activation of sirtuin 1. These actions collectively contribute to the attenuation of oxidative stress, regulation

of apoptosis, and promotion of autophagy. Preclinical studies

have demonstrated the potential of RES in the mitigation of

degenerative musculoskeletal disorders, cardiovascular diseases, cancer progression, and neurological diseases. Given the low
bioavailability of RES and the potential for adverse reactions in clinical applications, we summarize and discuss its safety profile

while outlining future research directions. This review underscor

es the therapeutic versatility of RES while advocating for rigorous

pharmacokinetic optimization, standardized dosing protocols, and large-scale randomized controlled trials to validate its efficacy

and safety in human populations.

1 | Introduction

Resveratrol (RES) (3,5,4'-trihydroxystilbene) is a natural polyphe-
nolic phytoalexin that exists in two geometric isomers: cis and
trans. The trans-isomer is noted for its superior stability and
bioactivity, attributed to the minimized steric hindrance of its
side chains [1, 2]. Although RES was first isolated by Takaoka in
1940 from white hellebore [3], it has been utilized for centuries
in traditional Chinese medicine as “li lu” [4] and in India’s
Ayurvedic medicine [5]. It was not until 1992 that RES attracted
considerable scientific interest, largely owing to the “French

paradox.” This paradox highlights the unusually low incidence of
cardiovascular mortality in the French population, despite a diet
rich in saturated fats, potentially attributed to their significant red
wine consumption [6]. RES is found in over seventy plant species,
with notable sources including grapes, peanuts, cacao, and
various Vaccinium species. Among these, grape-derived products,
particularly red wine, are the primary dietary contributors to RES
intake [7].

RES has been thoroughly investigated for its multifaceted
effects, including anti-inflammatory, antiaging, anticancer, and
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antioxidant properties, along with its potential therapeutic bene-
fitsin neurodegenerative disorders, degenerative musculoskeletal
diseases, and both cerebrovascular and cardiovascular diseases
(CVDs) [8]. Despite these promising effects, challenges persist,
particularly regarding the low bioavailability and high bioactivity
of RES, a phenomenon commonly referred to as the “RES
paradox” [9]. Moreover, the potential adverse effects of RES
in clinical applications necessitate further investigation to fully
assess its safety and efficacy.

This review underscores the health benefits of RES, exploring
the molecular mechanisms and cellular targets involved, with
particular emphasis on its positive effects on degenerative muscu-
loskeletal diseases, cardiovascular health, neuroprotection, anti-
cancer properties, and antiaging effects. Additionally, it delves
into the potential adverse effects of RES, including concerns
related to dosage, toxicity, hormonal influences, and interactions
with other medications in clinical settings. Furthermore, we
summarize recent advancements in research aimed at enhancing
the bioavailability of RES, providing valuable insights for the
innovation of its clinical applications.

2 | Molecular Mechanism of RES

RES has been demonstrated to influence a variety of cell-signaling
pathways and physiological systems, yielding anti-inflammatory
and antioxidant benefits. The central mechanism linking these
effects appears to be sirtuins, a family of nicotinamide adenine
dinucleotide (NAD+)-dependent deacetylases [10]. Various sir-
tuin isoforms, with SIRTI as the primary active molecule, exert
distinct effects under a range of physiopathological conditions
[11-13] (Figure 1).

2.1 | Antioxidant Properties

Appropriate doses of RES appear to play a role in promoting
the healing of various oxidative stress injuries. RES is impli-
cated in oxidative stress through the p62-Keapl/Nrf2 [14, 15]
and AKT/MAPK/Nrf2 signaling pathways [16, 17]. The specific
benefits include upregulating the expression of antioxidant genes
such as superoxide dismutase-1 (SOD-1) and catalase (CAT),
enhancing the function of antioxidant enzymes like glutathione
peroxidase [17] and heme oxygenase 1 [18], and inhibiting
pro-oxidants such as the caspase-3 enzyme [19]. Notably, the
SIRT1-NRF1/NRF2 pathway appears to serve as the upstream
signaling mechanism through which RES exerts its protective
effects against oxidative stress.

2.2 | Modulation of Inflammatory Pathways

RES exerts its anti-inflammatory effects through multiple sig-
naling pathways, with the inhibition of the arachidonic acid
(AA) pathway playing a crucial role [20]. RES can selectively
decrease cyclooxygenase-1 (COX-1) activity and the hydroperoxi-
dase activity of its isoenzyme, directly inhibit COX-2 activity, and
suppress the production of prostaglandins (such as PGD2, PGE2,
PGI2) through the ERK1/2 and PI3K/AKT signaling pathways
[21-23]. Furthermore, RES inhibits NF-xB activation in a dose-

and time-dependent manner through multiple mechanisms [24],
including SIRT1 activation, reduction of tumor necrosis factor
(TNF) production [25, 26], and blocking the phosphorylation of
p65 and IxB proteins [27]. In the MAPK pathway, RES inhibits
the inflammatory response by suppressing the activation of ERKs
and p38 MAPK pathways induced by phorbol 12-myristate 13-
acetate (a tumor promoter) [28, 29]. In conclusion, RES mitigates
inflammation through multiple signaling pathways, including
the AA, NF-xB, and MAPK pathways.

2.3 | Activation of Sirtuins

Sirtuins are a family of NAD"-dependent deacetylases classified
as class III histone deacetylases, comprising seven distinct iso-
forms in mammals (SIRT1-SIRT7) [30]. Among these isoforms,
SIRT1, SIRT6, and SIRT?7 are localized in the nucleus and nucle-
olus, respectively; SIRT2 is predominantly cytoplasmic, while
SIRT3, SIRT4, and SIRTS are situated within the mitochondria
[30, 31]. Evidence indicates that silencing sirtuins shortens lifes-
pan, and these proteins appear to mediate the health-promoting
effects of caloric restriction and exercise, primarily through
their upregulation by specific activators [32]. RES is recognized
as the most potent polyphenolic activator of sirtuins in vitro.
RES orchestrates the regulation of several critical signaling
pathways through the activation of sirtuins, particularly SIRTI.
This activation is linked to enhanced mitochondrial biogenesis
and reduced oxidative stress and inflammation via the AMP-
activated kinase (AMPK)/PGC-1a pathway [33, 34]. Moreover,
RES can attenuate inflammation by deacetylating the p65 subunit
of NF-xB, thereby suppressing its transcriptional activity [35,
36]. It also regulates the SIRT1/NLRP3 pathway to prevent the
assembly and activation of the inflammasome [37]. Furthermore,
RES impacts the SIRT1/mTOR pathway by inhibiting mTOR
activity, promoting autophagy, and facilitating the removal of
damaged organelles and proteins, thereby maintaining cellular
homeostasis [38-40]. Through the sirtuin/FOXO pathway, RES
enhances the expression of antioxidant enzymes such as SOD
and CAT, thereby reducing oxidative stress and safeguarding
cells from damage [41, 42]. In conclusion, RES functions as
an upstream signaling molecule with profound effects on the
expression and activity of all sirtuin isoforms. As one of the
primary SIRT1 activators, RES predominantly influences proteins
modulated by fat and carbohydrate intake, suggesting that its
effects may be particularly pronounced in individuals with a
high-fat diet. The pathways activated by RES hold significant
therapeutic potential for a range of diseases.

