Magnesium in Chronic Pain and Muscle Spasms

Magnesium and Chronic Pain

Magnesium modulates pain primarily via antagonism of the NMDA receptor, reducing central sensitization and hyperexcitability in chronic pain states.[1][2] It also influences neural transmission, vascular tone, and neurotransmitter release, mechanisms relevant to migraine, neuropathic, and nociplastic pain.[3][4][5]

Evidence for magnesium supplementation in chronic neuropathic pain (e.g., diabetic neuropathy, postherpetic neuralgia, CRPS) and nociplastic pain (e.g., fibromyalgia) is modest; some RCTs and reviews report analgesic effects, but results are inconsistent and not robust enough for routine recommendation.[1][2][6][7][8]

For chronic nociceptive pain, data are limited. In migraine, multiple RCTs and guidelines (including the Department of Veterans Affairs) support oral magnesium (typically 400–600 mg daily, citrate or oxide) for prevention, with a mean reduction of 2–3 migraine days per month and a favorable safety profile in patients with normal renal function.[3][5][7][9][10][11][12]

Magnesium monitoring is indicated in chronic pain patients at risk for deficiency (e.g., migraine, GI or renal loss, diuretic use) or those receiving supplementation. Serum magnesium is the standard test, but may not reflect intracellular status; RBC or CSF magnesium measurement is less accessible and not routinely recommended.[3][4][5][9][12]

Risks of magnesium supplementation include gastrointestinal intolerance (diarrhea), hypotension, muscle weakness, and, at high doses or in renal impairment, cardiac toxicity and potentially fatal hypermagnesemia.[11] *Most adverse effects are dose-dependent and rare below 1 g/day in patients with normal renal function*. Safety data in chronic pain RCTs are limited and inconsistent, underscoring the need for careful patient selection and monitoring.[6] [8][11]

Current studies are limited by small sample sizes, heterogeneity, and inconsistent safety reporting. Larger, well-designed trials and standardized monitoring protocols are needed to clarify magnesium's role and safety in chronic pain management.[6][7][8]

References

- 1. Magnesium and Pain. Shin HJ, Na HS, Do SH. Nutrients. 2020;12(8):E2184. doi:10.3390/nu12082184.
- 2. Magnesium in Pain Research: State of the Art. Srebro D, Vuckovic S, Milovanovic A, et al. Current Medicinal Chemistry. 2017;24(4):424-434. doi:10.2174/0929867323666161213101744.
- 3. Magnesium and Migraine. Dominguez LJ, Veronese N, Sabico S, Al-Daghri NM, Barbagallo M. Nutrients. 2025;17(4):725. doi:10.3390/nu17040725.
- 4. The Role of Magnesium in Neurological Disorders. Kirkland AE, Sarlo GL, Holton KF. Nutrients. 2018;10(6):E730. doi:10.3390/nu10060730.
- 5. The Role of Magnesium in Depression, Migraine, Alzheimer's Disease, and Cognitive Health: A Comprehensive Review. Varga P, Lehoczki A, Fekete M, et al. Nutrients. 2025;17(13):2216. doi:10.3390/nu17132216.

