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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent adverse effect of
neurotoxic anticancer medicines. It leads to autonomic and somatic system dysfunction and decreases
the patient’s quality of life. This side effect eventually causes chemotherapy non-compliance.
Patients are prompted to seek alternative treatment options since there is no conventional remedy for
CIPN. A range of medicinal herbs have multifarious effects, and they have shown some evidence of
efficacy in various neurological and immunological diseases. While CIPN has multiple mechanisms of
neurotoxicity, these phytomedicines might offer neuronal protection or regeneration with the multiple
targets in CIPN. Thus far, researchers have investigated the therapeutic benefits of several herbs,
herbal formulas, and phytochemicals in preventing the onset and progress of CIPN in animals and
humans. Here, we summarize current knowledge regarding the role of phytochemicals, herb extracts,
and herbal formulas in alleviating CIPN.
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1. Introduction

Several antineoplastic medicines are reported to cause neurotoxicity and can develop
chemotherapy-induced peripheral neuropathy (CIPN) [1]. These drugs have effects on sensory
nerves and cause substantial pain, dysfunction, and finally chemotherapy non-compliance [2,3].
This adverse effect damages peripheral nerves and can lead to sensory deficits, gait impairment [4],
or severe neuropathic pain [5], and can severely degrade the patient’s quality of life [6]. The most
common symptoms reported by patients include sensory symptoms such as numbness, burning,
tingling, throbbing, and burning feelings. Moreover, patients may experience motor symptoms, such
as dropping items, splaying fingers, and inability to complete normal daily activities [7,8].

CIPN is difficult to prevent and control without dose-reduction or cessation of anticancer drugs [9].
The overall incidence of this adverse effect is remarkably high [10], although the population affected
depends on chemotherapy drugs, dose, and exposure time [11,12]. Usually the symptoms of CIPN are
reversible; however, sometimes symptoms are irreversible [13] and worsen after withdrawal of drugs,
including vincristine, cisplatin, oxaliplatin, or paclitaxel [14–16].

Thus far, various pharmacological tactics have been attempted to attenuate CIPN symptoms.
These medications include acetyl-L-carnitine, amifostine, glutathione, glutamine, vitamin E, PARP
inhibitors, leukemia inhibitory factor, N-acetylcysteine, Ca/Mg, and venlafaxine [17–19]. The therapeutic
potentials of these drugs are limited by unexpected adverse effects and contradictory results, although
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these drugs have shown benefits in preventing CIPN [20,21]. Still, no approach has sufficient evidence
for recommending use in CIPN treatment. Hence, alternative methods of preventing or treating CIPN
are necessary.

Medicinal herbs have been used as therapeutics for centuries throughout the world.
Phytochemicals derived from these medicinal plants are used to treat various neurological and
immunological disorders. On the basis of recent literature, several phytochemicals, herbs, and
herbal formulas exhibiting promising effects on CIPN have been identified. Here, we summarize the
therapeutic effects of phytochemicals (see also Table 1), medicinal herbs (Table 2), and herbal formulas
(Table 3) against CIPN induced by vincristine, cisplatin, oxaliplatin, and paclitaxel.

Table 1. Phytochemicals against CIPN.

Phytochemical Dose Chemotherapy Effects Refs.

Auraptenol
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Paclitaxel in 
mice 
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5-HT1A receptor signaling without 
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[23] 

Curcumin 

 

10 
mg/kg 

Cisplatin or 
oxaliplatin in 
rats 

Reverses the alterations of neurotensin 
levels in the plasma, protects the 
sciatic nerve from injury, and reduces 
drug absorption in the sciatic nerve 

[24] 

Rutin  

 
& quercetin 

25–100 
mg/kg 

Oxaliplatin in 
rats 

prevent the shrinkage of neurons and 
inhibit edema 

[25] 

Verticinone  

 

1.5–3 
mg/kg 

Paclitaxel in rats 

Has a relatively constant analgesic 
effect; the analgesic effect of morphine 
was decreased after repeated 
medication 

[26] 

Xylopic acid 

10–100 
mg/kg 

Vincristine in 
rats 

Has anti-allodynic and 
anti-hyperalgesic properties 

[27] 

0.05–0.8 mg/kg Vincristine in mice
Suppresses mechanical hyperalgesia
and alteration of behavioral and
biochemical changes

[22]

Cannabidiol

 

1 
 

2.5–10 mg/kg Paclitaxel in mice

Inhibits neuropathic pain through
5-HT1A receptor signaling without
diminishing chemothferapy efficacy
or nervous system function

[23]
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Table 2. Medicinal herbs against CIPN.