2.4 | Interaction with Other Cellular Pathways
Asanutritional or dietary supplement, RES interacts with various
cell types. RES can act on adipocytes, increasing the expression
of browning-related genes in white adipose tissue through the
SIRT1/AMPK pathway, thereby reducing fat accumulation [43].
Endoplasmic reticulum stress is a cellular response triggered
when the protein folding capacity of the endoplasmic reticu-
lum is overwhelmed, leading to the accumulation of misfolded
or unfolded proteins. This accumulation contributes to the
development of degenerative diseases [44].
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Structure and molecular mechanism of RES. The molecular mechanisms underlying the effects of RES primarily involve its antioxidant

properties, anti-inflammatory actions, activation of sirtuins, and interactions with various cellular pathways. AA, arachidonic acid; AMPK, AMP-

activated protein kinase; ASC, apoptosis-associated speck-like protein containing a CARD; ARE, antioxidant response element; AKT, protein kinase B;

C-Cl, caspase recruitment domain-containing protein 1; COX, cyclooxygenase; ERK, extracellular signal-regulated kinase; FOXO, Forkhead Box O; HO-

1, heme oxygenase-1; IL-13, interleukin-15; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NADPH, nicotinamide
adenine dinucleotide phosphate; NF-kB, nuclear factor-kappa B; NLRP3, NACHT, LRR and PYD domains-containing protein 3; Nrf2, nuclear factor
erythroid 2-related factor 2; P50, NF-xB p50; P65, NF-kB p65; PGE2, prostaglandin E2; PGD2, prostaglandin D2; PGI2, prostacyclin; PGH2, prostaglandin
H2; PGG2, prostaglandin G2; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; TGF-f, transforming growth factor-g.

RES can mitigate ovarian aging by enhancing the SIRT1/nuclear
factor erythroid 2-related factor 2 (NRF2) pathway, thereby
regulating the expression of inflammatory and endoplasmic retic-
ulum stress markers [45]. RES glycoside could alleviate cognitive
dysfunction induced by lipopolysaccharide (LPS)-induced sepsis-
associated encephalopathy, primarily by inhibiting endoplasmic
reticulum stress and preserving the homeostasis of endoplasmic
reticulum function in microglia [46]. In autoimmune diseases,
RES can mitigate disease progression by inhibiting the NF-xB
pathway in macrophages, enhancing the function of regulatory
T cells (Tregs), and reducing the production of autoantibodies

in B lymphocytes [47]. RES can effectively ameliorate liver
injury by targeting hepatocytes, restoring the shape and size of
liver microvilli, and normalizing both the number and viability
of mitochondria [48]. This effect may be attributed to RES’s
ability to reduce protein synthesis and alleviate the metabolic
burden in the liver [49]. RES inhibits fibrogenic events such
TGF-B-mediated cell signaling and endothelial-to-mesenchymal
transition (EMT), which contribute to its antifibrotic abilities
in reducing pulmonary fibrosis [50]. RES ameliorates retinal
ischemia-reperfusion (I/R) injury by modulating the NLRP3
inflammasome and the Keapl/Nrf2/HO-1 signaling pathway,
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thereby offering potential therapeutic benefits for glaucoma
[51].

In summary, inflammation and oxidative stress are key factors
in the development and progression of numerous degenerative
diseases, and RES is likely to slow the progression of these
conditions through the molecular mechanisms outlined above.

3 | Health Benefits of RES

3.1 | Degenerative Musculoskeletal Diseases

Degenerative musculoskeletal diseases encompass a range of
chronic conditions associated with the aging and deterioration
of the structural integrity and function of bones, cartilage,
and muscles, including osteoarthritis (OP), osteoporosis (OS),

intervertebral disc degeneration (IVDD), and sarcopenia (SP).
As the global population ages, the impaired mobility, chronic
pain, psychological burden, and both direct and indirect eco-
nomic costs imposed by these diseases have a profound impact
on life expectancy and quality of life, particularly in eco-
nomically developing regions. Numerous recent studies have
highlighted the diverse benefits of RES for degenerative mus-
culoskeletal diseases, although debates persist regarding its
bioavailability, optimal dosage, and potential adverse effects
(Figure 2).

3.1.1 | Osteoarthritis (OA)

OA is a comprehensive joint disease characterized by cartilage
degeneration, subchondral bone remodeling, synovitis, meniscal
lesions, ligament degeneration, and skeletal muscle deterioration.
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RES holds significant potential in improving OA by promoting
chondrocyte proliferation, preventing chondrocyte apoptosis,
and maintaining a dynamic balance between the anabolic and
catabolic processes of cartilage. RES enhances chondrocyte
proliferation by upregulating the HO-1/Nrf2 [52] pathway and
inhibiting the PI3K/AKT signaling pathway [53]. This process
also appears to be facilitated by inhibiting TNF-g-induced proin-
flammatory responses and the NF-xB signaling pathway [54].
Additionally, RES prevents chondrocyte apoptosis by inhibiting
the synthesis of adenosine triphosphate (ATP) and prostaglandin
E2 (PGE2) [55]. Animal studies have shown that RES inhibits the
secretion of IL-15, TNF-a, IL-6, and NO and prevents apoptosis
in articular chondrocytes [56]. Intra-articular injection of RES
can regulate the expression of HIF-1a and HIF-2a, which in turn
modulates the AMPK/mTOR signaling pathway, delaying articu-
lar cartilage degeneration and promoting chondrocyte autophagy
in destabilization of the medial meniscus (DMM)-induced OA
mice [57]. By blocking the INK/ERK-AP-1 pathway, RES inhibits
the production of MMP-13 induced by advanced glycation end
products and prevents type II collagen degradation in a porcine
cartilage explant model [58]. This process also seems to influence
NF-xB, thereby affecting the expression of MMPs, by acting
directly on articular chondrocytes [59].

In synovitis associated with OA, RES may inhibit the prolifera-
tion of fibroblast-like synoviocytes by activating the SIRT1/Nrf2
signaling pathway [60] or by inhibiting the MAPK and NF-
xB signaling pathways [61-63]. The osteoprotective effect of
RES in subchondral bone remodeling is linked to the restora-
tion of antiapoptotic signaling and the regulation of apoptosis,
which is achieved through the upregulation of BCL-2 and the
downregulation of caspase-3 [64]. It is important to note that
research on the effects of RES on ligament degeneration and
meniscus injury remains limited. Given RES’s anti-inflammatory
and antioxidant properties, including its ability to scavenge
reactive oxygen species (ROS), there is considerable potential for
further investigation into its application in meniscus replacement
materials and the treatment of ligament degeneration.

3.1.2 | Osteoporosis (OP)
Dysfunctional bone remodeling, which refers to the disrupted
balance between osteoblast-mediated bone formation and
osteoclast-mediated bone resorption, can lead to bone loss and is
the primary cause of OP [65].

RES can inhibit the activity, formation, and progression of
osteoclasts. While RANKL enhances the functions of p300 and
NF-xB signaling in osteoclasts, RES reverses the activation of the
RANKL-p300-NF-xB pathway, thereby reducing bone resorption
[66]. Further research has shown that by blocking the PI3K/AKT
signaling pathway, RES enhances the transcriptional activity of
FOXO1, which in turn boosts tolerance to oxidative stress and
inhibits osteoclastogenesis. Additionally, RANKL may suppress
the PI3K/AKT signaling pathway [67].

RES also affects osteoblast differentiation and mineralization,
thereby inhibiting OP. It enhances the interaction between SIRT1
and FOXO03a, reduces the acetylation of FOXO3a, and promotes

its nuclear translocation. This process, in turn, stimulates the
proliferation and osteogenic differentiation of bone marrow
mesenchymal stem cells while inhibiting their senescence [68].
Furthermore, RES may enhance the Wnt/S-catenin signaling
pathway and regulate FOXO transcriptional activity through
SIRT1. The Wnt signaling pathway not only promotes osteoblast
proliferation but also mitigates osteoblast apoptosis [69, 70].

3.1.3 | Intervertebral Disc Degeneration (IVDD)
Intervertebral discs consist of three major components: the inner
nucleus pulposus (NP), the outer annulus fibrosus (AF), and the
cartilaginous endplates (CEP) [71]. It is widely recognized that
the degradation of the extracellular matrix and the depletion of
NP cells initiate and accelerate the progression of IVDD [72]. RES
may reduce apoptosis in degenerative NP cells and increase the
protein expression of Beclin-1 and LC3-II/I, promoting autophagy
[73]. Furthermore, RES inhibits TNF-a-induced MMP-3 expres-
sion in human NP cells by activating autophagy through the
AMPK/SIRTI signaling pathway [74]. It is important to emphasize
that mildly deteriorated NP cells may serve as a critical target
for molecular biological intervention in disc degeneration. SIRT1
promotes autophagy through the AKT/ERK signaling pathway,
thereby protecting these mildly degraded human NP cells from
apoptosis [75]. RES can also participate in the IVDD process by
mitigating NP cell apoptosis. In a sodium nitroprusside-induced
apoptosis model of NP cells, RES protects against cell death
by scavenging ROS but not NO [76]. This aligns with previous
findings on the antioxidant mechanisms of RES and may also
involve the activation of the PI3K/AKT pathway [77] and partial
inhibition of the ERK1/2 pathway [78].