- 6. Efficacy and Safety of Magnesium for the Management of Chronic Pain in Adults: A Systematic Review. Park R, Ho AM, Pickering G, et al. Anesthesia and Analgesia. 2020;131(3):764-775. doi:10.1213/ANE.000000000004673.
- 7. Magnesium for Pain Treatment in 2021? State of the Art. Morel V, Pickering ME, Goubayon J, et al. Nutrients. 2021;13(5):1397. doi:10.3390/nu13051397.
- 8. Intravenous Magnesium for the Management of Chronic Pain: An Updated Review of the Literature. Onyeaka H, Adeola J, Xu R, et al. Psychopharmacology Bulletin. 2024;54(4):81-105.
- 9. Magnesium as an Important Factor in the Pathogenesis and Treatment of Migraine-From Theory to Practice. Domitrz I, Cegielska J. Nutrients. 2022;14(5):1089. doi:10.3390/nu14051089.
- 10. Headaches and Magnesium: Mechanisms, Bioavailability, Therapeutic Efficacy and Potential Advantage of Magnesium Pidolate. Maier JA, Pickering G, Giacomoni E, Cazzaniga A, Pellegrino P. Nutrients. 2020;12(9):E2660. doi:10.3390/nu12092660.
- 11. Management of Headache (2023). Jane Abanes PhD DNP MSN/Ed PMHCNS PMHNP-BC RN, Natasha M. Antonovich PharmD BCPS, Andrew C. Buelt DO, et al. Department of Veterans Affairs.
- 12. The Role of Magnesium in Pathophysiology and Migraine Treatment. Dolati S, Rikhtegar R, Mehdizadeh A, Yousefi M. Biological Trace Element Research. 2020;196(2):375-383. doi:10.1007/s12011-019-01931-z.

Efficacy and Indications for Oral Magnesium in Muscle Spasms

The clinical efficacy of oral magnesium supplementation for muscle spasm management has been rigorously evaluated in multiple randomized controlled trials (RCTs), systematic reviews, and evidence-based guidelines. The most comprehensive synthesis is provided by the 2020 Cochrane systematic review, which included 11 RCTs (735 participants) assessing magnesium for skeletal muscle cramps in adults, including idiopathic, pregnancy-associated, and disease-related cramps.[1] In adults with idiopathic muscle cramps—predominantly older adults with nocturnal leg cramps—oral magnesium supplementation did not significantly reduce cramp frequency, intensity, or duration compared to placebo. The primary endpoint, percentage change from baseline in the number of cramps per week at four weeks, showed a mean difference of -9.59% (95% CI -23.14% to 3.97%), which was not statistically significant. The absolute reduction in cramp frequency was minimal (mean difference -0.18 cramps/week, 95% CI -0.84 to 0.49), and the proportion of individuals achieving a clinically meaningful reduction (≥25%) was not different between groups.

These findings are corroborated by high-quality RCTs, such as the trial by Roguin Maor et al., which found that magnesium oxide (865 mg, 520 mg elemental magnesium daily) was no more effective than placebo in reducing nocturnal leg cramp frequency, severity, or duration in older adults.[2] Figure 2 from Roguin Maor et al. in JAMA Internal Medicine illustrates the lack of significant difference in cramp frequency between magnesium and placebo groups throughout the study period.[2]

The American Academy of Neurology (AAN) guideline, based on Class II studies, concludes that oral magnesium is probably ineffective for idiopathic muscle cramps in adults and does not recommend its routine use.[3] For pregnancy-associated cramps, the evidence is conflicting and of low certainty, with some studies showing benefit and others no effect.[1][4][5][6] In special populations such as athletes and patients with neuromuscular diseases, there is a lack of high-

quality RCTs evaluating magnesium for cramp prevention or treatment.[1][7][8] Correction of documented hypomagnesemia remains appropriate, as magnesium deficiency can cause muscle cramps and other neuromuscular symptoms, particularly when serum magnesium falls below 1.2 mg/dL (0.5 mmol/L).[9]

In summary, oral magnesium supplementation is not effective for idiopathic muscle cramps in adults with normal magnesium status. It is indicated for patients with documented hypomagnesemia, where correction may alleviate muscle cramps and prevent more severe neuromuscular complications.[9]

Formulation, Dosing, and Treatment Protocols

Formulation Comparison and Bioavailability

The choice of magnesium formulation affects both bioavailability and tolerability. Organic magnesium salts (citrate, glycinate, aspartate, lactate) are generally more soluble and better absorbed than inorganic salts (oxide, carbonate, chloride).[9] Clinical and preclinical studies confirm that magnesium oxide, despite its high elemental content, has poor absorption, while organic salts achieve higher tissue and serum magnesium levels.[10][11][12] Microencapsulated magnesium (e.g., MAGSHAPE™ microcapsules) has demonstrated superior and sustained increases in plasma magnesium with fewer gastrointestinal side effects compared to magnesium oxide, citrate, or bisglycinate in healthy volunteers.[10] However, no RCTs have evaluated microencapsulated magnesium for muscle spasm outcomes.