Herbs Dose Chemotherapy Effects Refs.

Acorus calamus 100–200 mg/kg Vincristine in rats Attenuates symptoms of neuropathy through serotonin 5-HT1A receptors [28]

Butea monosperma 200–400 mg/kg Vincristine in rats Reverses alterations of behavioral, biochemical,
and histopathological changes [29]

Ginkgo biloba L.
50–150 mg/kg Vincristine in rats

Decreases paw-withdrawal frequency to cold stimuli and increases the
threshold to mechanical stimuli
Suppresses NF-κB activation and production of TNF-α and NO
Inhibits axonal degradation
Improves axonal transportation

[30]

100–200 mg/kg Cisplatin in rats, mice, guinea pigs Protects the inner ear from ototoxicity [31]

Camellia sinensis 300 mg/kg Oxaliplatin in rats Alleviates mechanical allodynia and thermal hyperalgesia, but does not
prevent morphometric or electrophysiological alterations [32]

Ocimum sanctum 100–200 mg/kg Vincristine in rats Attenuates neurotoxicity with the decline in calcium levels and
oxidative stress [33]

Salvia officinalis 100 mg/kg Cisplatin in mice, Suppresses a second phase of cisplatin-enhanced pain in the formalin test [34]

Walnut 6% of diet Cisplatin in rats Inhibits an alteration in performance of hippocampus- and
cerebellum-related behaviors [35]

Xylopia aethiopica 30–300 mg/kg Vincristine in rats Has anti-allodynic and anti-hyperalgesic properties [27]



Molecules 2016, 21, 1252 4 of 17

Table 3. Herbal formulas against CIPN.

Herbal Formula Herbs Composition Chemotherapy Effects Refs.

Gyejigachulbu-Tang
Aconiti tuber, Atractylodis lanceae rhizome, Cinnamomi cortex,
Glycyrrhizae radix, Paeoniae radix, Zingiberis rhizoma,
Zizyphi fructus

Oxaliplatin in rats Attenuates cold and mechanical allodynia
Suppresses spinal glia activation [36]

Gyeryongtongrac-Bang
Ramulus cinnamomi, Earthworm, Radix astragali, Safflower,
Radix angelicae sinensis, Ligusticum, Spatholobus, Radix
paeoniae alba, Rhizoma curcumae, Licorice

Oxaliplatin in a randomized, double-blind,
placebo-controlled trial

Prevents sensory neurotoxicity and delays
its onset [37]

Hwanggiomul-Tang Zingiberis hizome, Jujubae fructus, Paeonia alba radix,
Cinnamomi cortex, Astragalus membranaceus radix

A case study of oxaliplatin-treated
59-year-old man with recurrent colon cancer Prevents chronic cumulative neurotoxicity [38]

Jakyakgamcho-Tang Paeoniae radix, Glycyrrhizae radix

Paclitaxel in mice Relieves allodynia and a hyperalgesia [39]

A retrospective case analysis investigated
23 patients with ovarian cancer treated with
paclitaxel and carboplatin
combination chemotherapy

Reduces pain in epithelial ovarian carcinoma [40]

Jesengsingi-Hwan

Achyranthis bidentatae radix, Alismatis rhizome, Aconiti tuber,
Cinnamomi cortex, Corni fructus, Dioscorea opposita rhizoma,
Plantaginis semen, Poria alba, Moutan cortex, Rehmannia
viride radix

Oxaliplatin in rats

Reduces peripheral neuropathy without
influence on anti-cancer potency
Ameliorates abnormal sensations and
histological damage to the sciatic nerve

[41,42]

Paclitaxel in mice Inhibits mechanical allodynia [43]

Oxaliplatin in a placebo-controlled
double-blind randomized study

Delays onset of grade 2 or greater peripheral
neurotoxicity without impairing FOLFOX
efficacy with an acceptable safety margin

[44,45]

Prevents exacerbation of
peripheral neuropathy [46,47]