In the AF, RES reduces TNF-a-induced apoptosis in AF cells by
decreasing ROS levels and enhancing SOD activity. In vitro, this
effect underscores RES’s ability to mitigate apoptosis through the
reduction of oxidative stress [79]. In the CEP, studies have shown
that RES therapy reduces apoptosis in CEP cells, suppresses
TNF-a production, and elevates IL-10 levels, indicating its anti-
inflammatory and protective effects in IVDD [80]. In summary,
research on RES’s effects on the AF and CEP remains limited and
primarily centers on its anti-inflammatory properties, likely due
to the more pronounced degeneration of the NP observed during
IVDD.

3.1.4 | Sarcopenia (SP)

SP is characterized by the progressive loss of muscle strength,
mass, and function, a condition often worsened by chronic
comorbidities such as CVDs [81]. As a prominent activator of
sirtuins, RES exhibits variable effects in intervention studies
targeting SP. Sirtuins are increasingly recognized as promis-
ing therapeutic targets for SP. RES supplementation has been
associated with enhanced muscle growth and function, along
with cellular benefits such as increased mitochondrial biogen-
esis and reduced apoptosis—partially mediated through the
PKA/LKB1/AMPK signaling pathway [82, 83]. RES can also
combat sarcopenia by mitigating muscle inflammation, thereby
contributing to the preservation of muscle mass and function [84].
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However, contrary to these findings, some studies have reported
that despite its antioxidative properties, RES fails to mitigate
sarcopenia in aged mice [85], prevent the loss of plantar muscle
mass in old rats subjected to 14 days of hindlimb suspension [86],
or enhance the satellite cell response to mechanical overloading
[87]. These discrepancies in findings and conclusions may stem
from variations in the degree of aging in the experimental models
and the criteria used to assess sarcopenia.

3.2 | CVDs

CVDs encompass a range of noncommunicable diseases that
impact the heart or blood vessels, including hypertension, heart
failure, coronary artery disease, cerebrovascular disease, car-
diomyopathies, and peripheral arterial disease [88]. The “French
paradox” initially sparked scientific interest in RES, as it is
abundantly present in red wine and may help alleviate arte-
rial wall degradation caused by oxidative stress from chronic
inflammation—such as atherosclerosis [89]. RES is also believed
to play a role in the metabolic and molecular changes associated
with endothelial and myocardial dysfunction [90] (Figure 3).

The cardiovascular protective effects of RES are primarily mani-
fested through its ability to scavenge ROS or reduce ROS produc-
tion, particularly during the process of endothelial dysfunction.
Endothelial nitric oxide synthase (eNOS) is a Ca®*/calmodulin-
dependent enzyme in endothelial cells that catalyzes the con-
version of arginine to citrulline, subsequently promoting the
production of NO. NO can help mitigate atherosclerosis by
regulating vascular tone and promoting improved blood flow [91].
RES can prevent excessive ROS generation by directly scavenging
ROS through the AKT/eNOS pathway or indirectly by modulating
NADPH oxidase 1 (NOX1) [92, 93]. RES also appears to inhibit
the detrimental effects of ROS on cells by modulating mitochon-
drial metabolism and ATP production through the AMPK/SIRT1
pathway or by suppressing the increase in cellular NAD+ levels
[94, 95]. Additionally, RES improves endothelial dysfunction by
increasing NO levels in the endothelium. This process involves
the upregulation of GTP cyclohydrolase 1, which enhances
tetrahydrobiopterin biosynthesis to prevent eNOS uncoupling, as
well as directly increasing eNOS phosphorylation and expression,
ultimately stimulating NO production [96-98]. Simultaneously,
RES acts as an activator of the transcription factors Kriippel-like
factor-2 (KLF2) and KLF4, which regulate eNOS gene expression.
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RES enhances eNOS expression through the KLF2/4 pathway
[99].

RES can also alleviate myocardial injury and vascular remodeling.
Studies have shown that RES significantly inhibits the expres-
sion of ferroptosis-related signals and mitigates mitochondrial
damage by inducing SIRT1/GPX4 or KATS5/GPX4 pathways,
ultimately improving outcomes in myocardial infarction [100].
By targeting abnormal proliferation following vascular injury,
RES can inhibit smooth muscle cell proliferation through the
PI3K/AKT/mTOR pathway, thereby improving conditions such
as atherosclerosis and pulmonary hypertension [100, 101]. RES
increases Nrf2 expression and transcriptional activity, along with
the activation of downstream antioxidant targets of Nrf2, thereby
helping to prevent myocardial injury induced by diabetes mellitus
(DM) [102]. RES significantly alleviates cardiac oxidative injury
induced by fenitrothion and repaired the transcript levels of
SIRT1, c-JNK, and caspase-9/3, along with p53 immunoreactiv-
ity [103]. RES treatment significantly improves left ventricular
function and reduces left ventricular hypertrophy and cardiac
fibrosis in pressure overload rats by regulating the SIRT1/TGF-
B1/p-Smad3 signaling pathway [104]. RES also protects the heart
by downregulating glucose metabolism enzymes or increasing
the expression of SIRT3, which facilitates the deacetylation of
cyclophilin D in myocytes affected by pulmonary arterial hyper-
tension, thereby regulating the openness of the mitochondrial
permeability transition pore (mPTP) [105, 106]. RES can regulate
heart failure-induced expressions of Foxolb and FOXO3a to
normal levels. It significantly alleviates heart failure, including
rescuing abnormalities in heart rate, blood flow, cardiac output,
and NPPB overexpression [107].

RES antagonizes the occurrence of cardiovascular inflammation
through various signaling pathways. It significantly inhibits
TNF-a-induced late endothelial progenitor cell inflammatory
damage by upregulating KLF2 expression and downregulating
the expression of intercellular adhesion molecule 1 and monocyte
chemoattractant protein-1 [108]. RES can reduce the activation
of NF-xB-induced inflammatory factors by inhibiting the mRNA
and protein expression of the NLRP3 inflammasome and caspase-
1. It also downregulates a variety of inflammatory cytokines,
thereby playing an anti-inflammatory role in the cardiovascular
complications associated with DM [109, 110].

3.3 | Anticancer Properties

Numerous studies have highlighted the multifaceted nature
of RES in tumor inhibition, demonstrating its effects through
various mechanisms rather than a singular pathway. RES has
been shown to play a crucial role in the development of sev-
eral cancers, including colon, lung, breast, prostate, liver, and
pancreatic cancers, particularly those associated with obesity.
RES is also regarded as a potent natural chemopreventive agent,
complementing conventional chemotherapy and serving as a
combination therapeutic with other treatments. The primary
mechanisms by which RES combats cancer include halting the
cell cycle, inhibiting cancer cell proliferation, reducing metasta-
sis, promoting apoptosis and autophagy, modulating the immune
system, and enhancing the efficacy of chemotherapy (Figure 4).

RES effectively induces cell cycle arrest and suppresses the
proliferation of cancer cells. It achieves this by arresting the
cell cycle at the S phase and triggering DNA-damage-induced
apoptosis through the activation of p38-MAPK signaling [111]
in oral and colorectal cancer cells [111, 112]. Interestingly, by
upregulating the expression of phosphorylated histone H2AX (y-
H2AX) and cleaved caspase-3, RES downregulates p38/MAPK
signaling, induces G1-to-S phase cell cycle arrest, and reduces cell
survival in triple-negative breast cancer cells (TNBCs) [113]. This
suggests that the specific mechanism of RES in different cancer
cells is not single. After treatment with RES, the breast cancer
4T1 cells undergo S phase arrest, as evidenced by an increased
percentage of cells in the S phase and a corresponding decrease
in the G1/GO phase [114]. Moreover, the combination of RES and
docetaxel induces cell cycle arrest in prostate cancer C4-2B cells
by stimulating the expression of p53 and suppressing the levels of
CDK4, cyclin D1, and cyclin E1 [115]. RES analogues consistently
reduced the pancreatic cancer cell subpopulation, exhibiting
a CD133+EpCAM+ stem-like phenotype, while simultaneously
exerting dramatic effects on cell clonogenicity, with minimal
toxicity observed in normal HFF-1 cell [116]. RES inhibited
cholangiocarcinoma cell proliferation, triggered apoptosis along-
side autophagy, and significantly diminished the presence of
cancer-associated fibroblasts and the production of IL-6 [117].