Amino acid chelates such as magnesium glycinate and bisglycinate show improved cellular uptake in preclinical models, but there are no clinical trials demonstrating superior efficacy for muscle cramp management.[13][14] Magnesium oxide monohydrate (MOMH) has shown modest benefit in one RCT, but the absolute reduction in cramp frequency was small and not consistent with the broader literature.[15]

In summary, while organic and novel formulations may offer improved absorption and tolerability, there is no evidence that any formulation provides superior clinical efficacy for muscle spasm management in adults with normal magnesium status.[1][9]

Dosing Protocols and Titration Strategies

The most commonly studied dosing regimens for oral magnesium in muscle spasm management are as follows:

- Magnesium oxide: 865 mg (520 mg elemental magnesium) once daily at bedtime for 4 weeks[2]
- Magnesium oxide monohydrate: 226 mg once daily at bedtime for 60 days[15]
- Magnesium citrate: 900 mg daily (elemental magnesium) for 4–8 weeks[3]
- Magnesium sulfate: 300 mg elemental magnesium daily for 4–8 weeks[3]

There are no standardized titration protocols. Most clinical trials initiate therapy at a fixed dose and maintain it for the study duration, with dose adjustments based on gastrointestinal side effects (primarily diarrhea).[1][2][15][3] If side effects occur, switching to a more bioavailable and better-tolerated formulation (e.g., citrate or glycinate) may be considered.[9] In practice, if the initial dose is well tolerated but ineffective, some clinicians may increase the dose incrementally, but this approach is not standardized and not supported by high-quality evidence.

Treatment duration in clinical trials is typically 4–8 weeks. If no clinical benefit is observed after this period, discontinuation is recommended.[1][2][15] For patients with documented hypomagnesemia and muscle spasms, longer-term supplementation may be warranted, with periodic reassessment of magnesium status and symptoms.[9]

Laboratory Monitoring and Target Magnesium Levels

Optimal serum magnesium levels for clinical efficacy in muscle spasm management are defined by laboratory standards as 1.7–2.4 mg/dL (0.7–1.0 mmol/L).[9][16] Hypomagnesemia is defined as serum magnesium below 1.7 mg/dL, with severe neuromuscular symptoms more likely at levels below 1.2 mg/dL (0.5 mmol/L).[9] However, serum magnesium represents less than 1% of total body magnesium and may not accurately reflect intracellular or tissue stores, particularly in muscle.[9][17][18] Chronic latent magnesium deficiency can occur at serum levels above 1.5 mg/dL (0.6 mmol/L), but raising the lower cutoff for hypomagnesemia remains controversial.[9] [19]

Red blood cell (RBC) magnesium has been proposed as a more sensitive marker of intracellular status, but evidence shows poor correlation with muscle magnesium content, and routine measurement is not recommended.[17] Leukocyte magnesium may better reflect muscle magnesium, but is not widely available.[17] In clinical practice, the primary goal is to maintain serum magnesium within the normal reference range, ideally above 1.7 mg/dL, to prevent deficiency-related symptoms.[9][16]

The pathophysiology and clinical consequences of hypomagnesemia are illustrated in Figure 3 from Touyz et al. in The New England Journal of Medicine, which shows the regulation of magnesium homeostasis, daily intake and excretion, and the neuromuscular consequences of deficiency.[9]

Monitoring of Serum Magnesium

Routine monitoring of serum magnesium is not required in healthy individuals, but is indicated in patients with comorbidities affecting magnesium metabolism (e.g., CKD, gastrointestinal malabsorption, or those on medications that increase renal magnesium loss).[9][16][20][21][19] In high-risk patients, combined assessment of serum magnesium, 24-hour urinary magnesium excretion, and dietary intake provides the most practical evaluation of magnesium status.[19]

