# **ULDN** versus LDN efficacy, patient selection and protocols

Does low-dose naltrexone at doses of 0.1- 4.5 mg per day suppress the Gs protein coupling as well as ultra low-dose naltrexone at doses in the range of 0.001-0.01 mg per day?

ULDN (Ultra-low-dose naltrexone) in the range of 0.001 to 0.01 mg per day is more effective at suppressing Gs protein coupling at the mu-opioid receptor than low-dose naltrexone (LDN) at doses of 0.1 to 4.5 mg per day;

LDN primarily exerts its effects through partial opioid receptor blockade and downstream immunomodulation, while ULDN specifically targets maladaptive G-protein signaling associated with opioid tolerance and hyperalgesia.

Preclinical and translational studies, as referenced in clinical reviews of Oxytrex (oxycodone plus ULDN), demonstrate that ultra-low doses of naltrexone (nanogram range) prevent the shift of opioid receptor signaling from inhibitory Gi/o to excitatory Gs coupling, thereby attenuating opioid-induced hyperalgesia and tolerance. This effect is dose-dependent and unique to the ultra-low range; higher doses (such as those used in LDN protocols) do not selectively block Gs coupling and instead produce broader opioid receptor antagonism and immunomodulatory effects.[1]

LDN (0.1–4.5 mg/day) transiently blocks opioid receptors, leading to increased endogenous opioid production and receptor upregulation, as well as anti-inflammatory effects via TLR4 antagonism and glial modulation.[2][3][4][5][6] However, these doses do not specifically suppress Gs protein coupling at the opioid receptor to the same extent as ULDN. The clinical and mechanistic literature consistently distinguishes ULDN's unique ability to prevent maladaptive G-protein signaling and opioid tolerance from the broader effects of LDN.[1]

#### In summary:

ULDN (0.001–0.01 mg/day) is superior to LDN (0.1–4.5 mg/day) for suppressing Gs protein coupling and preventing opioid-induced hyperalgesia and tolerance.

LDN provides broader immunomodulatory and anti-inflammatory benefits but does not target Gs signaling as specifically or effectively as ULDN.[1][2][3][4]

Would you like a summary of clinical protocols or dosing strategies for combining ULDN with opioid therapy to minimize tolerance and hyperalgesia?

Would you like me to review the latest clinical trial evidence comparing the efficacy and safety of ULDN versus LDN in patients receiving chronic opioid therapy, specifically focusing on outcomes related to opioid tolerance, hyperalgesia, and pain control?

#### References

- Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- 2. <u>Low-Dose Naltrexone for Treatment of Dermatologic Conditions: A Clinical Review</u>. Zhou MH, Elston DM, Morrison BW, Lipner SR. Journal of the American Academy of Dermatology. 2025;:S0190-9622(25)02812-9. doi:10.1016/j.jaad.2025.09.028.
- The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn's Disease, and Other Chronic Pain Disorders. Patten DK, Schultz BG, Berlau DJ. Pharmacotherapy. 2018;38(3):382-389. doi:10.1002/phar.2086.
- 4. <u>Low-Dose Naltrexone (LDN): A Promising Treatment in Immune-Related Diseases and Cancer Therapy</u>. Li Z, You Y, Griffin N, Feng J, Shan F. International Immunopharmacology. 2018;61:178-184. doi:10.1016/j.intimp.2018.05.020.
- 5. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review.</u> Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- 6. The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain. Younger J, Parkitny L, McLain D. Clinical Rheumatology. 2014;33(4):451-9. doi:10.1007/s10067-014-2517-2.

please provide a a summary of clinical protocols or dosing strategies for combining ULDN with opioid therapy to minimize tolerance and hyperalgesia?

#### **Background and Rationale**

Opioid tolerance and opioid-induced hyperalgesia (OIH) are major clinical challenges in chronic pain management. Chronic opioid use leads to maladaptive changes in muopioid receptor (MOR) signaling, specifically a shift from inhibitory Gi/o to excitatory Gs protein coupling, which drives both tolerance and increased pain sensitivity. This process is further amplified by neuroinflammation and glial activation.[1][2][3] Ultra-low-dose naltrexone (ULDN) has emerged as a strategy to prevent these changes by selectively modulating opioid receptor signaling.

## **Clinical Evidence for ULDN with Opioid Therapy**

Randomized controlled trials and preclinical studies consistently show that coadministration of ULDN with opioids (notably oxycodone and morphine) enhances analgesia, reduces the development of tolerance, and minimizes physical dependence. [1][2][3][4][5][6][7][8][9] In the Oxytrex trials, patients receiving oxycodone plus ULDN (1–2 μg naltrexone per dose, bid) experienced greater pain relief, less dose escalation, and fewer withdrawal symptoms compared to those on oxycodone alone.[1][3][4] ULDN also improved side effect profiles, with reductions in constipation, somnolence, and pruritus.[4]

## **Recommended Dosing Strategies and Protocols**

The most effective clinical protocol is ULDN at 0.002–0.004 mg/day (1–2 µg per dose, twice daily) combined with standard opioid dosing, as used in Oxytrex studies.[1][3][4] Lower total daily doses (2 µg/day, bid) are more effective than higher or more frequent dosing (4 µg/day, qid).[1][4] This approach can be adapted for other opioid regimens, and similar strategies are used in morphine/naltrexone formulations such as Embeda. [10] In preclinical models, doses as low as 10–100 ng/kg have shown efficacy.[5][6]

## **Mechanistic Insights**

ULDN prevents the shift from inhibitory Gi/o to excitatory Gs coupling at the MOR, thereby attenuating the neuroplastic changes that underlie tolerance and OIH.[2][5][6] It also reduces glial activation and blocks TLR4-mediated neuroinflammation, further supporting its role in minimizing opioid-induced maladaptation.[2][11][12] These effects have been confirmed in both animal and cellular studies.[5][6][11][12]

## **Safety and Adverse Effects**

ULDN does not increase the risk of opioid withdrawal or adverse events compared to opioid monotherapy.[1][3][4] The incidence of common opioid side effects is reduced, and no significant safety concerns have been reported at these ultra-low doses.

#### **Limitations and Areas for Further Research**

While the evidence for ULDN is strong in controlled trials and preclinical models, long-term, large-scale studies in diverse chronic pain populations and with other opioid combinations are still needed to fully establish its clinical utility.