A clinical trial enrolling 82 patients Reduces peripheral neuropathy [48]
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2. Phytochemicals and Medicinal Herbs against Vincristine-Induced Peripheral Neuropathy

Vincristine is one of the most extensively used chemotherapeutic agents to treat diverse types of
cancer, including Hodgkin‘s disease, small cell lung cancer, acute myeloid leukemia, acute lymphocytic
leukemia, and neuroblastoma. Vincristine inhibits chromosome separation during the metaphase
resulting in cell apoptosis [49]. Patients can experience some side effects from vincristine treatment,
such as headaches, hair loss, walking difficulty, constipation, and a change in sensation. In serious cases,
neuropathic pain, classically resulting in autonomic and peripheral sensory-motor neuropathy limits the
dose of vincristine. Vincristine-induced peripheral neuropathy can worsen after therapy has ended [50].

2.1. Acorus calamus

Acorus calamus is a medicinal herb used to alleviate pain or severe inflammation in Ayurveda.
The root of the plant is widely used to treat a number of illnesses such as abdominal tumors,
chronic diarrhea, dysentery, epilepsy, fever, mental ailments, kidney and liver issues, and
rheumatism [51]. Hydro-alcoholic extracts of A. calamus rhizoma (100–200 mg/kg, p.o. for 14 consecutive
days) protect against painful neuropathy induced by vincristine in rats. The extracts inhibit
vincristine-induced biochemical (increase in superoxide anion generation level and total calcium level,
and myeloperoxidase activity in the sciatic nerve) and behavioral (thermal- and mechano-hyperalgesia)
changes to an extent comparable to Lyrica (pregabalin) [28]. The ethanolic extract of A. calamus (up to
600 mg/kg) did not cause lethality and any changes in the general behavior in rats in both acute and
chronic toxicity tests [52].

2.2. Auraptenol

Auraptenol (8-(2-hydroxy-3-methylbut-3-enyl)-7-methoxychromen-2-one) is a phytochemical
isolated from Angelicae dahuricae radix. The root of the plant is used to treat harmful exterior stimuli
on the skin, such as dryness, dampness, heat, and cold in Oriental medicine [53]. It has been shown
that its antinociceptive effects are linked to the facilitated release of endogenous opioids [54] and
that a single oral administration of A. dahuricae (3.25 g or 6.5 g) decreased cold-induced tonic pain
in a dose-dependent manner in clinical trials [55]. It reverted mechanical hyperalgesia induced by
vincristine through 5-HT1A receptors in a dose-dependent manner (within the 0.05–0.8 mg/kg range).
The highest dose of auraptenol (0.8 mg/kg, i.p.) totally suppressed the mechanical hyperalgesia
without affecting the general locomotor activity [22].

2.3. Butea monosperma

Butea monosperma is a medium-sized deciduous tree that has been used as an aphrodisiac, astringent,
tonic, and diuretic in Ayurveda [56]. The plant contains many phytocomponents, including saponins,
glycosides, mucilage, gums, and fatty acids [57]. Oral intake of ethanolic extract of B. monosperma
(200–400 mg/kg for 14 days) suppressed histological, biochemical, and behavioral changes induced
by vincristine in rats. Authors have suggested that the therapeutic benefits might originate from its
calcium channel inactivating, anti-oxidative, anti-inflammatory, and neuroprotective effects [29].

2.4. Cannabinoids

Historically, Cannabis sativa has used to treat neuropathic pain. Cannabinoids repress
neurotransmitter release in the brain by binding on cannabinoid receptors in cells [58] and have
anti-inflammatory effects [59]. Rahn et al. investigated the effect of synthetic ∆9-tetrahydrocannabinol
analog on vincristine-induced mechanical allodynia in rats. The experiment demonstrated that
cannabinoids can inhibit vincristine-induced mechanical allodynia through the cannabinoid receptor
1/2 pathway and the effect is mediated at the level of the spinal cord in part, although these
synthetic cannabinoids may have some different pharmacological effects from phytocannabinoids [60].
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Cannabinoids have shown anti-cancer activities in animal models of cancer, and they are currently
being tested as anti-tumor agents in phase I/II clinical trials [61].