Impact of Underlying Conditions, Medications, and Comorbidities

Common and Rare Etiologies

Muscle spasms are multifactorial, with etiologies including electrolyte disturbances (hypomagnesemia, hypokalemia, hypocalcemia), renal and hepatic dysfunction, neurological and endocrine disorders, pregnancy, medications, and inherited syndromes.[9][20][22][23][21] Hypomagnesemia is often associated with muscle cramps, weakness, and neuromuscular irritability, and may coexist with other electrolyte abnormalities.[9][20][22][23][21] Renal dysfunction (CKD, acute kidney injury) increases the risk of hypermagnesemia with supplementation, while hepatic dysfunction (cirrhosis) is associated with muscle cramps and altered magnesium homeostasis.[24][20][21]

Neurological disorders such as amyotrophic lateral sclerosis (ALS), peripheral neuropathies, and cramp-fasciculation syndrome are associated with increased risk of muscle cramps due to nerve hyperexcitability.[3][7] Endocrine disorders, including hypothyroidism and diabetes mellitus, may contribute to muscle spasms through effects on muscle metabolism and electrolyte handling.[9][22][21][25][26][27][28]

Pregnancy, especially in the third trimester, is a well-documented risk factor for muscle cramps, with multifactorial pathophysiology involving plasma volume changes, electrolyte shifts, and increased neuromuscular irritability.[1][3][29][4][5][6] Strenuous exercise and dehydration are recognized triggers, particularly in athletes and older adults.[1][8]

Medications commonly implicated in hypomagnesemia and muscle spasms include diuretics (loop and thiazide), proton pump inhibitors (PPIs), aminoglycosides, amphotericin B, cisplatin, and calcineurin inhibitors.[9][20][22][23][21] These agents promote renal magnesium loss or impair absorption, and magnesium supplementation may be indicated to correct deficiency.[9] [20][22][23][21]

Inherited disorders of magnesium handling, such as familial hypomagnesemia due to mutations in TRPM6, CNNM2, or MagT1, are rare but important causes of refractory hypomagnesemia and muscle spasms.[9][22][23] These patients may require higher doses of magnesium and specialized management.

Special Populations and Safety Considerations

In pregnancy, the evidence for magnesium supplementation in leg cramps is conflicting, with some RCTs showing benefit and others no effect; the certainty of evidence is low, and safety concerns are minimal.[1][4][5][6] In athletes, magnesium supplementation may improve muscle soreness and recovery, but there is no high-quality evidence for cramp prevention or treatment. [1][7][8] In patients with neuromuscular diseases, magnesium plays a critical role in muscle health, but direct evidence for cramp management is lacking.[7]

Chronic oral magnesium supplementation is generally safe in healthy adults, with gastrointestinal side effects (diarrhea, abdominal discomfort) being the most common and dose-limiting adverse events.[1][2][15][30] The risk of clinically significant hypermagnesemia is low in individuals with normal renal function due to efficient renal excretion, but increases substantially in patients with CKD or advanced age, necessitating careful monitoring and dose adjustment.[9] [20][21][31][32][27] Drug interactions and medication-induced magnesium disorders are important considerations, particularly in patients with multiple comorbidities.[9][20][22][21]

Alternative Therapies and Best Practice Recommendations

When magnesium supplementation is ineffective or contraindicated, alternative pharmacologic and non-pharmacologic therapies should be considered. Stretching exercises are the most

widely recommended non-pharmacologic intervention, with evidence from a Cochrane review showing that daily calf and hamstring stretching for six weeks may reduce the severity of night-time lower limb muscle cramps in adults aged 55 years and older, although the effect on cramp frequency is uncertain.[33]