RES can reduce the metastasis of cancer cells. RES dose-
dependently inhibited the migration-promoting adhesion adapter
protein paxillin while simultaneously enhancing the expression
of E-cadherin, a key factor in the phenotypic transformation
and invasion of colorectal cancer cells. f1-Integrin likely plays
a central role in this process [118]. RES holds the potential
to prevent IL-6-induced gastric cancer metastasis by inhibiting
the activation of the Raf/MAPK signaling pathway [119]. RES
hindered migration and invasion in human gastric cancer cells by
suppressing the MALATI-mediated EMT [120]. In breast cancer
cells with a propensity for metastasis, RES noncompetitively
inhibited the Na+-dependent Pi transporter, thereby restraining
the adhesion and migration of human breast cancer cells, effec-
tively preventing their metastatic progression [121]. This process
also includes upregulating the expression of E-cadherin while
downregulating the levels of matrix metalloproteinase (MMP)-2,
MMP-9, and vimentin [122]. RES suppressed the proliferation and
metastasis of pancreatic cancer cells by inhibiting the expression
of ryanodine receptor type 2 and enhancing the expression of
phosphatase and tensin homolog [123]. RES inhibits the hepato-
cyte growth factor-mediated interaction between the stroma and
epithelium while also suppressing epithelial prostate cancer cell
migration by attenuating the regulation of EMT [124].

RES can promote apoptosis and autophagy of cancer cells. RES
induces apoptosis in colorectal cancer cells via a ROS-mediated
mitochondrial apoptotic pathway, elevating ROS levels and the
expression of cytochrome c, cleaved caspase-9, and cleaved
caspase-3, while simultaneously reducing Bcl-2 expression [125].
In RES-treated breast cancer cells, the Bax/Bcl-2 ratio decreases
while caspase-8 activity increases, thereby activating the extrinsic
apoptotic pathway [126]. RES induces apoptosis in TNBCs by
downregulating the mRNA expression of polymerase delta 1.
RES disrupts lung cancer cellular homeostasis by depleting the
intracellular antioxidant pool, thereby increasing ROS produc-
tion. This leads to a concentration- and time-dependent increase
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in the number of senescent and apoptotic cells [127]. Treat-
ment with high-concentration (>10 uM) RES downregulates
SIRT1 expression, enhances p53 acetylation, and elevates the
expression of p21, Bax, cytochrome c, and caspase-3, ultimately
inducing apoptosis in colorectal cancer cells [128]. RES has been
shown to induce autophagy and apoptosis in non-small-cell
lung cancer cells by activating the nerve growth factor receptor
(NGFR)-AMPK-mTOR pathway. Mutual promotion is observed
between apoptosis and lethal autophagy. Conversely, cytoprotec-
tive autophagy promoted apoptosis without being influenced by
it [129]. RES enhances the expression of autophagy-related genes
and proteins, promoting the formation of autophagosomes in
breast cancer cells. It induces autophagy by upregulating SIRT3
expression and phosphorylated AMPX [130]. Furthermore, RES
induces autophagy and apoptosis in cisplatin-resistant oral cancer
cells by enhancing phosphorylation of AMPK, inhibiting the AKT
signaling pathway, and upregulating the expression of autophagic
mRNA genes, including Atg5, Atgl2, Beclin-1, and LC3-II [131].

RES can regulate the immune system [132]. RES activates SIRT1
deacetylase, which deacetylates and stabilizes the transcription
factor Snail. Snail subsequently represses Axin2 transcription,
leading to disassembly of the destruction complex and enhanced
B-catenin/TCF binding to the PD-L1 promoter. Ultimately, RES
inhibits PD-L1 expression in lung cancer cells via the Wnt sig-
naling pathway, thereby suppressing the T-cell-mediated immune

response [133]. In the prevention of inflammation-driven colorec-
tal cancer, RES suppresses the proinflammatory T-cell response
by reducing Thl and Th17 cell populations while enhancing the
presence of anti-inflammatory CD4* FOXP3* Tregs and CD4*
IL-10% cells [134]. Chimeric antigen receptor (CAR)-engineered
T cell therapies have emerged as potent and transformative
approaches in cancer immunotherapy. However, the clinical
application of CAR-T therapy remains limited due to severe
adverse effects in patients, primarily stemming from excessive
cytotoxic activity and inadequate regulation of T cell responses.
The RES-repressible CAR expression system enables effective
suppression of T cell activation upon RES administration in both
primary T cells and xenograft tumor mouse models, thereby
enhancing patient safety [135].

RES can improve the sensitivity of chemotherapy drugs and offer
potential radioprotection and radiosensitization (Table 1). Radia-
tion therapy is widely employed in cancer treatment; however, its
effectiveness is often hindered by radioresistance and adverse side
effects. Consequently, the investigation of agents that can potenti-
ate the therapeutic effects of radiation while safeguarding normal
cells is of considerable significance [136]. RES sensitizes breast
cancer cells to the PARP inhibitor talazoparib by concurrently
inhibiting AKT signaling and autophagic flux. This dual inhibi-
tion compromises homologous recombination-mediated repair of
double-strand breaks [137]. RES modulates chemosensitization to
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TABLE 1 |

Studies of RES in combination with other substances or treatment modalities for cancer treatment.

Combination

Type of cancer

Effect

Author

Year

References

RES and quercetin

RES and capsaicin

RES and cetuximab

RES and peanut skin
procyanidins

RES, pharmacologic
ascorbate and
chloroquine

RES and sirolimus

RES and tivozanib

RES and rapamycin

RES and tamoxifen

RES and Olaparib

RES and
pterostilbene

Oral cancer

Colorectal cancer

Colorectal cancer

Colorectal cancer

Pancreatic ductal
adenocarcinoma

Lymphangioleiomyomatosis

Renal cell carcinoma

Breast cancer

Breast cancer

Breast cancer

Prostate cancer

Cell growth inhibition,
DNA damage, and
S-phase cell cycle arrest

The radio-sensitization of
subcutaneous colorectal
tumors with similar
efficiency to 5-FU and
lower hematological
toxicity
RES may sensitize
colorectal cancer cells to
cetuximab via
upregulating connexin 43
to inhibit the AKT
pathway.

The combination might
exert synergistic
anticancer effects by
regulating AKT, ERK, and
NF-xB signaling
pathways.
Synergistic cytotoxic
effect

The addition of RES was
safe and well tolerated in
patients

RES can prevent the
proliferation of cancer
cells and reduce the side
effects of tivozanib

The combination
internalized in an
estrogen receptor-positive
human breast cancer cell
line and improved
cytotoxicity.

The combination
increased the expression
of tumor inhibitor
miRNA, which made
cancer cells more
sensitive to tamoxifen.

The combination
inhibited PARPI1 activity
in the chromatin,
resulting in deregulation
of recombination pathway
in breast cancer cells.

Stable, no systemic
toxicity, high biodis-
tributed/accumulated in
prostate cells

Singh

Samuel
Amintas

Yijia Wang

Na Wang

Kinga Makk-
Merczel

Nishant
Gupta

Diana Taheri

Leidiana
Rocha Dos
Reis

Aliaa M
Radwan

Saptarshi
Sinha

Alok Nath
Sharma

2020

2025

2020

2023

2024

2023

2024

2023

2024

2024

2024

[112]

[140]

[139]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]
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5-fluorouracil (5-FU) through the fS1-integrin/HIF-1a axis within
the colorectal cancer tumor microenvironment (TME). This
process diminishes TME-driven vitality, proliferation, colony
formation, invasive potential, and the mesenchymal phenotype,
including promigratory pseudopodia [138]. RES holds promise as
a radiosensitizer for breast cancer cells. The combination of 10
uM RES and 3 Gy ionizing radiation induced apoptosis in MCF-
7 breast cancer cells by reducing the Bax/Bcl-2 ratio [126]. RES
heightens the sensitivity of colorectal cancer cells to cetuximab
by upregulating the expression and phosphorylation of connexin
43, thereby enhancing gap junction function. This process was
implicated in the inhibition of the AKT pathway [139].