2.5. Ginkgo biloba L.

Ginkgo leaf extract has been used for pharmaceutical purposes since 1965 and is one of the
bestselling herbal medicines in the world [62]. Park et al. showed that Ginkgo biloba extract
(50–150 mg/kg, p.o.) decreased the paw withdrawal frequency to cold stimuli and increased
the withdrawal threshold to mechanical stimuli in peripheral neuropathy-induced rats [30].
They suggested that the anti-hyperalgesic effect of G. biloba extract may be related to suppression of
axonal degradation, improved axonal transport, and inhibition of TNF-α and NO production. The few
recent studies on the anticancer activity of the extract in in vitro models showed the cell proliferation
inhibition, tumor suppression, and DNA damage-repairing effects of the extract [63–65]. Biggs et al.
analyzed the risk of cancer hospitalization between participants assigned to Ginkgo extract treatment
and those assigned to placebo and reported that the data do not support the regular use of G. biloba for
reducing the risk of cancer [66].

2.6. Ocimum sanctum L.

In traditional medicine, Ocimum sanctum L. has been recommended for the treatment of skin
diseases, bronchitis, diarrhea, malaria, and arthritis. Recent research has also demonstrated its
cardioprotective, anti-microbial, anti-fungal, anti-fertility, anti-diabetic, anti-cancer, and analgesic
properties [67]. Its leaf oil contains eugenol, eugenic acid, ursolic acid, carvacrol, linalool, limatrol,
caryophyllene, and methyl carvacrol [68]. Kaur et al. demonstrated that oral administration of
O. sanctum or its saponin-rich fraction (100 and 200 mg/kg, for 14 days) reduced neurotoxicity induced
by vincristine in rats with a decline in calcium levels and oxidative stress, thus helping to prevent
CIPN symptoms. They estimated that the saponin-rich fraction may mediate the therapeutic effects of
O. sanctum in neuropathic pain [33]. Seed oil supplementation of O. sanctum L. (100 µL/kg) reduced
20-methaylcholathrene-induced tumor incidence and tumor volume and enhanced the survival rate
in mice [69].

2.7. Xylopic Acid

Traditionally, the fruit of Xylopia aethiopica has been used to manage pain disorders, including
neuralgia and headache [70]. Ethanolic extract of X. aethiopica (30–300 mg/kg, p.o.) and its major
diterpene xylopic acid (15-(acetyloxy)kaur-16-en-18-oic acid; 10–100 mg/kg, p.o.) exhibit anti-allodynic
and anti-hyperalgesic properties in vincristine-induced neuropathic pain. Diterpene xylopic acid from
X. aethiopica exhibited greater potency than the ethanolic extract of X. aethiopica itself, while pregabalin
(10–100 mg/kg) showed a comparable effect to xylopic acid [27]. Treatment with X. aethiopica extract
led to a dose-dependent growth inhibition in many cell lines, including HCT116 colon cancer cells,
U937, and KG1a leukemia cells, and the C-33A cervical cancer cell line [71,72], but xylopic acid, unlike
kaurenoic acid, has no cytotoxic effects on human cancer cells [73].

3. Phytochemicals and Medicinal Herbs against Cisplatin-Induced Peripheral Neuropathy

Cisplatin is the first member of platinum-based antineoplastic medicine. This platinum complex
causes the crosslinking of two DNA strands in cells, which prevents cell division and finally leads to
programmed cell death. In addition to nephrotoxicity, neurotoxicity and ototoxicity are dose-limiting
adverse effects of cisplatin treatment [74,75].

3.1. Curcumin

Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a yellow
pigment component of Curcuma longa. This phytochemical is well known for its powerful
anti-inflammatory and antioxidant properties. It has demonstrated benefits in neuronal diseases such



Molecules 2016, 21, 1252 7 of 17

as alcoholic neuropathy and diabetic neuropathy [76–78]. In the cisplatin-treated model, curcumin
(10 mg/kg, oral) reversed the neurotensin changes in the plasma, reduced cisplatin absorption in the
sciatic nerve, and notably ameliorated sciatic nerve histology [24]. Curcumin regulates the growth
of cancer cells by the modulation of multiple cell signaling pathways, including protein kinase,
mitochondrial, death receptor, caspase activation, cell survival, tumor suppressor, and cell proliferation
pathways [79]. Extensive in vivo data support curcumin’s beneficial effects against cancer [80–82];
however, there are also conflicting reports that curcumin can promote cancer in mice [83,84].