**Summary:** The recommended protocol for minimizing opioid tolerance and OIH is to combine ULDN (1–2 µg per dose, bid; total 0.002–0.004 mg/day) with standard opioid therapy. This regimen is supported by robust clinical and mechanistic evidence for enhanced analgesia, reduced tolerance, and improved safety.[1][2][3][4][5][6][7][8][9][10][11][12]

Would you like me to review the latest comparative data on the efficacy and safety of ULDN-opioid combinations across different opioid types and pain conditions, to help determine whether these protocols are generalizable beyond oxycodone and morphine?

## References

- Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
   Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/i.ipain.2005.01.356.
- Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated Mu-Opioid Receptor-Gs Coupling. Largent-Milnes TM, Guo W, Wang HY, Burns LH, Vanderah TW. The Journal of Pain. 2008;9(8):700-13. doi:10.1016/j.jpain.2008.03.005.
- 3. Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- 4. Oxytrex Minimizes Physical Dependence While Providing Effective Analgesia: A Randomized Controlled Trial in Low Back Pain. Webster LR, Butera PG, Moran LV, et al. The Journal of Pain. 2006;7(12):937-46. doi:10.1016/j.jpain.2006.05.005.
- 5. <u>Ultra-Low Doses of Naltrexone or Etorphine Increase Morphine's Antinociceptive Potency and Attenuate Tolerance/Dependence in Mice</u>. Shen KF, Crain SM. Brain Research. 1997;757(2):176-90. doi:10.1016/s0006-8993(97)00197-2.
- 6. Paradoxical Effects of the Opioid Antagonist Naltrexone on Morphine Analgesia, Tolerance, and Reward in Rats. Powell KJ, Abul-Husn NS, Jhamandas A, et al. The Journal of Pharmacology and Experimental Therapeutics. 2002;300(2):588-96. doi:10.1124/jpet.300.2.588.
- 7. <u>Dissociable Effects of Ultralow-Dose Naltrexone on Tolerance to the Antinociceptive and Cataleptic Effects of Morphine</u>. Tuerke KJ, Beninger RJ, Paquette JJ, Olmstead MC. Behavioural Pharmacology. 2011;22(5-6):558-63. doi:10.1097/FBP.0b013e3283474a56.
- 8. <u>Ultra-Low-Dose Naltrexone Suppresses Rewarding Effects of Opiates and Aversive Effects of Opiate Withdrawal in Rats</u>. Olmstead MC, Burns LH. Psychopharmacology. 2005;181(3):576-81. doi:10.1007/s00213-005-0022-7.
- 9. <u>Ultra-Low-Dose Naltrexone Reduces the Rewarding Potency of Oxycodone and Relapse Vulnerability in Rats</u>. Leri F, Burns LH. Pharmacology, Biochemistry, and Behavior. 2005;82(2):252-62. doi:10.1016/j.pbb.2005.08.008.
- 10. FDA Orange Book. FDA Orange Book.
- 11. <u>Ultra-Low Dose Naltrexone Attenuates Chronic Morphine-Induced Gliosis in Rats</u>. Mattioli TA, Milne B, Cahill CM. Molecular Pain. 2010;6:22. doi:10.1186/1744-8069-6-22.
- 12. Antinociceptive Effect of Ultra-Low Dose Naltrexone in a Pre-Clinical Model of Postoperative Orofacial Pain. Hummig W, Baggio DF, Lopes RV, et al. Brain Research. 2023;1798:148154. doi:10.1016/j.brainres.2022.148154.

Please review the latest clinical trial evidence comparing the efficacy and safety of ULDN versus LDN in patients receiving chronic opioid therapy,

# specifically focusing on outcomes related to opioid tolerance, hyperalgesia, and pain control?

Ultra-low-dose naltrexone (ULDN) demonstrates greater efficacy than low-dose naltrexone (LDN) in suppressing opioid tolerance and opioid-induced hyperalgesia (OIH) when combined with chronic opioid therapy, while both regimens are generally safe and well tolerated. However, direct head-to-head clinical trial comparisons between ULDN and LDN are lacking; available evidence comes from separate studies and meta-analyses.

# **Efficacy for Opioid Tolerance and OIH:**

- ULDN (doses in the microgram to nanogram range, e.g., 0.002-0.004 mg/day):
- Randomized controlled trials of Oxytrex (oxycodone + ULDN) show that ULDN significantly enhances and prolongs opioid analgesia, reduces the development of tolerance, and improves pain control compared to oxycodone alone. The mechanism is prevention of aberrant G-protein (Gs) coupling at the mu-opioid receptor, which underlies tolerance and OIH.[1][2]
- Preclinical studies confirm that ULDN co-administered with opioids augments analgesia, inhibits tolerance, and reverses established tolerance and hyperalgesia, with effects mediated by both opioid receptor and TLR4 blockade.[3][4][5][6][7]
- ULDN also attenuates opioid-induced glial activation, further supporting its role in minimizing tolerance and OIH.[4]

# - LDN (doses 0.1–4.5 mg/day):

- LDN is effective for improving pain and pain tolerance in patients with OIH and fibromyalgia, as shown in open-label clinical series and meta-analyses. LDN quadrupled pain tolerance in OIH patients (cold pressor test) and doubled it in fibromyalgia, with large effect sizes.[8][9][10][11][12]
- LDN's primary mechanism is modulation of neuroinflammation and glial cell activity, rather than direct suppression of Gs protein coupling. It is most effective for centralized pain syndromes and may help correct OIH, but its impact on opioid tolerance is less pronounced than ULDN.[9][10][11]
- Meta-analysis shows LDN is superior to placebo for pain reduction in fibromyalgia, but not significantly different from active comparators in other chronic pain syndromes.[11]

## Safety:

- Both ULDN and LDN are well tolerated, with adverse event rates similar to placebo or active comparators. ULDN does not increase withdrawal risk or opioid side effects when combined with opioids. LDN may cause mild GI or neuropsychiatric symptoms, but serious adverse events are rare.[1][2][11][12]

## **Summary Table:**

| Regim | Dose<br>Range | Mechanism       | Efficacy (Pain/OIH/Tolerance) | Safety Profile  | References      |
|-------|---------------|-----------------|-------------------------------|-----------------|-----------------|
| ULDN  | 0.002-        | Blocks Gs       | Strong for OIH/tolerance;     | Well tolerated; | [1], [2], [3],  |
| +     | 0.004 mg/     | coupling, TLR4, | enhances analgesia            | no ↑            | [4], [5], [6],  |
| LDN   | 0.1-4.5       | Glial/TLR4      | Moderate for OIH, strong for  | Well tolerated; | [8], [9], [10], |
| LDN   | mg/day        | modulation, ↑   | centralized pain; less for    | mild AEs        | [11], [12]      |

# In summary:

ULDN is superior for preventing opioid tolerance and OIH when combined with chronic opioid therapy, while LDN is effective for improving pain and pain tolerance, especially in centralized pain syndromes. Both regimens are safe, but direct comparative trials are needed.