3.4 | Neuroprotective Effects

Neurological diseases (NDs), encompassing both neurodegener-
ative disorders and acute injuries, represent a broad spectrum of
conditions affecting the brain, spinal cord, and peripheral nerves,
often resulting in varied symptoms and significant functional
impairments [149]. SIRTI1 is widely expressed in brain regions
commonly implicated in the pathology of NDs [150].

RES, a potent SIRT1 activator, possesses the capacity to cross the
blood-brain barrier (BBB), thereby conferring neuroprotective
effects within the central nervous system [151] (Figure 5).

Neurodegenerative diseases—including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease
(HD)—are marked by aberrant protein aggregation, ultimately
resulting in progressive neuronal damage [152]. For instance, the
defining pathological features of AD include the accumulation
of amyloid-8 (AB) aggregates forming senile plaques and the
aberrant hyperphosphorylation of Tau protein, which leads to
the formation of neurofibrillary tangles within neuronal cells
[153]. Additionally, mitochondrial dysfunction—closely linked to
the onset of neurodegenerative diseases—can diminish glucose
and oxygen metabolism in the brain and disrupt the function
of the respiratory chain [152]. In AD, RES plays a pivotal role in
preventing Af aggregation by hindering the formation of larger
oligomeric assemblies from smaller molecular aggregates and
disrupting preexisting AS plaques [154]. By activating SIRTI,
RES directly reduces levels of AS peptides and amyloid precursor
protein-derived C-terminal fragments through autophagy in
neurons [155]. Additionally, RES stimulates the SIRT1-FOXO
axis, thereby decreasing Af plaque accumulation and reversing
mitochondrial dysfunction [156]. RES can also ameliorate
AD by attenuating inflammation in affected regions through
multiple pathways, including the glycogen synthase kinase-
3B signaling pathway and the NF-xB signaling cascade [157,
158]. Inhibition of SIRT1 can exacerbate tau accumulation by
increasing its acetylation and reducing its ubiquitination in
primary neurons and transgenic HEK293T cells [159]. In PD, RES
regulates iron metabolism and mitigates ferroptosis in PD models
via the SIRT1/Nrf2 signaling pathway [160]. Additionally, the
activation of the NLRP3 inflammasome induced by subarachnoid
hemorrhage is inhibited by SIRTI [161]. RES can enhance the
autophagic degradation of a-synuclein and elevate the level of
LC3 11, a key marker of autophagy [162]. RES may contribute to
the induction of apoptosis by modulating the p53 and MAPK

signaling pathways [163, 164]. HD is a hereditary, autosomal-
dominant neurodegenerative disorder caused by a mutation
in the huntingtin protein, leading to toxic aggregations in the
brain [165]. RES may treat HD by reversing the downstream
response to immunogenic stressors that elevate mitochondrial
RNA expression. These mitochondrial double-stranded RNAs are
closely linked to the pathogenesis of HD [166]. Moreover, SIRT1
can regulate various physiological and pathological processes by
modulating the activity of multiple targets, including FOXO3a,
phospho-tropomyosin receptor kinase B, and p53, thereby
mediating neuroprotection in HD models [167]. Collectively,
these findings underscore the potential of RES in the treatment
of neurodegenerative diseases.

In the other NDs other than neurodegenerative diseases, RES
also plays an important role in rehabilitation potential. Pre-
administration of RES to I/R rats significantly reduces the
infarction area, oxidative stress, inflammation, and apoptosis.
The overoxidation of DJ-1 protein is a critical factor contributing
to post-I/R cerebral damage. RES mitigates the reduced levels
of oxidized DJ-1, promoting its reduction and activating the
PI3K/AKT survival pathway [168]. RES effectively inhibits the
upregulation of inflammatory factors, including IL-13, TNF-a,
and COX2 mRNA expression. Administration of RES significantly
reduces neurological deficiency scores, cerebral water content,
and the enzymatic activity of myeloperoxidase [149, 169]. Addi-
tionally, RES demonstrates effectiveness in reducing seizures and
increasing latency in epilepsy, lowering brain malondialdehyde
levels, and preventing kainic acid-induced seizures. These find-
ings suggest that RES can serve as an adjuvant for antiepileptic
treatment, likely due to its potent ability to scavenge ROS [170].
RES decreases brain infarct volume, neuronal damage, and
neuronal death. However, these protective effects are diminished
when the PI3K/AKT and JAK2/STAT3 pathways are inhibited
[149]. In vitro, RES suppresses M1 microglia polarization while
promoting M2 microglia polarization. It alleviates brain damage
by reducing BBB permeability in PRV-infected mice and decreas-
ing the expression of MMP-2, MMP-9, and Zonula Occludens
Protein-1 in the cortex [171]. RES reduces both basal and LPS-
stimulated MMP levels, as well as cerebrospinal fluid levels of
tissue inhibitor of metalloproteinases-1, released from cultured
microglia and astrocytes. However, neuroplasticity-promoting
MMP release from neurons remains unaffected. This highlights
the diverse actions of RES, which vary according to cell types
and molecular targets [172]. Although trans-RES has garnered
more scientific attention, cis-RES also exhibits protective effects
against neuronal DNA oxidative damage, seemingly producing
the opposite effect of trans-RES. Cis-RES binds to tyrosyl-tRNA
synthetase (TyrRS), mimicking a “tyrosine-free” conformation,
which enhances TyrRS activity, facilitates histone serine-ADP-
ribosylation-dependent DNA repair, and provides neuropro-
tection in a TyrRS-dependent manner. In contrast, trans-RES
inhibits serine-ADP-ribosylation-dependent DNA repair, leading
to neurodegeneration in rat cortical neurons [173]. This suggests
that RES, in its different conformations, may yield divergent
outcomes in the context of nervous system diseases. While most
current studies have not yet investigated the varying effects of
the two forms in different diseases, the potential for opposite
results underscores the importance of addressing this distinction
in future research.
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3.5 | Antiaging Effects

The aging of the global population has heightened interest in
understanding the aging process and developing strategies to
extend a healthy lifespan. Aging is characterized by alterations
in epigenetic modifications and, much like all living systems,
is accompanied by entropy. Aging is characterized by several
markers, including senescence-associated f-galactosidase activ-
ity, telomere-related DNA damage, and the expression of cell cycle
inhibitors such as p16 and p21 [174]. However, it is important to

note that aging is not entirely detrimental to the body. Studies
have shown that the elimination of senescent cells not only fails
to improve health conditions but can also lead to the emergence
of other adverse symptoms. For example, the continuous or
acute removal of senescent vascular endothelial cells in mice
disrupted blood-tissue barriers, leading to the accumulation of
blood-borne macromolecular waste. This resulted in perivascular
fibrosis across various tissues, ultimately contributing to health
deterioration [175]. Senescence is likely pleiotropic, meaning its
effects can be both beneficial and harmful in humans, depending
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on the context [174]. But no doubt, delaying aging appeals to
countless researchers. RES, one of the most significant biolog-
ically active phenolic compounds, has been demonstrated to
mitigate aging through various mechanisms. Combining various
basic and clinical trials, RES has been found to be an effective and
beneficial treatment for aging and aging-related disorders (AD
[173, 176, 177], OP [178-180], type 2 diabetes [181-183], etc.).

RES can enhance telomerase activity to counteract aging. In age-
associated infertility, RES-treated mice exhibit a larger follicle
pool, increased telomerase activity, and longer telomeres [184].
This process may be facilitated by the positive regulation of
telomere length through the activation of SIRT1 [185, 186].
The short telomere zebrafish line (ST2) larvae exhibit reduced
telomerase expression and activity, accompanied by shortened
telomeres. Studies confirm the antiaging properties of RES in ST2,
which enhance telomere maintenance [187].