3.2. Ginkgo biloba L.

Ozturk et al. showed that oral administration of G. biloba alcoholic extract is beneficial in
preventing peripheral neuropathy induced by cisplatin in mice. In their experiments, G. biloba
extract reduced cisplatin-induced immigrated cell numbers, sensory nerve conduction velocity, and
outgrowing of axons [31].

3.3. Salvia officinalis

Salvia officinalis (Sage) is a perennial herb with well-known carminative, antispasmodic, antiseptic,
astringent, and antihydrotic properties [85]. The phytocomplexes of S. officinalis contain monoterpenes
with a broad range of carbon skeletons, including acyclic, monocyclic, and bicyclic compounds,
phenolic compounds, diterpenes, triterpenes [86,87]. An alcoholic extract of S. officinalis leaf
(100 mg/kg i.p.) exhibited an anti-nociceptive effect on cisplatin-induced hyperalgesia in mice.
In the formalin test, the aqueous extract effectively suppressed the second phase of pain. The extract
even showed stronger benefits than morphine [34]. Vujosevic et al. showed anti-mutagenic effects
of S. officinalis in a mammalian system in vivo [88], and Keshavarz et al. showed its anti-angiogenic
properties for anti-tumor effect in chicken eggs [89].

3.4. Walnut

Walnut is one of the traditional anti-tumor, anti-inflammatory, blood purifying, and antioxidant
agents. Shabani et al. investigated whether walnut has a neuroprotective property on neurotoxicity
induced by cisplatin. Dietary walnut (6%) altered cerebellum- and hippocampus- related behaviors
caused by continuous cisplatin injection in male rats. Dietary walnut also ameliorated motor and
memory capacities in cisplatin-treated rats. Cisplatin increased, but walnut decreased the latency to
nociceptive stimuli [35]. Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg
mouse [90] and growth of implanted MDA-MB 231 human breast cancer cells in nude mice [91]. It has
also been demonstrated that walnut reduces growth of prostate cancer [92,93] and colorectal cancer [94].

4. Phytochemicals and Medicinal Herbs against Oxaliplatin-Induced Peripheral Neuropathy

Oxaliplatin is a platinum-based anti-neoplastic agent used for treating advanced colorectal
cancer [95]. Its cytotoxicity is considered to result from the inhibition of DNA synthesis, similar
to that of other platinum complexes. Oxaliplatin forms both intra- and inter-strand crosslinks in
DNA, which prevent DNA transcription and replication, resulting in programmed cell death [96].
This chemotherapeutic drug is typically used alongside a combination of folinic acid and 5-fluorouracil
(FOLFOX). Oxaliplatin has less ototoxicity and nephrotoxicity than cisplatin; however, oxaliplatin
treatment can still cause neurotoxicity and ototoxicity [97].

4.1. Curcumin

Al Moundhri et al. showed that oral administration of curcumin (10 mg/kg) reduced drug
consistency in the sciatic nerve and prominently ameliorated sciatic nerve injury in oxaliplatin-induced
neurotoxicity in rats [24]. Wassem and Parvez showed that curcumin can ameliorate changes in both
enzymatic and nonenzymatic antioxidants of mitochondria in vitro. The results reveal the potential of
curcumin as a substance that can diminish oxaliplatin-induced peripheral neurotoxicity [98].
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4.2. Rutin and Quercetin

Rutin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,
4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one) and
quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) are polyphenolic flavonoids
found in many medicinal herbs and vegetables. They have been reported to have powerful antioxidant,
anti-inflammatory, and anti-nociceptive activities. Rutin is water-soluble and is converted to quercetin
once it enters the bloodstream [99]. In alcohol-induced neuropathy, quercetin compound showed
remarkable anti-nociceptive and neuroprotective effects [100]. In oxaliplatin-treated rats, rutin and
quercetin (25, 50, and 100 mg/kg, i.p.) suppressed neuronal contraction and averted development
of edema. Moreover, c-Fos, a marker of neuroplasticity, was decreased by rutin- or quercetin-
pretreatment [25]. The neuroprotective mechanism of these phytochemicals is connected to its
amelioration of mitochondrial dysfunction [98]. Interestingly, quercetin, but not rutin, inhibited
azoxymethane-induced colorectal carcinogenesis in rats [101]. Quercetin has been used in clinical trials
in cancer patients. The results demonstrated that quercetin can be safely administered by i.v. and that
its anticancer properties are detectable [102].