Pharmacologic alternatives include skeletal muscle relaxants (baclofen, methocarbamol, orphenadrine), which have demonstrated efficacy in reducing cramp frequency, severity, and duration in patients with cirrhosis.[24][34][35] Baclofen can be initiated at 10 mg daily, titrated by 10 mg/week up to 30 mg/day. Methocarbamol and orphenadrine are also effective, with minor side effects such as dry mouth and drowsiness.[24][34][35] Quinine derivatives have modest efficacy but are associated with significant risks, including arrhythmias and thrombocytopenia, and are not recommended for routine use by the AAN and the FDA.[3][36] Other agents with evidence of benefit in specific populations include taurine (2–3 g daily), branched-chain amino acids, vitamin B complex, and vitamin E.[24][34]

Best practices for monitoring magnesium status and adverse effects during supplementation, especially in patients with complex comorbidities or polypharmacy, include baseline assessment of serum magnesium, dietary intake, comorbidities, and medication history; selection of formulation and dose based on absorption and tolerability; regular laboratory monitoring of serum magnesium and renal function; clinical surveillance for symptom resolution and adverse effects; therapy adjustment for side effects or rising magnesium levels; management of drug interactions; and comprehensive documentation and multidisciplinary communication.[9][16][20][21][19][18][37][38]

Conclusion

In conclusion, oral magnesium supplementation is not effective for idiopathic muscle cramps in adults with normal magnesium status. It is indicated for correction of documented hypomagnesemia, with dosing tailored to individual needs and comorbidities. Organic magnesium salts may be preferred for better absorption and tolerability, but no formulation has demonstrated superior clinical efficacy for muscle spasm management. Routine monitoring of serum magnesium is recommended in high-risk patients, with a target of maintaining levels within the normal reference range (1.7–2.4 mg/dL). Alternative therapies should be considered when magnesium is ineffective or contraindicated, and best practices for monitoring and individualized management should be followed to optimize safety and efficacy.

References

- 1. Magnesium for Skeletal Muscle Cramps. Garrison SR, Korownyk CS, Kolber MR, et al. The Cochrane Database of Systematic Reviews. 2020;9:CD009402. doi:10.1002/14651858.CD009402.pub3.
- 2. Effect of Magnesium Oxide Supplementation on Nocturnal Leg Cramps: A Randomized Clinical Trial. Roguin Maor N, Alperin M, Shturman E, et al. JAMA Internal Medicine. 2017;177(5):617-623. doi:10.1001/jamainternmed.2016.9261.
- 3. Assessment: Symptomatic Treatment for Muscle Cramps (An Evidence-Based Review): Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Katzberg HD, Khan AH, So YT. Neurology. 2010;74(8):691-6. doi:10.1212/WNL.0b013e3181d0ccca.
- 4. Oral Magnesium for Relief in Pregnancy-Induced Leg Cramps: A Randomised Controlled Trial. Supakatisant C, Phupong V. Maternal & Child Nutrition. 2015;11(2):139-45. doi:10.1111/j.1740-8709.2012.00440.x.