ULDN should be considered for patients at high risk of tolerance or OIH, while LDN is appropriate for refractory pain and OIH correction.

If you need protocol details or guidance on patient selection for ULDN versus LDN, please specify the clinical context.

- Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
   Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/i.jpain.2005.01.356.
- Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- 3. Antinociceptive Effect of Ultra-Low Dose Naltrexone in a Pre-Clinical Model of Postoperative Orofacial Pain. Hummig W, Baggio DF, Lopes RV, et al. Brain Research. 2023;1798:148154. doi:10.1016/j.brainres.2022.148154.
- 4. <u>Ultra-Low Dose Naltrexone Attenuates Chronic Morphine-Induced Gliosis in Rats</u>. Mattioli TA, Milne B, Cahill CM. Molecular Pain. 2010;6:22. doi:10.1186/1744-8069-6-22.

- 5. Paradoxical Effects of the Opioid Antagonist Naltrexone on Morphine Analgesia, Tolerance, and Reward in Rats. Powell KJ, Abul-Husn NS, Jhamandas A, et al. The Journal of Pharmacology and Experimental Therapeutics. 2002;300(2):588-96. doi:10.1124/jpet.300.2.588.
- Dissociable Effects of Ultralow-Dose Naltrexone on Tolerance to the <u>Antinociceptive and Cataleptic Effects of Morphine</u>. Tuerke KJ, Beninger RJ, Paquette JJ, Olmstead MC. Behavioural Pharmacology. 2011;22(5-6):558-63. doi:10.1097/FBP.0b013e3283474a56.
- 7. <u>Ultra-Low-Dose Naltrexone Suppresses Rewarding Effects of Opiates and Aversive Effects of Opiate Withdrawal in Rats</u>. Olmstead MC, Burns LH. Psychopharmacology. 2005;181(3):576-81. doi:10.1007/s00213-005-0022-7.
- 8. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 9. <u>Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A Scoping Review</u>. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- 10. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review</u>. Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- 11. Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/s11916-025-01411-1.
- 12. The Utilization of Low Dose Naltrexone for Chronic Pain. Poliwoda S, Noss B, Truong GTD, et al. CNS Drugs. 2023;37(8):663-670. doi:10.1007/s40263-023-01018-3.
- Please protocol details or guidance on patient selection for ULDN versus LDN.

  The clinical context is based on a review of 400 patients on chronic opioid therapy for chronic non-cancer pain. Based on the assumption that those with high risk for OIH might benefit most from an initial trial of ULDN prior to proceeding to an LDN course of therapy if ULDN does not appear to provide clinical improvement. Those who appear to not have high risk for OIH, an initial trial of LDN may be warranted to improve their pain management with their current opioids.
- Patient selection may be guided by history of opioid use including type of opioid and assessment of high ME dosing, presence of hyperalgesia, or allodynia and results of cold pressor testing. What other elements should be assessed to establish a protocol?

What would be the best protocol for patient selection for initiating ULDN initially versus LDN?

#### **Patient Selection Criteria**

Selection for ULDN or LDN in chronic opioid therapy should begin with a thorough review of opioid history, including type, duration, and daily morphine equivalent dosing. Patients on high daily doses (median OME for OIH cases: 850 mg/day) are at greatest risk for opioid-induced hyperalgesia (OIH) and should be prioritized for further assessment.[1]

Clinical features suggestive of OIH include worsening pain despite dose escalation, new allodynia, and pain outside the original pain area.[1] Objective assessment with cold pressor testing (CPT) is recommended; reduced CPT times are indicative of OIH and can guide protocol selection.[2]

#### Protocol for Initiation of ULDN

Initiate ultra-low-dose naltrexone (ULDN, 1–2 µg per dose, twice daily; total 0.002–0.004 mg/day) in patients with:

- High opioid doses (especially >200–300 mg OME/day)
- Clinical or CPT evidence of OIH
- Use of opioids with high Gs-coupling risk (e.g., oxycodone, morphine)
- Neuropathic pain or central sensitization, particularly if prior opioid escalation failed
   [4]
- Include standardized, neuropathic pain questionnaires, and central sensitive inventory (CSI)

**Monitor** for rapid improvement in pain and tolerance. If no clinical benefit is observed after a reasonable trial period (e.g., 2–4 weeks), consider transitioning to LDN.[3]

#### Protocol for Initiation of LDN

Low-dose naltrexone (LDN, 0.1–4.5 mg/day) is best suited for patients with:

- Refractory centralized pain syndromes (fibromyalgia, CRPS, neuropathic pain)
- Lower opioid doses or absence of OIH
- Desire to improve pain, physical function, and quality of life[5][6][7][8][9][10][11]

LDN is particularly effective for improving pain tolerance and quality of life in chronic pain syndromes, and may be considered as first-line in these populations.[5][8][11]

#### **Additional Assessment Elements**

Include evaluation of psychiatric comorbidities, sleep quality, and overall quality of life, as these factors may influence response to therapy.[5][8] Monitor for adverse events

and response variability, as individual patient factors may affect efficacy. Further high-quality RCTs are needed to refine and validate these protocols.[5][8]

# **Summary Table for Protocol Selection:**

| Patient Feature               | ULDN Protocol (1-2 μg bid) | LDN Protocol (0.1-4.5 mg/day) | References         |
|-------------------------------|----------------------------|-------------------------------|--------------------|
| High OME (>200–300 mg/day)    | Yes                        | Consider if ULDN fails        | [1], [2], [3]      |
| Clinical/CPT evidence of OIH  | Yes                        | Consider if ULDN fails        | [1], [2], [4]      |
| Neuropathic/central pain      | Yes                        | Yes                           | [3], [5], [6]      |
| Refractory centralized pain   | Consider if ULDN fails     | Yes                           | [5], [6], [7], [8] |
| Lower opioid dose/no OIH      | No                         | Yes                           | [5], [6], [7], [8] |
| Poor sleep/psychiatric issues | Yes                        | Yes                           | [5], [6]           |

**Note:** Direct head-to-head clinical trial data comparing ULDN and LDN protocols in chronic opioid therapy are lacking; protocol selection should be individualized based on risk factors and clinical response.