4.3. Camellia sinensis (Green Tea)

Camellia sinensis is a small tree in which the leaves are used to produce green tea, a popular
beverage with therapeutic applications. The key bioactive substances of C. sinensis are catechins.
A range of studies have demonstrated that these substances have strong anti-inflammatory, antioxidant,
and anticancer properties [103]. The therapeutic property of C. sinensis was tested against
oxaliplatin-induced peripheral neuropathy. Oral administration of green tea extract (300 mg/kg
for 6 weeks) forcefully attenuated thermal hyperalgesia and mechanical allodynia; however, it did
not avert morphometric or electrophysiological changes [32]. The experimental evidence exhibiting
the cancer-preventive activity of green tea is increasing rapidly [104]. Nakachi et al. suggested that
consumption of green tea prior to cancer development was markedly associated with improved
prognosis of stage I/II breast cancer [105].

4.4. Gyeryongtongrac-Bang (Guilongtongluofang in Chinese)

Gyeryongtongrac-Bang is a traditional medicine used to relieve numbness and cold sensation
in patients. One hundred twenty colorectal cancer patients who were treated with oxaliplatin were
randomly assigned to the Gyeryongtongrac-Bang-treated group (which received aqueous extract from
Ramulus cinnamomi, Earthworm, Radix astragali, Safflower, Radix angelicae sinensis, Ligusticum, Spatholobus,
Radix paeoniae alba, Rhizoma curcumae, and Licorice once a day) and the control group (which received
placebo) in a double-blind trial. A total of 51.7% patients in the Gyeryongtongrac-Bang-treated
group showed neurotoxicity, whereas, it was seen in 70.0% of the placebo-treated group after 4 cycles
of treatment. The results suggest that Gyeryongtongrac-Bang can be a potent agent that prevents
neurotoxic pain without diminishing oxaliplatin-attributed benefits. Additionally, the development of
sensory neurotoxicity was delayed in the Gyeryongtongrac-Bang-treated group [37].

4.5. Gyejigachulbu-Tang (Keishikajutsubuto in Japanese)

Gyejigachulbu-Tang is an herbal formula including Aconiti tuber, Atractylodis lanceae rhizome,
Cinnamomi cortex, Glycyrrhizae radix, Paeoniae radix, Zingiberis rhizoma, and Zizyphi fructus. In our
experiment, oral administration of Gyejigachulbu-Tang (200, 400, and 600 mg/kg for 5 days) markedly
ameliorated mechanical- and cold-allodynia induced by oxaliplatin treatment. The formula possibly
functions through the suppression of spinal glial activation [36]. We confirmed that the extract of
Aconiti tuber could attenuate both cold and mechanical allodynia similar to Gyejigachulbu-Tang
treatment. Interestingly, Cinnamomi cortex and coumarin, a phytochemical from C. cortex, also
attenuated cold allodynia induced by oxaliplatin treatment in rats (unpublished data). These results
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suggest that both A. tuber and C. cortex have neuroprotective properties against oxaliplatin-induced
neuropathy, thereby playing a major role in the anti-allodynic effect of Gyejigachulbu-Tang.