- 5. Oral Magnesium Supplementation for Leg Cramps in Pregnancy-an Observational Controlled Trial. Araújo CAL, Lorena SB, Cavalcanti GCS, et al. PloS One. 2020;15(1):e0227497. doi:10.1371/journal.pone.0227497.
- 6. Interventions for Leg Cramps in Pregnancy. Luo L, Zhou K, Zhang J, Xu L, Yin W. The Cochrane Database of Systematic Reviews. 2020;12:CD010655. doi:10.1002/14651858.CD010655.pub3.
- 7. Role of Magnesium in Skeletal Muscle Health and Neuromuscular Diseases: A Scoping Review. Liguori S, Moretti A, Paoletta M, Gimigliano F, Iolascon G. International Journal of Molecular Sciences. 2024;25(20):11220. doi:10.3390/ijms252011220.
- 8. Effects of Magnesium Supplementation on Muscle Soreness in Different Type of Physical Activities: A Systematic Review. Tarsitano MG, Quinzi F, Folino K, et al. Journal of Translational Medicine. 2024;22(1):629. doi:10.1186/s12967-024-05434-x.
- 9. Magnesium Disorders. Touyz RM, de Baaij JHF, Hoenderop JGJ. The New England Journal of Medicine. 2024;390(21):1998-2009. doi:10.1056/NEJMra1510603.
- 10. Comparative Clinical Study on Magnesium Absorption and Side Effects After Oral Intake of Microencapsulated Magnesium (MAGSHAPETM Microcapsules) Versus Other Magnesium Sources. Pajuelo D, Meissner JM, Negra T, Connolly A, Mullor JL. Nutrients. 2024;16(24):4367. doi:10.3390/nu16244367.
- 11. Dose-Dependent Absorption Profile of Different Magnesium Compounds. Ates M, Kizildag S, Yuksel O, et al. Biological Trace Element Research. 2019;192(2):244-251. doi:10.1007/s12011-019-01663-0.
- 12. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?. Uysal N, Kizildag S, Yuce Z, et al. Biological Trace Element Research. 2019;187(1):128-136. doi:10.1007/s12011-018-1351-9.
- 13. Synthesis and Chemical and Biological Evaluation of a Glycine Tripeptide Chelate of Magnesium. Case DR, Zubieta J, Gonzalez R, Doyle RP. Molecules (Basel, Switzerland). 2021;26(9):2419. doi:10.3390/molecules26092419.
- 14. Study of Magnesium Formulations on Intestinal Cells to Influence Myometrium Cell Relaxation. Uberti F, Morsanuto V, Ruga S, et al. Nutrients. 2020;12(2):E573. doi:10.3390/nu12020573.
- 15. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study Assessing the Efficacy of Magnesium Oxide Monohydrate in the Treatment of Nocturnal Leg Cramps. Barna O, Lohoida P, Holovchenko Y, et al. Nutrition Journal. 2021;20(1):90. doi:10.1186/s12937-021-00747-9.
- 16. Magnesium Biology. Kröse JL, de Baaij JHF. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association European Renal Association. 2024;39(12):1965-1975. doi:10.1093/ndt/gfae134.
- 17. Lack of Effect of Oral Mg-Supplementation on Mg in Serum, Blood Cells, and Calf Muscle. Weller E, Bachert P, Meinck HM, et al. Medicine and Science in Sports and Exercise. 1998;30(11):1584-91. doi:10.1097/00005768-199811000-00005.
- 18. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Fiorentini D, Cappadone C, Farruggia G, Prata C. Nutrients. 2021;13(4):1136. doi:10.3390/nu13041136.
- 19. Interpreting Magnesium Status to Enhance Clinical Care: Key Indicators. Costello RB, Nielsen F. Current Opinion in Clinical Nutrition and Metabolic Care. 2017;20(6):504-511. doi:10.1097/MCO.0000000000000410.
- 20. Acquired Disorders of Hypomagnesemia. Rosner MH, Ha N, Palmer BF, Perazella MA. Mayo Clinic Proceedings. 2023;98(4):581-596. doi:10.1016/j.mayocp.2022.12.002.
- 21. Contemporary View of the Clinical Relevance of Magnesium Homeostasis. Ayuk J, Gittoes NJ. Annals of Clinical Biochemistry. 2014;51(Pt 2):179-88. doi:10.1177/0004563213517628.
- 22. Magnesium in Man: Implications for Health and Disease. de Baaij JH, Hoenderop JG, Bindels RJ. Physiological Reviews. 2015;95(1):1-46. doi:10.1152/physrev.00012.2014.
- 23. Inherited and Acquired Disorders of Magnesium Homeostasis. Wolf MT. Current Opinion in Pediatrics. 2017;29(2):187-198. doi:10.1097/MOP.00000000000450.