Would you like me to summarize the latest clinical trial evidence or observational studies comparing the efficacy and safety of ULDN versus LDN specifically in patients with high opioid doses and OIH, to help refine your protocol selection and monitoring strategies?

- Opioid-Induced Hyperalgesia in Patients With Chronic Pain: A Systematic Review of Published Cases. Guichard L, Hirve A, Demiri M, Martinez V. The Clinical Journal of Pain. 2021;38(1):49-57. doi:10.1097/AJP.000000000000994.
- 2. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 3. Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/j.jpain.2005.01.356.
- Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated Mu-Opioid Receptor-Gs Coupling. Largent-Milnes TM, Guo W, Wang HY, Burns LH, Vanderah TW. The Journal of Pain. 2008;9(8):700-13. doi:10.1016/j.jpain.2008.03.005.

- Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A <u>Scoping Review</u>. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review. Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/ s11916-020-00898-0.
- 7. The Utilization of Low Dose Naltrexone for Chronic Pain. Poliwoda S, Noss B, Truong GTD, et al. CNS Drugs. 2023;37(8):663-670. doi:10.1007/s40263-023-01018-3.
- 8. <u>Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials</u>. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/s11916-025-01411-1.
- 9. The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain. Younger J, Parkitny L, McLain D. Clinical Rheumatology. 2014;33(4):451-9. doi:10.1007/s10067-014-2517-2.
- The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn's Disease, and Other Chronic Pain Disorders. Patten DK, Schultz BG, Berlau DJ. Pharmacotherapy. 2018;38(3):382-389. doi:10.1002/phar.2086.
- 11. <u>Is Low-Dose Naltrexone Effective in Chronic Pain Management?</u>. Radi R, Huang H, Rivera J, Lyon C, DeSanto K. The Journal of Family Practice. 2023;72(7):320-321. doi:10.12788/jfp.0654.

Please summarize the latest clinical trial evidence or observational studies comparing the efficacy and safety of ULDN versus LDN specifically in patients with high opioid doses and OIH, to help refine your protocol selection and monitoring strategies?

There are no published head-to-head clinical trials directly comparing ultra-low-dose naltrexone (ULDN) versus low-dose naltrexone (LDN) in patients with chronic non-cancer pain receiving high opioid doses and diagnosed with opioid-induced hyperalgesia (OIH). However, separate clinical and preclinical studies provide important insights into their relative efficacy and safety for this population.

## Low-Dose Naltrexone (LDN, 0.1–4.5 mg/day):

- In an open-label case series of 55 patients with OIH on chronic opioid therapy, LDN significantly improved pain tolerance as measured by the cold pressor test, with more than a fourfold increase in pain tolerance (large effect size, p < 0.0001). [1]

- LDN's mechanism is primarily restoration of endogenous opioid tone and modulation of neuroinflammation via glial cell inhibition and TLR4 blockade. [2][3][4][5]
- Meta-analyses and systematic reviews confirm LDN's benefit for pain reduction and improved quality of life in chronic pain and centralized pain syndromes, with a favorable safety profile. [6][7][8][5]
- LDN is well tolerated, with mild adverse events (e.g., GI symptoms, headache) and no significant increase in serious adverse events compared to placebo or active comparators.[6]

# Ultra-Low-Dose Naltrexone (ULDN, 0.002–0.004 mg/day):

- RCTs and mechanistic studies (notably Oxytrex trials) show that ULDN, when combined with opioids, enhances and prolongs analgesia, reduces opioid tolerance, and minimizes OIH by specifically preventing maladaptive Gs protein coupling at the mu-opioid receptor. [9][10]
- In neuropathic pain models, ULDN co-administered with oxycodone or morphine attenuates hyperalgesia and allodynia, and reduces the need for opioid dose escalation. [10]
- ULDN is also well tolerated, with no increase in withdrawal symptoms or opioid side effects compared to opioid monotherapy. [9]
- Preclinical data support ULDN's opioid-sparing and anti-hyperalgesic effects, mediated by both opioid receptor and TLR4 blockade.[11]

# **Comparative Insights:**

- LDN is effective for improving pain tolerance and quality of life in OIH and chronic pain, but its impact on opioid tolerance is less pronounced than ULDN. [1][6][7]
- ULDN is superior for preventing opioid tolerance and OIH when combined with chronic opioid therapy, especially in patients at high risk (high opioid doses, clinical evidence of OIH). [9][10]
- Both regimens are safe, but ULDN's targeted mechanism may offer greater benefit for patients with established OIH and high opioid requirements.

## **Summary Table:**

| Regimen                  | Dose<br>Range | Mechanism (OIH/<br>Tolerance) | Efficacy (Pain/OIH/Tolerance)                | Safety Profile                   | References    |
|--------------------------|---------------|-------------------------------|----------------------------------------------|----------------------------------|---------------|
| ULDN + 0.0<br>Opioid 0.0 |               |                               | Strong for OIH/tolerance; enhances analgesia | Well tolerated; no  ↑ withdrawal | [1], [2], [3] |

| LDM | LDM | 0.1-4.5 | Glial/TLR4           | Moderate for OIH, strong for         | Well tolerated; | [4], [5], [6], [7], [8], |
|-----|-----|---------|----------------------|--------------------------------------|-----------------|--------------------------|
|     | LDN | mg/day  | modulation, ↑ opioid | centralized pain; less for tolerance | mild AEs        | [9], [10], [11]          |

## In summary:

For chronic non-cancer pain patients on high opioid doses with OIH, ULDN combined with opioids is likely to provide greater benefit for suppressing tolerance and hyperalgesia, while LDN is effective for improving pain tolerance and quality of life. Both are safe, but protocol selection should be individualized based on risk factors and clinical response. Direct comparative trials are needed to further refine these strategies.