4.6. Jesengsingi-Hwan (Goshajinkigan in Japanese)

Jesengsingi-Hwan is a traditional herbal formula widely used in Asia. It contains 10 different
herbs comprising Achyranthis bidentatae radix, Alismatis rhizome, A. tuber, C. cortex, Corni fructus,
Dioscorea opposita rhizoma, Plantaginis semen, Poria alba, Moutan cortex, and Rehmannia viride radix.
Recently, the beneficial properties of Jesengsingi-Hwan on CIPN have been widely prospected.
In a murine study, Ushino et al. showed that Jesengsingi-Hwan can reduce CIPN without influence
on anti-cancer potency [41]. Kono et al. examined a preventive effect of Jesengsingi-Hwan on
chronic oxaliplatin-induced hypoesthesia in rats. Oral administration of Jesengsingi-Hwan (0.3 or
1.0 g/kg, 5 times a week for 8 weeks) ameliorated abnormal sensations and histological damage
to the sciatic nerve [42]. In a retrospective clinical study, Kono et al. examined the benefits of
Jesengsingi-Hwan on oxaliplatin treatment involved in peripheral neuropathy. In the study, the
administration of Jesengsingi-Hwan (7.5 g/day) reduced the neurotoxicity of oxaliplatin in colorectal
cancer patients [44]. Later, they again reported that daily oral administration of Jesengsingi-Hwan
(7.5 g/day) has the capability to delay the development of grade 2 or greater oxaliplatin-induced
peripheral neurotoxicity without impairing FOLFOX efficacy in a randomized phase II study [45].
Yoshida et al. also assessed the effects of Jesengsingi-Hwan for oxaliplatin-induced peripheral
neurotoxicity in colorectal cancer patients. Twenty-nine colorectal cancer patients received ≥4 weeks
of Jesengsingi-Hwan (2.5 g orally 3 times daily before or between meals for a total of 7.5 g/day) for
oxaliplatin-induced peripheral neuropathy during chemotherapy. They were compared to 44 patients
who had not received Jesengsingi-Hwan during the same period. A Kaplan-Meier analysis showed
that Jesengsingi-Hwan could prevent exacerbation of oxaliplatin-induced peripheral neuropathy [46].
Hosokawa et al. assessed the preventive properties of Jesengsingi-Hwan on oxaliplatin-induced
neurotoxicity in colorectal cancer patients and found that in the Jesengsingi-Hwan-treated group,
50% of oxaliplatin-induced peripheral neuropathy was prevented without diminishing chemotherapy
efficacy [47].

4.7. Hwanggiomul-Tang (Ogikeishigomotsuto in Japanese)

In Japan, a single case study was reported using Hwanggiomul-Tang for oxaliplatin-induced
neuropathic pain. Hwanggiomul-Tang is an herbal mixture containing Zingiberis hizome, Jujubae fructus,
Paeonia alba radix, C. cortex, and Astragalus membranaceus radix. The case study of a 59-year old man with
recurrent colon cancer suggests that this herbal formula may be useful to reduce or prevent chronic
cumulative neurotoxicity due to oxaliplatin [38].

5. Phytochemicals and Medicinal Herbs against Paclitaxel-Induced Peripheral Neuropathy

Paclitaxel is a member of the taxane family of drugs used to treat ovarian, breast, lung,
esophageal, prostate, bladder, and pancreatic cancer as well as Kaposi's sarcoma and melanoma [106].
This tubulin-targeting drug protects the microtubule polymer from disassembly by stabilizing it.
The stabilization triggers apoptosis through inhibition of mitosis [107]. Paclitaxel-treated cells thus
have defects in cell division, chromosome segregation, and mitotic spindle assembly. Paclitaxel
can induce phenomena of sensory peripheral neuropathy, such as paresthesia and numbness in the
extremities [108]. Symmetrical loss of sensation is also a frequent occurrence. These neuropathy
symptoms limit the use of paclitaxel.

5.1. Cannabidiol

Cannabidiol (2-[(1R,6R)-6-isopropenyl-3-methylcyclohex-2-en-1-yl]-5-pentylbenzene-1,3-diol) is a key
phytochemical accounting for approximately 40% of the C. sativa extract [109]. This phytocannabinoid
is known to have various medical applications on the basis of clinical reports showing the
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lack of side effects and particularly a lack of psychoactivity with anti-nausea, anti-psychotic,
anti-anxiety, and anti-convulsive properties [110]. Cannabidiol (2.5–10 mg/kg, i.p. for 6 days)
inhibited paclitaxel-induced neuropathic pain through 5-HT1A receptor signaling without diminishing
chemotherapy efficacy or nervous system function in mice [23].

5.2. Verticinone

Verticinone ((3β,5α)-3,20-dihydroxycevan-6-one) is a kind of isosteroidal alkaloid derived from
Fritillaria bulbus. Xu et al. [26] examined its analgesic effects using neuropathic pain and inflammation
models in rats. The experiments showed that hydro-alcoholic extracted verticinone (1.5–3 mg/kg, p.o.)
has a relatively constant analgesic effect in paclitaxel-induced neuropathy; further, the analgesic effect
of morphine was decreased after repeated medication. Authors believe verticinone is an anodyne with
low tolerance.