- 24. AASLD Practice Guidance: Palliative Care and Symptom-Based Management in Decompensated Cirrhosis. Rogal SS, Hansen L, Patel A, et al. Hepatology (Baltimore, Md.). 2022;76(3):819-853. doi:10.1002/hep.32378.
- 25. Beyond Ion Homeostasis: Hypomagnesemia, Transient Receptor Potential Melastatin Channel 7, Mitochondrial Function, and Inflammation. Liu M, Dudley SC. Nutrients. 2023;15(18):3920. doi:10.3390/nu15183920.
- 26. The Role of Magnesium in the Pathogenesis of Metabolic Disorders. Pelczyńska M, Moszak M, Bogdański P. Nutrients. 2022;14(9):1714. doi:10.3390/nu14091714.
- 27. Magnesium in Aging, Health and Diseases. Barbagallo M, Veronese N, Dominguez LJ. Nutrients. 2021;13(2):463. doi:10.3390/nu13020463.
- 28. Serum Magnesium, Prescribed Magnesium Replacement and Cardiovascular Events in Adults With Type 2 Diabetes: A National Cohort Study in U.S. Veterans. Yin Y, Cheng Y, Zullo AR, et al. Nutrients. 2025;17(13):2067. doi:10.3390/nu17132067.
- 29. Magnesium in Pregnancy. Dalton LM, Ní Fhloinn DM, Gaydadzhieva GT, et al. Nutrition Reviews. 2016;74(9):549-57. doi:10.1093/nutrit/nuw018.
- 30. Perspective: Call for Re-Evaluation of the Tolerable Upper Intake Level for Magnesium Supplementation in Adults. Costello R, Rosanoff A, Nielsen F, West C. Advances in Nutrition (Bethesda, Md.). 2023;14(5):973-982. doi:10.1016/j.advnut.2023.06.008.
- 31. Magnesium Administration in Chronic Kidney Disease. Vermeulen EA, Vervloet MG. Nutrients. 2023;15(3):547. doi:10.3390/nu15030547.
- 32. Unraveling the Mechanisms of Magnesium Supplementation in Alleviating Chronic Kidney Disease Complications and Progression: Balancing Risks and Benefits. Sadeghpour M, Bejani A, Kupaei MH, et al. Biological Trace Element Research. 2025;203(5):2539-2549. doi:10.1007/s12011-024-04368-1.
- 33. Non-Drug Therapies for the Secondary Prevention of Lower Limb Muscle Cramps. Hawke F, Sadler SG, Katzberg HD, et al. The Cochrane Database of Systematic Reviews. 2021;5:CD008496. doi:10.1002/14651858.CD008496.pub3.
- 34. Management of Muscle Cramps in Patients With Cirrhosis: A Systematic Review of Randomised Controlled Trials. Roberts AT, Makar J, Abdelmalak J, et al. Alimentary Pharmacology & Therapeutics. 2025;61(1):44-64. doi:10.1111/apt.18398.
- 35. Comparative Efficacy and Safety of Skeletal Muscle Relaxants for Spasticity and Musculoskeletal Conditions: A Systematic Review. Chou R, Peterson K, Helfand M. Journal of Pain and Symptom Management. 2004;28(2):140-75. doi:10.1016/j.jpainsymman.2004.05.002. 36. Quinine for Muscle Cramps. El-Tawil S, Al Musa T, Valli H, et al. The Cochrane Database of Systematic Reviews. 2015;(4):CD005044. doi:10.1002/14651858.CD005044.pub3.
- 37. Improving Diagnosis and Treatment of Hypomagnesemia. Salinas M, López-Garrigós M, Flores E, Leiva-Salinas C. Clinical Chemistry and Laboratory Medicine. 2024;62(2):234-248. doi:10.1515/cclm-2023-0537.
- 38. Measuring Magnesium Physiological, Clinical and Analytical Perspectives. Dent A, Selvaratnam R. Clinical Biochemistry. 2022 Jul-Aug;105-106:1-15. doi:10.1016/i.clinbiochem.2022.04.001.