If you need protocol details or monitoring recommendations for these regimens, please specify the clinical context.

Would you like me to review the latest published protocols and consensus guidelines for dosing, titration, and monitoring of ultra-low-dose versus low-dose naltrexone in opioid-induced hyperalgesia, to help you refine your clinical approach in this specific patient population?

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A Scoping Review. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- 3. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review.</u> Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- 4. The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain. Younger J, Parkitny L, McLain D. Clinical Rheumatology. 2014;33(4):451-9. doi:10.1007/s10067-014-2517-2.
- Use of Low-Dose Naltrexone in the Management of Chronic Pain Conditions: A <u>Systematic Review</u>. Hatfield E, Phillips K, Swidan S, Ashman L. Journal of the American Dental Association (1939). 2020;151(12):891-902.e1. doi:10.1016/ j.adaj.2020.08.019.
- Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/ s11916-025-01411-1.
- 7. The Utilization of Low Dose Naltrexone for Chronic Pain. Poliwoda S, Noss B, Truong GTD, et al. CNS Drugs. 2023;37(8):663-670. doi:10.1007/s40263-023-01018-3.

- 8. <u>Is Low-Dose Naltrexone Effective in Chronic Pain Management?</u>. Radi R, Huang H, Rivera J, Lyon C, DeSanto K. The Journal of Family Practice. 2023;72(7):320-321. doi:10.12788/jfp.0654.
- 9. Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
  Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven
  RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/
  i.jpain.2005.01.356.
- Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated Mu-Opioid Receptor-Gs Coupling. Largent-Milnes TM, Guo W, Wang HY, Burns LH, Vanderah TW. The Journal of Pain. 2008;9(8):700-13. doi:10.1016/j.jpain.2008.03.005.
- 11. Antinociceptive Effect of Ultra-Low Dose Naltrexone in a Pre-Clinical Model of Postoperative Orofacial Pain. Hummig W, Baggio DF, Lopes RV, et al. Brain Research. 2023;1798:148154. doi:10.1016/j.brainres.2022.148154.

| Please review the latest published protocols and consensus guidelines for                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dosing, titration, and monitoring of ultra-low-dose versus low-dose naltrexone i<br>opioid-induced hyperalgesia, to help refine a clinical approach in this specific |
| patient population                                                                                                                                                   |
|                                                                                                                                                                      |

What monitoring protocols are recommended for patients receiving ultra-low or low-dose naltrexone with opioids?

## **Patient Assessment and Baseline Evaluation**

Begin with a comprehensive assessment of pain history, opioid use (type, dose, duration), and risk factors for opioid-induced hyperalgesia (OIH) or tolerance. High daily opioid doses and prolonged use increase risk for OIH and tolerance, as do certain opioid types (e.g., fentanyl, hydromorphone, oxycodone, morphine).[1][2][3] Screen for centralized pain syndromes (e.g., fibromyalgia) and psychiatric comorbidities, which may influence response to naltrexone.[1][4][5] Perform baseline NP4, CSI and a cold pressor test (CPT), to objectively measure pain tolerance and help identify OIH.[1] Document baseline physical function, quality of life, and sleep, as these are important outcome measures.[4][6]

## **Initiation and Dosing Protocols**

For ultra-low-dose naltrexone (ULDN), initiate at 0.001–0.002 mg/BID in combination with opioid therapy, especially in patients at high risk for OIH or tolerance. [2][3][7][8][9] [10] For low-dose naltrexone (LDN), start at 0.1–4.5 mg/day, particularly for patients with centralized pain syndromes or lower risk for OIH. [1][4][5][6][11] Titrate the dose based

on clinical response and tolerability, as response times and optimal dosing may vary.[4] [6]

## **Ongoing Monitoring**

- 1. Repeat the CPT at regular intervals (e.g., monthly), CSI every 3 months, to assess changes in pain tolerance and central sensitization and detect OIH.[1]
- 2. Monitor pain severity, opioid requirements, and signs of tolerance or withdrawal throughout therapy.[2][3][7][8]
- 3. Track patient-reported outcomes, including pain, physical function, sleep, and quality of life, to evaluate overall benefit.[4][6]
- 4. Monitor for adverse effects such as gastrointestinal symptoms, neuropsychiatric changes, and withdrawal, and adjust therapy as needed.[2][3][5][6]

## **Special Considerations**

For perioperative or acute pain management, coordinate opioid and naltrexone therapy to avoid inadequate analgesia or precipitated withdrawal; consider discontinuing naltrexone prior to planned procedures and using multimodal non-opioid analgesia as adjuncts.[12][3]

# Gaps in Knowledge

There is a lack of standardized, long-term monitoring protocols for patients on ULDN or LDN with opioids, and further high-quality randomized controlled trials are needed to establish best practices.[4][6]

**In summary:** Monitoring should include baseline and serial CPTs, pain and function assessments, opioid dose tracking, and adverse event surveillance, with protocol adjustments based on clinical response and tolerability.

Would you like me to review the latest evidence on the validity and utility of the cold pressor test (CPT) as a monitoring tool for opioid-induced hyperalgesia in patients receiving ultra-low or low-dose naltrexone with opioids? This could help clarify whether CPT should be routinely incorporated into your protocol.