RES can ameliorate mitochondrial dysfunction and protect
mitochondria in senescent cells. Targeting senescence-associated
mitochondrial dysfunction has been proposed as a potential
mechanism for senolytic drugs. RES enhances mitochondrial
biogenesis by modulating its key effectors through various mech-
anisms, including PGC-la, SIRTI, estrogen-related receptor-a,
and telomerase reverse transcriptase [188]. PGC-1a is a key coordi-
nator of mitochondrial biogenesis and serves as a target of SIRT1
[94]. RES appears to enhance mitochondrial activity by activating
the AMPK-SIRT1-PGClax axis, thereby upregulating the expres-
sion of genes associated with oxidative phosphorylation [189,190].
As demonstrated in animal studies, RES slows aging and extends
life expectancy by activating sirtuins and AMPK, key regulators
of energy metabolism and the aging process [191, 192]. By
elevating cellular NAD+ levels and promoting energy catabolism,
AMPK stimulates autophagy and mitochondrial biogenesis [193].
Senescent cells exhibit increased susceptibility to RES-induced
mitochondrial Ca2+ overload and subsequent cell death [194].
RES preserves mitochondrial integrity by inhibiting mitophagy
and preventing mPTP opening via the AMPK-Mitofusin 2 axis
in myocardial cells [195]. Studies indicate that RES can enhance
mitochondrial elongation and modulate mitophagy through
the classical PINK1/Parkin-mediated mitophagy pathway [196].
RES regulates mitochondrial homeostasis by activating SIRT1
and inhibiting the AKT/mTOR pathway, leading to a reduc-
tion in mitochondrial ROS levels while concurrently enhancing
mitochondrial function [197]. Mitochondrial dysfunction and
bioenergetic failure contribute significantly to the development
of degenerative diseases. RES plays a crucial role in maintaining
mitochondrial health, largely due to its antioxidant and anti-
inflammatory properties.

Epigenetics has been identified as a crucial factor in the devel-
opment of aging and age-related diseases. Hypermethylation
or hypomethylation of DNA is commonly observed in vari-
ous degenerative diseases. For instance, hypermethylation is
prevalent in the midbrain of AD patients. RES can modulate
epigenetic regulators, influencing histone methylation and acety-
lation, particularly at the BRCA1, p53, and p21CIP1 promoters in
human breast cancer cell lines. Chromatin immunoprecipitation
revealed that exposure to 20 uM RES significantly reduced
the enrichment of repressive histone marks (H4R3me2s and
H3K27me3) while increasing the abundance of activating histone

marks (H3K9/27ac) within the proximal promoter region of
BRCALI, p53, and p21 [198]. Supplementation of maternal mice
with RES increased the methylation levels of the Nrf2 and NF-
xB gene promoters in offspring, leading to altered expression of
target genes and elevated hydrogen peroxide levels. This maternal
RES supplementation may help prevent cognitive decline in the
offspring of senescent mice [199].

Due to its wide-ranging effects, including anti-inflammatory and
antioxidative properties, RES plays a pivotal role in various
aspects of the aging process, such as nutrition and energy
metabolism [200, 201]. This complexity renders the antiaging
mechanism of RES highly intricate.

4 | Potential Adverse Effects of RES

4.1 | Toxicity and Dosage

The cytotoxicity of RES is primarily influenced by its concen-
tration. While RES generally acts as an antioxidant, excessive
concentrations can lead to increased lipid peroxidation or DNA
damage, thus inducing cytotoxicity. However, concentration is
not the sole determinant; factors such as the form of RES entering
the body and the specific type of cell involved may also play
significant roles.

The primary mechanism of RES-induced cytotoxicity involves
the induction of DNA damage and intracellular oxidative stress.
Exposure to RES (100 uM) for 6 h leads to significant formation of
y-H2AX foci, a marker of DNA damage, as well as the occurrence
of chromosome aberrations (CAs) in cells. The initial peak of
CAs induced by RES may be linked to oxidative DNA breaks
occurring during the G2-M phase of the cell cycle [202]. RES
is responsible for the selective inhibition of various mammalian
DNA polymerases and acts as a potent inhibitor of ribonucleotide
reductase [203, 204]. RES also appears to induce S-phase arrest
and cellular senescence, where DNA double-strand breaks are
significantly increased. Additionally, it activates the chemokine
receptor C-X-C motif chemokine receptor 2 (CXCR2)-p53 axis
[205]. In conclusion, RES may induce replication blocking caused
by unpaired base damage, single-strand breaks in DNA, or by
inhibiting DNA replication-related enzymes [202]. Although RES
is typically known for its antioxidant properties, it can also
induce intracellular oxidative stress. At higher concentrations,
RES appears to increase the GO/G1 population by generating ROS,
which is accompanied by an elevation in caspase-3/7 activity,
indicating the initiation of apoptotic pathways [142]. Tissue-
attainable doses of RES can increase the intracellular oxidative
state, leading to mitochondrial membrane depolarization and
ultimately inducing endothelial cell death. This suggests that
while RES has beneficial effects at certain concentrations, exces-
sive doses may cause cellular stress and damage, particularly in
endothelial cells [206]. Currently, the oxidant properties of RES
are being utilized. For instance, when RES is combined with
copper, it can deactivate cell-free chromatin particle by generating
ROS. These ROS, released from billions of dying cells daily,
subsequently enter the bloodstream, where they wreak havoc on
healthy cells [207].
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Biphasic concentration-dependent effects appear to be a critical
factor contributing to the cytotoxicity of RES. At low concentra-
tions, such as 0.1 uM, RES promotes embryonic development,
whereas higher concentrations (>1 pM) induce detrimental
effects, including cleavage arrest and embryonic death [208]. A
study reported that a high dose of RES (1 g/day) significantly
elevated certain biomarkers associated with the development of
CVDs in overweight older adults (65 years and above) [209].
At high doses (1 g/day or higher), RES demonstrated systemic
inhibition of cytochrome P450 (CYP), particularly hepatic CYP
enzymes. Notably, despite RES’s inhibitory effect on CYP, no in
vivo metabolites of RES (such as RES-3-sulfate) have been found
to exhibit similar effects [210].

While the potential toxicity of RES at high doses is a valid
concern, it is important to acknowledge its rapid metabolism. The
actual plasma and tissue concentrations, as well as the duration
and dosage of RES in in vitro experiments, need significant
considerations. Without specialized carriers or administration
methods, RES may undergo swift metabolism in the intestine
and liver. Consequently, the toxicity of the metabolites produced
requires careful evaluation when assessing the dose and toxicity
of RES. Furthermore, the cytotoxic effects exhibited by RES
hold considerable anticancer potential. Many of the mechanisms
through which RES exerts its anticancer properties mirror the
cytotoxic mechanisms it employs, such as DNA damage induced
by RES in combination with copper, which may contribute to its
cytotoxic action against cancer cells [211].

4.2 | Interaction with Medications

As a therapeutic agent, the intervention effects of RES inevitably
influence the efficacy of other medications. For instance, RES
serves as an effective chemical sensitizer for colorectal cancer
cells, enhancing their responsiveness to chemotherapeutic drugs
such as irinotecan and 5-FU, among others [212]. RES, as a
potential inhibitor of CYP enzymes, has been shown to elevate the
plasma concentration-time curve and maximum concentration
of various drugs, including cisapride, cyclosporine, felodipine,
and midazolam. This effect is particularly pronounced when RES
is consumed alongside grapefruit juice, which contains additional
CYP inhibitors, further enhancing the drug’s bioavailability [210].
Furthermore, RES acts as an inhibitor of intestinal CYP3A4;
however, there is a paucity of studies to conclusively determine
whether co-administration of RES with CYP3A4 substrates could
lead to adverse effects [213]. The capacity of RES to decrease
the systemic clearance of oral nicardipine while exerting mini-
mal impact on the pharmacokinetic parameters of intravenous
nicardipine may be attributed to its inhibition of CYP3A4.
Although this enhances the bioavailability of nicardipine, caution
should be exercised in adjusting its dosage to mitigate potential
toxic side effects [214]. Studies have demonstrated that RES can
interact with drugs metabolized by UGT1Al, CYP1A2, CYP2C19,
CYP2EL, and CYP3A [215], including bedaquiline (an inhibitor
of mycobacterial ATP synthase) and Erlotinib (a selective epider-
mal growth factor receptor inhibitor) [216, 217]. RES has been
shown to enhance the intestinal absorption of methotrexate and
reduce its renal clearance following intravenous administration
in rats. This effect may be attributed to the inhibition of mul-

tidrug resistance-associated protein 2, organic anion transporter
1 (OAT1), and OAT3 [218].