5.3. Jesengshingi-Hwan

Bahar et al. reported that paclitaxel-induced allodynia was markedly prevented by
Jesengshingi-Hwan (1 g/kg, p.o. daily) in mice, although Jesengshingi-Hwan could not suppress
cancer-induced allodynia [43]. Andoh et al. [111] also reported that Jesengsingi-Hwan (0.1–1.0 g/kg, p.o.)
markedly inhibited paclitaxel-induced mechanical allodynia in mice. Authors predicted that
Achyranthis radix and P. semen in Jesengsingi-Hwan may block the aggravation of paclitaxel-induced
neuropathic pain. Yamamoto et al. reported that Jesengsingi-Hwan treatment was beneficial for the
treatment of paclitaxel-induced neuropathic pain in eighty-two patients enrolled in clinical trials.
The investigators believe its preventive effect may be more potent if it is administered from the start of
chemotherapy for breast, colorectal, or gynecological cancer patients [48].

5.4. Jakyakgamcho-Tang (Shakuyakukanzoto in Japanese)

Jakyakgamcho-Tang is an herbal mixture of Paeoniae radix and Glycyrrhizae radix. A mouse study
found that this combination (1.75 mg/mouse) remarkably attenuated paclitaxel-induced hyperalgesia
and allodynia [39]. Through retrospective case analysis on 23 ovarian cancer patients, Fujii et al. [40]
concluded that Jakyakgamcho-Tang (7.5 g/day, p.o. for 8 days) has a remedial value in neuropathic
pain after paclitaxel and carboplatin combination chemotherapy. Authors suggest that paclitaxel
combination chemotherapy with Jakyakgamcho-Tang taken orally is a safer and more tolerable way to
reduce pain in epithelial ovarian carcinoma.

6. Conclusions and Perspectives

Despite the high incidence of CIPN and its dose-limiting effects, there are no current treatments or
preventive options for CIPN with conclusive efficacy and safety data. The lack of effective therapeutic
methods for CIPN has boosted the need for the use of medicinal herbs and phytochemicals; these
have gained increasing attention as a major form of alternative therapy because they are convenient,
economical, effective, safe, and therapeutic. Most recently, a number of phytochemicals and herbal
medicines have shown potential for protective benefits for CIPN. Owing to the diverse mechanisms of
CIPN, the results of phytotherapy using phytochemicals or herbs contributing to the multiple targets
of CIPN seem to be encouraging.

To date, however, many of the therapeutic mechanisms of these phytotherapies remain
unclear. For example, significant roles of transient receptor potential (TRP) channels for CIPN
development have been discovered, but the link between phytotherapy and TRP channels is mostly
unknown. An increasing number of studies report the involvement of TRP channels including
TRPA1, TRPM8, TRPV1, and TRPV4 in CIPN [112–115]. Recent studies found that Jesengsingi-Hwan
prevents oxaliplatin-induced peripheral neuropathy through the functional alteration in TRPA1
and TRPM8 [116] and can reduce paclitaxel-induced peripheral neuropathy by suppressing TRPV4
expression [117]. Moreover, the TRPV1-mediated anti-cancer effects of cannabidiol have been reported



Molecules 2016, 21, 1252 11 of 17

in multiple cancer cell lines, including breast [118], lung [119,120], and colon [121]. Inflammatory and
neuro-immune responses also play important roles in the development and progression of CIPN [122].
Phytotherapies, especially cannabinoids, have significant anti-inflammatory and immunomodulatory
properties [123]. More studies are necessary to further our understanding of the involved mechanisms
such as TRP channels and immunomodulation. In addition, the dose of several phytochemicals and
medicinal herbs for the treatment of animals appears high. At high doses, some of them can induce
toxicity in the liver or kidneys. Thus, the dose should be interpreted and verified for toxicity. It is
essential to find the maximum dose of phytochemicals and herbs for use in humans.

In conclusion, because of their multitarget, multilevel, and integrated benefits, medicinal herbs
seem to be a feasible method for the management of CIPN. Phytochemicals, medicinal herbs, and their
formulas could be considered for the treatment of CIPN. However, their curative usability should
be examined in well-designed clinical trials. In addition, their reciprocal effects with other drugs in
humans should be examined in detail.
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