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 2. Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
  Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven

- RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/j.jpain.2005.01.356.
- Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A <u>Scoping Review</u>. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- 5. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review.</u> Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/ s11916-025-01411-1.
- 7. Paradoxical Effects of the Opioid Antagonist Naltrexone on Morphine Analgesia, Tolerance, and Reward in Rats. Powell KJ, Abul-Husn NS, Jhamandas A, et al. The Journal of Pharmacology and Experimental Therapeutics. 2002;300(2):588-96. doi:10.1124/jpet.300.2.588.
- 8. <u>Ultra-Low Dose Naltrexone Attenuates Chronic Morphine-Induced Gliosis in Rats</u>. Mattioli TA, Milne B, Cahill CM. Molecular Pain. 2010;6:22. doi:10.1186/1744-8069-6-22.
- 9. <u>Dissociable Effects of Ultralow-Dose Naltrexone on Tolerance to the Antinociceptive and Cataleptic Effects of Morphine</u>. Tuerke KJ, Beninger RJ, Paquette JJ, Olmstead MC. Behavioural Pharmacology. 2011;22(5-6):558-63. doi:10.1097/FBP.0b013e3283474a56.
- Influence of Low Doses of Naltrexone on Morphine Antinociception and Morphine Tolerance in Male and Female Rats of Four Strains. Terner JM, Barrett AC, Lomas LM, Negus SS, Picker MJ. Pain. 2006;122(1-2):90-101. doi:10.1016/ j.pain.2006.01.019.
- 11. The Utilization of Low Dose Naltrexone for Chronic Pain. Poliwoda S, Noss B, Truong GTD, et al. CNS Drugs. 2023;37(8):663-670. doi:10.1007/s40263-023-01018-3.
- 12. <u>Treatment of Opioid Use Disorder in the General Hospital</u>. Margo C. Funk MD MA, Sara Nash MD, Allison Smith MD, et al. American Psychiatric Association (2022).

Please review the latest evidence on the validity and utility of the cold pressor test (CPT) as a monitoring tool for opioid-induced hyperalgesia in patients receiving ultra-low or low-dose naltrexone with opioids

The cold pressor test (CPT) is a valid and useful objective tool for monitoring opioid-induced hyperalgesia (OIH) in patients with chronic non-cancer pain who are receiving ultra-low-dose or low-dose naltrexone in combination with opioid therapy, but its utility is best supported as part of a multimodal assessment rather than as a standalone diagnostic.

Recent clinical evidence demonstrates that CPT can reliably detect changes in pain tolerance associated with OIH and response to naltrexone therapy. In an open-label case series of 55 patients with OIH on chronic opioid therapy, treatment with low-dose naltrexone (LDN) resulted in a more than fourfold increase in pain tolerance as measured by CPT, with large effect sizes and high statistical significance. This supports CPT as a sensitive measure for tracking improvement in OIH during naltrexone therapy.

[1] The authors recommend routine use of CPT in patients on chronic opioids to objectively assess pain tolerance and guide therapy.

Systematic reviews confirm that CPT is commonly used in research to assess pain sensitivity and hyperalgesia in opioid-exposed populations, including those treated with naltrexone. However, findings can vary depending on pain modality and patient population. CPT is more sensitive for detecting changes in pain tolerance than pain threshold, and is particularly useful in patients with opioid use disorder or high opioid doses.[2] Some studies note that CPT may not always distinguish OIH from other pain states, and recommend combining CPT with other psychophysical tests (e.g., diffuse noxious inhibitory control, DNIC) for a more comprehensive assessment.[3]

Meta-analyses and reviews highlight that CPT is a practical, reproducible, and non-invasive tool for clinical and research settings, but results should be interpreted in the context of clinical history, opioid dose, and other confounders (e.g., psychiatric comorbidities, coping styles).[2] CPT is most useful for monitoring changes over time in response to interventions like LDN or ultra-low-dose naltrexone (ULDN), rather than for initial diagnosis of OIH.

**In summary:** CPT is a valid and practical tool for monitoring OIH in chronic pain patients receiving naltrexone and opioids, especially for tracking treatment response. It should be used alongside clinical assessment and other pain measures for optimal utility.[1][2][3]

Would you like guidance on integrating CPT into routine clinical protocols for patients on naltrexone and opioids?

Would you like me to summarize the comparative effectiveness of the cold pressor test versus other quantitative sensory testing modalities (such as DNIC or pressure pain threshold) specifically for monitoring opioid-induced hyperalgesia in patients receiving naltrexone and opioids?

## References

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 2. <u>Evidence of Opioid-Induced Hyperalgesia in Clinical Populations After Chronic Opioid Exposure: A Systematic Review and Meta-Analysis</u>. Higgins C, Smith BH, Matthews K. British Journal of Anaesthesia. 2019;122(6):e114-e126. doi:10.1016/j.bja.2018.09.019.
- 3. Oral Opioid Use Alters DNIC but Not Cold Pain Perception in Patients With Chronic Pain New Perspective of Opioid-Induced Hyperalgesia. Ram KC, Eisenberg E, Haddad M, Pud D. Pain. 2008;139(2):431-438. doi:10.1016/j.pain.2008.05.015.

Please summarize the comparative effectiveness of the cold pressor test versus other quantitative sensory testing modalities (such as DNIC or pressure pain threshold) specifically for monitoring opioid-induced hyperalgesia in patients receiving naltrexone and opioids

Comparative effectiveness of the cold pressor test (CPT) versus other quantitative sensory testing (QST) modalities—such as diffuse noxious inhibitory control (DNIC) and pressure pain threshold (PPT)—for monitoring opioid-induced hyperalgesia (OIH) in chronic non-cancer pain patients receiving naltrexone (ultra-low or low-dose) with opioids is nuanced:

## **Cold Pressor Test (CPT):**

CPT is a valid and sensitive tool for detecting changes in pain tolerance associated with OIH and response to naltrexone therapy. In patients with OIH on chronic opioids, LDN treatment led to a more than fourfold increase in CPT pain tolerance, with large effect sizes, supporting its utility for monitoring improvement in OIH.[1] However, systematic reviews and meta-analyses show that CPT may not always distinguish OIH from other pain states, and its sensitivity can vary depending on patient population and pain modality.[2][3] CPT is most effective for tracking changes over time, especially in response to interventions like naltrexone.

### **Diffuse Noxious Inhibitory Control (DNIC):**

DNIC assesses endogenous pain inhibitory pathways and is more sensitive than CPT for detecting altered pain modulation in opioid-treated patients. Studies show that oral

opioid use impairs DNIC responses, even when cold pain perception (CPT) is unchanged.[4][5] DNIC is particularly useful for identifying central sensitization and impaired pain inhibition, which are hallmarks of OIH. DNIC changes correlate with opioid dose and duration, making it a valuable adjunct to CPT for comprehensive OIH assessment.

## **Pressure Pain Threshold (PPT):**

PPT and related measures (Pain50, suprathreshold pressure pain sensitivity) can detect dose-dependent hyperalgesia in opioid-treated patients, with lower pain tolerance and increased sensitivity at higher opioid doses. [6] However, PPT may not consistently differentiate OIH from other pain states, and results can be influenced by individual factors and testing protocols.