RES holds significant potential as a clinical therapeutic agent. It
is crucial to investigate its potential interactions with other drugs
to enhance the reliability of RES and provide valuable insights
for the development of RES-based pharmaceuticals. Currently,
no reports indicate severe adverse reactions or toxicity when
RES is combined with other drugs. However, most drug-drug
interactions focus on the enhancement of RES’s effects on other
medications, which may alter the safe dosage of certain drugs and
increase the risk of toxic side effects.

4.3 | Hormonal Effects

RES can mimic hormones within the body and influence hor-
monal activity and related metabolic processes in various ways.
Structurally, RES resembles both natural and synthetic estrogens,
particularly due to the phenolic A ring characteristic of natural
estrogens, and is therefore classified as a phytoestrogen. RES can
directly bind to the nuclear estrogen receptor (ER), modulating
its genomic activity. While the affinity of RES for ER isoforms is
comparable, or even slightly superior, to that of some synthetic
estrogens, it remains much weaker than that of natural estrogens.
To effectively activate the receptor, micromolar concentrations of
RES are required [219]. RES can directly interact with the ER,
functioning as a mixed agonist/antagonist [219]. Animal growth,
body weight, serum cholesterol levels, uterine growth, and the
differentiation index are all unaffected by RES. However, at the
highest dose, RES causes a modest increase in uterine weight
and antagonizes the E2-induced reduction in plasma cholesterol
without impacting other physiological effects of E2 [220]. RES
can inhibit key enzymes in the steroidogenic pathway, thereby
interfering with steroidogenesis. However, it may enhance the
level of active estrogen by modulating estrogen metabolism.
When gavaged to rats at doses of 50 and 100 mg/kg for 2 days,
RES reduces serum testosterone levels to approximately half of
those observed in the placebo group [221]. RES inhibits corti-
costeroid 113-hydroxysteroid dehydrogenase type 1in microsomal
preparations from rodent adipose tissue and mouse 3T3-L1 cells.
This enzyme activates glucocorticoids in rodents by converting
11-dehydrocorticosterone to corticosterone, and in humans, by
transforming cortisone into cortisol. In mouse Leydig cells,
RES reverses cAMP-mediated progesterone synthesis in a dose-
dependent manner, with effective concentrations ranging from 10
to 50 uM. These effects are linked to decreased cAMP-mediated
promoter activity and reduced expression of the steroidogenic
acute regulatory protein gene [222]. RES administration to moth-
ers via oral gavage at a dosage of 10 mg/kg/day during lactation
restores E2 levels in the offspring. This is achieved through the
inhibition of various isozymes responsible for the hydroxylation,
glucuronidation, and sulfation of E2. These findings suggest that
RES counters the accelerated estrogen metabolism induced by
chromium exposure and effectively restores ovarian E2 levels
[223]. The inhibition of the enzyme and the subsequent reduction
in the production of active corticosteroids may explain the
beneficial effects of RES on central adiposity [224]. Treatment
with RES appears to reduce ER expression. A study demonstrated
that mice administered a low daily dose of 4 mg of RES in
tap water for 15 weeks exhibited decreased ER expression in
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mammary tissue, an effect resembling resistance to endocrine
therapy [225]. Moreover, RES antagonizes the estrogen (E2)-
mediated reduction of plasma cholesterol while leaving other
physiological effects of E2 unaffected [220]. Postmenopausal OP
results from estrogen deprivation, which accelerates osteoclast
development and activation, leading to an imbalance in bone
resorption and formation, ultimately causing rapid bone loss,
particularly in the years preceding and following menopause
[226]. RES exhibits an affinity for both ERa and ERp, thereby
acting as an estrogen agonist to stimulate osteoblastogenesis [70].

The discussion surrounding the hormonal effects of RES revolves
around the concept of hormesis, where low doses typically
offer protective benefits while high doses may have detrimental
effects that worsen disease progression and morbidity. Currently,
both low and high concentrations of RES demonstrate advan-
tageous outcomes in cancer chemoprevention and treatment,
respectively, through its cytotoxic properties. Undoubtedly, the
bioavailability of RES is crucial in understanding its hormonal
effects, encompassing factors such as uptake, absorption, distri-
bution, and metabolism, as well as the variations between plasma
and tissue levels of RES. While hormone-like effects of natural
compounds are not uncommon, both the quantity of intake and
potential side effects must be carefully considered. Moreover,
many studies continue to regard RES as a dietary supplement,
implying its prolonged consumption at specific doses may not
cause immediate harm. However, long-term use could interfere
with estrogen-related metabolism and signaling pathways. There-
fore, future preclinical and clinical trials are essential to assess the
long-term impact of RES on steroid hormone homeostasis, with
a particular focus on the effects of higher RES concentrations,
considering its bioavailability.

4.4 | Gastrointestinal Disturbances

RES, as a significant dietary polyphenol, can modulate the
composition of the intestinal microbiota, facilitate its bioconver-
sion into active metabolites by intestinal bacteria, and influence
the integrity of the intestinal barrier [227]. For example, RES
administration enhanced the diversity and structure of the gut
microbiota by promoting the abundance of beneficial probiotics
and upregulating the expression of tight junction proteins. Addi-
tionally, RES significantly mitigated MeHg-induced delays in
neurobehavioral reflexes and reduced total mercury levels [228].
Nevertheless, adverse gastrointestinal effects from RES have still
been reported.

The study revealed that doses of RES exceeding 2.5 g per day may
lead to vomiting, diarrhea, and mild liver dysfunction in clinical
trials [229]. In overweight and obese postmenopausal women, a
daily 1 g dose of RES resulted in diarrhea in 30% of the subjects
and an increase in total cholesterol in 27.5% of the participants
[230]. In another human study, a dosage of 2 g of RES twice
daily was well tolerated by healthy subjects; however, diarrhea
was frequently observed in six out of eight participants [231].
However, in another study, patients with nonalcoholic fatty liver
disease treated with a daily dose of 3 g of RES did not experience
any gastrointestinal disturbances [232]. A combination of RES
and copper reduced transplant-related toxicities in patients with
multiple myeloma undergoing high-dose melphalan treatment.

The use of RES did not exacerbate adverse reactions such as
nausea and vomiting, and it decreased the incidence of oral ulcers
in these patients [233].

It is worth noting that, despite variations in dose, administration
method, potential adverse effects on the gastrointestinal tract,
and interactions with other drugs, RES treatment did not result
in significant adverse effects overall. The significant therapeutic
potential of RES in degenerative diseases, inflammatory con-
ditions, and various chronic ailments cannot be overlooked.
However, it is undeniable that further well-designed, large-scale
randomized controlled trials are essential to establish the optimal
dose, duration, safety, drug interactions, and both short- and long-
term effects of RES, particularly in individuals of all ages, with
special emphasis on the elderly.

5 | Bioavailability and Clinical Studies

The bioavailability of RES has consistently been a major challenge
preventing its widespread use as a clinical drug. RES is a lipophilic
compound with limited water solubility (approximately 0.02-
0.03 mg/mL [234]), which contributes to its range of bioavail-
ability issues. Following oral administration, RES is efficiently
absorbed in the jejunum and ileum. One study observed a 70%
absorption rate for a 25 mg oral dose of RES [235]. Due to
its metabolic characteristics, pharmacokinetic studies of trans-
RES have shown very low serum levels of unmetabolized RES
following oral administration [236]. Regardless of the dose, the
plasma half-life of RES in humans typically ranges from 4 to
10 h [235, 237]. However, RES undergoes rapid and extensive
metabolism in the gut and liver through passive diffusion or
interaction with membrane transporters, leading to its low
bioavailability. It appears that neither repeated administration
nor dose escalation can significantly enhance the bioavailability
of RES [229]. Metabolic processes in the gut and liver primarily
involve glucuronidation, sulfation, and hydrogenation by gut
bacteria [238]. The biological actions of the metabolites, their
conversion back to the parent compound within cells or organs,
and recirculation pathways, such as the enterohepatic circulation,
each contribute to varying degrees and have been proposed
as potential mechanisms underlying these effects [239]. The
most prevalent RES metabolite in plasma following adminis-
tration was RES-3-O-sulfate, along with its sulfate-glucuronide
conjugate, both of which remained detectable for over 10 h
postadministration [240].

Although RES can accumulate in specific tissues or organs at
relatively high concentrations in rodents, comparable to those
used in many in vitro experiments, the in vitro effective dose
range of RES (micromolar range in cell culture medium) and
its in vivo bioavailability (nanomolar range in blood) in humans
appear to differ. This discrepancy complicates the determination
of the actual biologically effective concentration range for human
supplementation. As lipophilic molecules, RES levels in tissues
persist longer than in plasma, offering a more accurate reflection
of RES bioavailability. Consequently, further structural modifi-
cations to RES and the development of sustained-release dosage
forms are necessary.

Currently, most clinical trials acknowledge the efficacy of RES
in humans (Table 2). Additionally, the majority of studies have
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TABLE 2 | Clinical trials of RES.

Author Year Disease Dosage Effect References

Battaglia 2022 Infertility 150 mg/d RES can use mitomiRNAs to change [243]
granulosa cell transcripts and
proteins, which will change the
follicular microenvironment.

Kelly M Jardon 2024 Overweight/obesity RES (80 mg/d)+ RES+ EGCG supplementation did not [244]
epigallocatechin-3- affect gut microbiota composition.
gallate (EGCQG)
(282 mg/d)
Christelle Nguyen 2024 Knee osteoarthritis 40 mg (2 caplets) twicea  Oral RES did not reduce pain in [245]
day for 1 week, then people with painful knee OA.

20 mg (1 caplet) twice a
day, 6 months in total.

Colin J. Gimblet 2024  Chronic kidney disease 400 mg/d Endothelial function was enhanced [246]
and diabetes by RES supplementation. RES
enhanced the dilatation caused by
flow.
Mitzi Marlotte 2024 Marfan syndrome (MFS) 500 mg/d In adult patients with MFS, RES [247]
van Andel therapy for a year may stabilize the
aortic development rate.
Graziamaria 2023 Bone loss RES (25 mg) + equol  Both bone mineral density and bone [178]
Corbi (10 mg) turnover indicators are positively
modulated by the combination.
Beatriz Isabel 2023 Type 2 diabetes 1000 mg/d or 500 mg/d The antioxidant effect of 1000 mg/d of  [248]
Garcia-Martinez RES is more effective than that of
500 mg/d.
Fernanda Navas 2025 Dental caries 100 mg/d RES dramatically decreased mutans [249]
Reis streptococci and biofilm metabolic

activity at 50 and 200 pg/mL,
respectively. RES is a significant
antibiotic and antibacterial.

Michat Lawinski 2025  Head and neck cancer 400 mg/d The RES group showed a considerable [250]
increase in glutathione peroxidase
(GPx), SOD, malondialdehyde
(MDA), total antioxidant capacity
(TAC), and phase angle.

Luana Almeida 2025 Coronary artery disease RES The combination improved vagal [251]
Gonzaga (500 mg/d) + beetroot  regulation and heart rate recovery

extract (500 mg/d) compared with rest.
Xuehui Zheng 2023 Hypertension 400 mg/d RES supplementation can relieve left [252]

atrial remodeling, improve left
ventricular diastolic function, and
potentially alleviate cardiac fibrosis in
hypertensive individuals.

Ozge Erol Do” gan 2024 Ulcerative colitis RES The additional advantage might be [253]
(500 mg/d) + mediter- minimal, and the main effect did not
ranean diet differ substantially from that of the
(MD) MD alone.
Araceli 2024 Postmenopausal women RES Supplementation with this [254]
Montoya-Estrada with insulin resistance (500 mg/d) + vitamin C combination of antioxidants

significantly decreases markers of
oxidative stress and TAC. Combined
treatment can reduce protein damage
more effectively than single
treatment.

15 of 24



Double:strand
breaks

The actual plasrha °®
and tissue

concentrations

Binding to the nuclear
estrogen receptor

i A potential inhibitor of
CYP enzymes

High concentrationsin specific
L tissues or organs J

Different with
bioavailability of human

L
L < + g |

Combmatlon with other drugs

FIGURE 6 |

( ) »

High doses
(1 g/day or higher)

Resveratrol

e'ba vai|ab'\\"°\_,,

A lipophilic compound .
limited water solubility saad
(approximately 0.02—0.03 mg/mL) /

pH =2-6.8
Ji Cryopreservation

Oxidative : m
stress - '(" - ;
Liver e
dysfunction Vomiting -
: (f/} g :
' Anincreasein < “ewea
' total cholesterol ~ Diarrhea .
Gastrointestinal
: Disturbances '

the plasma"half-lie:4-10 hours
L 4

Potential adverse effects and bioavailability of RES. The potential adverse effects involved in RES mainly focus on the toxic effects

caused by high doses. More attention should be paid to the research of RES metabolism and drug combination for its bioavailability. CYP, cytochrome

P450; pH, hydrogen ion concentration; ROS, reactive oxygen species.

expanded beyond examining the singular effects of RES on
diseases, instead exploring its potential as a supplement in
combination with other drugs. This approach aims to either
compensate for the limitations of standalone drug therapies or
enhance the efficacy of existing treatments. As a result, the
research and development of RES are no longer confined to a
single mode of delivery. RES demonstrates promising therapeutic
potential across a range of diseases, including cardiovascular
conditions like atherosclerosis, cancer, neurodegeneration, and
other degenerative disorders. Its efficacy is attributed to its
ability to modulate multiple biological processes, such as regu-
lating oxidative stress, apoptosis, autophagy, and inflammation.
Additionally, RES acts as a hormone, influencing metabolic
pathways and further contributing to its therapeutic effects.
However, the number of RES studies involving human subjects
remains limited. While the number of relevant clinical trials
has steadily increased in recent years, the long-term effects

of RES remain uncertain, posing a significant barrier to its
widespread clinical application. As a result, RES continues to
be primarily regarded as a dietary supplement or nutraceutical.
Additionally, the preservation of RES is another critical issue
that requires attention. RES appears to be better preserved in
an acidic environment (pH = 2-7) at room temperature, while
it undergoes rapid hydrolysis in an alkaline environment, with
significant hydrolysis beginning at pH levels above 6.8 [241].
Cryopreservation is a method employed to enhance the stability
and preserve RES more effectively [242]. Given the crucial role
of RES in slowing aging and preventing associated diseases, it is
advisable to conduct further in vitro and in vivo studies focusing
on delivery methods, dosage, and the long-term effects of RES.
These studies will help determine the optimal dose for various
delivery methods. RES, when administered daily at doses of
2 g or less, does not seem to induce significant adverse effects
(Figure 6).
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6 | Conclusions

RES exhibits broad therapeutic potential in degenerative, car-
diovascular, and NDs through modulation of multiple signaling
pathways, offering antioxidant, anti-inflammatory, and antiaging
effects. While effective in improving joint health, cardiovascular
function, and cancer outcomes, its clinical application is hindered
by low bioavailability and dose-dependent risks. Current evi-
dence supports moderate doses (<2 g/day) as safe, but long-term
safety and optimized delivery systems require further exploration.
Bridging the gap between preclinical promise and clinical appli-
cation requires rigorous clinical trials and the development of
innovative formulations to fully realize the therapeutic potential
of RES.
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