## **Summary of Evidence:**

- CPT is practical and sensitive for monitoring OIH and response to naltrexone, especially for changes in pain tolerance.[1][7][8]
- DNIC is superior for detecting impaired pain modulation and central sensitization in opioid-treated patients, even when CPT is normal.[4][5]
- PPT is useful for identifying dose-dependent hyperalgesia but may be less specific for OIH.[6]
- No single QST modality is definitive; combining CPT, DNIC, and PPT provides the most comprehensive assessment of OIH in patients on chronic opioids and naltrexone. [2][9][5]

**In summary:** CPT is effective for monitoring OIH and naltrexone response, but DNIC offers greater sensitivity for central pain modulation changes. PPT adds value for dose-dependent effects. A multimodal QST approach is recommended for optimal monitoring in this population.

Would you like protocol recommendations for integrating these QST modalities into routine clinical monitoring for patients receiving naltrexone and opioids?

Would you like me to summarize the latest clinical studies comparing the predictive value of DNIC versus CPT for long-term outcomes (such as pain relief and functional improvement) in patients with opioid-induced hyperalgesia treated with naltrexone?

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- Review of the Performance of Quantitative Sensory Testing Methods to Detect Hyperalgesia in Chronic Pain Patients on Long-Term Opioids. Katz NP, Paillard FC, Edwards RR. Anesthesiology. 2015;122(3):677-85. doi:10.1097/ ALN.000000000000530.
- 3. Opioid-Induced Hyperalgesia in the Nonsurgical Setting: A Systematic Review. Yang DZ, Sin B, Beckhusen J, et al. American Journal of Therapeutics. 2019 May/Jun;26(3):e397-e405. doi:10.1097/MJT.000000000000734.
- 4. Oral Opioid Use Alters DNIC but Not Cold Pain Perception in Patients With Chronic Pain New Perspective of Opioid-Induced Hyperalgesia. Ram KC, Eisenberg E, Haddad M, Pud D. Pain. 2008;139(2):431-438. doi:10.1016/j.pain.2008.05.015.
- 5. Increased Pain Sensitivity in Chronic Pain Subjects on Opioid Therapy: A Cross-Sectional Study Using Quantitative Sensory Testing. Zhang Y, Ahmed S, Vo T, et al. Pain Medicine (Malden, Mass.). 2015;16(5):911-22. doi:10.1111/pme.12606.
- 6. Pressure Pain Sensitivity in Patients With Suspected Opioid-Induced Hyperalgesia. Wasserman RA, Hassett AL, Harte SE, et al. Regional Anesthesia and Pain Medicine. 2015 Nov-Dec;40(6):687-93. doi:10.1097/AAP.00000000000315.
- 7. <u>Hyperalgesia in Opioid-Managed Chronic Pain and Opioid-Dependent Patients</u>. Hay JL, White JM, Bochner F, et al. The Journal of Pain. 2009;10(3):316-22. doi:10.1016/j.jpain.2008.10.003.
- 8. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.
- Altered Quantitative Sensory Testing Outcome in Subjects With Opioid Therapy. Chen L, Malarick C, Seefeld L, et al. Pain. 2009;143(1-2):65-70. doi:10.1016/j.pain.2009.01.022.

Please provide protocol recommendations for integrating these QST modalities into routine clinical monitoring for patients receiving naltrexone and opioids and please summarize the latest clinical studies comparing the predictive value of DNIC versus CPT for long-term outcomes (such as pain relief and functional improvement) in patients with opioid-induced hyperalgesia treated with naltrexone.

Recommended protocols for integrating quantitative sensory testing (QST) modalities—including the cold pressor test (CPT) and diffuse noxious inhibitory control (DNIC, also called conditioned pain modulation, CPM)—into routine

clinical monitoring for chronic non-cancer pain patients receiving naltrexone (ultra-low or low-dose) with opioids are as follows:

#### 1. Baseline Assessment:

- Before initiating naltrexone, perform CPT to objectively measure pain tolerance and DNIC/CPM to assess endogenous pain inhibitory capacity.
- Document opioid history (type, dose, duration), pain characteristics, and comorbidities.

## 2. Serial Monitoring:

- Repeat CPT and DNIC/CPM at regular intervals (e.g., monthly or quarterly) to track changes in pain sensitivity and modulation, especially after dose changes or initiation of naltrexone.
- Use CPT to monitor improvement in pain tolerance, which is sensitive to OIH and response to naltrexone. [1]
- Use DNIC/CPM to detect changes in central pain modulation, which may be impaired in opioid-treated patients and is sensitive to opioid dose and duration.[2][3]

## 3. Clinical Integration:

- Combine QST results with patient-reported pain scores, opioid requirements, and functional outcomes.
- If CPT shows improved pain tolerance and DNIC/CPM shows enhanced pain inhibition, this suggests effective reversal of OIH and improved central pain processing.
- If QST results do not improve, consider adjusting naltrexone dose, opioid regimen, or adding adjunctive therapies.

#### 4. Patient Selection and Protocol Adjustment:

- Patients with high opioid doses, clinical evidence of OIH, or impaired DNIC/CPM may benefit most from ultra-low-dose naltrexone (ULDN) initially.
- Those with centralized pain syndromes and less evidence of OIH may be candidates for low-dose naltrexone (LDN).[4][5][6]

Comparative Predictive Value: DNIC/CPM vs. CPT for Long-Term Outcomes

- **CPT** is sensitive for detecting changes in pain tolerance and monitoring response to naltrexone in OIH. In a case series, LDN quadrupled CPT pain tolerance in OIH patients, supporting its utility for tracking improvement. [1]
- **DNIC/CPM** is more sensitive for identifying impaired central pain modulation in opioid-treated patients. Oral opioid use impairs DNIC responses even when CPT is unchanged, and DNIC is negatively affected by opioid dose and duration. [2][3]
- Latest clinical studies show that DNIC/CPM may have greater prognostic value for long-term pain relief and functional improvement, as it reflects the integrity of descending inhibitory pathways. However, a randomized trial in fibromyalgia found that while LDN improved CPM (DNIC), this did not correlate with clinical pain improvement, suggesting that QST changes may not always predict patient-reported outcomes.[7]

## **Summary Table:**

| Modality   Utility in OIH/Naltrex<br>Outcomes   References          | cone Monitoring   Pro | edictive Value for Long-Term                            |
|---------------------------------------------------------------------|-----------------------|---------------------------------------------------------|
|                                                                     |                       |                                                         |
| CPT   Sensitive for pain tolerar<br>central modulation    [1][8][9] | nce, OIH reversal   ( | Good for tracking response, less for                    |
| DNIC/CPM   Sensitive for centropredict functional improvement,      | •                     | , impaired by opioids   May better related    [7][2][3] |
|                                                                     |                       |                                                         |

#### In summary:

Integrate CPT and DNIC/CPM at baseline and regular intervals to monitor OIH and response to naltrexone in chronic pain patients on opioids. CPT is practical for tracking pain tolerance, while DNIC/CPM offers deeper insight into central pain modulation and may better predict long-term outcomes. Use both modalities together for optimal monitoring and protocol adjustment.

Would you like protocol templates or practical guidance for implementing QST in your clinic workflow?

Would you like me to summarize the most recent systematic reviews or meta-analyses that directly compare the clinical utility and prognostic accuracy of DNIC/CPM versus CPT in predicting long-term outcomes for opioid-induced hyperalgesia patients treated with naltrexone, to help guide evidence-based protocol selection?

#### References

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 2. Oral Opioid Use Alters DNIC but Not Cold Pain Perception in Patients With Chronic Pain New Perspective of Opioid-Induced Hyperalgesia. Ram KC, Eisenberg E, Haddad M, Pud D. Pain. 2008;139(2):431-438. doi:10.1016/j.pain.2008.05.015.
- Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights From Pre-Clinical Studies. Pereira-Silva R, Neto FL, Martins I. International Journal of Molecular Sciences. 2025;26(1):402. doi:10.3390/ijms26010402.
- Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A <u>Scoping Review</u>. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- 5. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review.</u> Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- 6. <u>Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials</u>. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/s11916-025-01411-1.
- 7. Effect of Naltrexone on Spinal and Supraspinal Pain Mechanisms and Functional Capacity in Women With Fibromyalgia: Exploratory Outcomes From the Randomized Placebo-Controlled FINAL Trial. Bruun KD, Christensen R, Amris K, et al. CNS Drugs. 2025;39(7):685-692. doi:10.1007/s40263-025-01183-7.
- 8. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.
- Altered Quantitative Sensory Testing Outcome in Subjects With Opioid Therapy. Chen L, Malarick C, Seefeld L, et al. Pain. 2009;143(1-2):65-70. doi:10.1016/j.pain.2009.01.022.

Please provide protocol templates and practical guidance for implementing QST in my clinic workflow and please summarize the most recent systematic reviews or meta-analyses that directly compare the clinical utility and prognostic accuracy of DNIC/CPM versus CPT in predicting long-term outcomes for opioid-induced hyperalgesia patients treated with naltrexone, to help guide my evidence-based protocol selection.

I will provide protocol templates and practical guidance for implementing quantitative sensory testing (QST)—specifically the cold pressor test (CPT) and diffuse noxious inhibitory control/conditioned pain modulation (DNIC/CPM)—in clinic workflow for

patients with opioid-induced hyperalgesia (OIH) treated with naltrexone. I will also summarize the most recent systematic reviews and meta-analyses comparing the clinical utility and prognostic accuracy of DNIC/CPM versus CPT for predicting long-term outcomes, as supported by the provided literature.[1][2][3][4][5][6][7][8][9]

# **QST Protocols and Prognosis**

## **Protocol Templates for QST in Clinic Workflow**

#### - Patient Selection and Baseline Assessment

- Identify patients on chronic opioid therapy with suspected OIH or centralized pain syndromes.
- Document opioid history (type, dose, duration), pain characteristics, comorbidities, and baseline function.
- Exclude patients with cognitive impairment, language barriers, or inability to follow instructions.[7]

# - Cold Pressor Test (CPT) Protocol

- Instruct patient to submerge hand/forearm in cold water (0-4°C).
- Record pain threshold (time to first pain report) and pain tolerance (time to withdrawal, max 180 seconds).[1][2][8]
- Repeat CPT at baseline and at regular intervals (e.g., monthly) to monitor changes in pain tolerance after naltrexone initiation.
- Use standardized instructions and reference values adjusted for age, sex, and anatomical site.[8]

#### - DNIC/CPM Protocol

- Apply a test stimulus (e.g., pressure pain threshold) to a designated site.
- Simultaneously apply a conditioning stimulus (e.g., CPT or another painful stimulus) to a remote site.
- Measure change in pain perception of the test stimulus during conditioning; a reduction indicates intact DNIC/CPM.[5][7][8]
- Repeat at baseline and follow-up to assess changes in endogenous pain inhibition.

#### - Additional QST Modalities

- Consider including heat pain threshold, pressure pain threshold, and temporal summation for a comprehensive profile.[3][4][8]
- Use validated algorithms and reference values for interpretation.[8]

## - Documentation and Monitoring

- Record QST results in the medical record, noting changes over time and correlation with clinical outcomes.
- Integrate QST findings with patient-reported pain, opioid requirements, and functional status.
- Use QST to guide therapy adjustments (e.g., naltrexone titration, opioid rotation).

## Comparative Effectiveness and Prognostic Accuracy: DNIC/CPM vs. CPT

- **CPT** is sensitive for detecting OIH and monitoring response to naltrexone, with large improvements in pain tolerance observed after LDN therapy in OIH patients. Meta-analyses confirm CPT reliably detects cold pain hypersensitivity in opioid-exposed populations, but its specificity for central pain modulation is limited.[1][2][4]
- **DNIC/CPM** is superior for identifying impaired central pain inhibition and predicting long-term pain relief and functional improvement. Systematic reviews show that baseline CPM and temporal summation are most consistently associated with chronic pain outcomes and response to pharmacological interventions, including naltrexone.[5]
- **Combined QST Approach**: Using both CPT and DNIC/CPM provides complementary information—CPT tracks pain tolerance and OIH reversal, while DNIC/CPM assesses central modulation and prognosticates long-term outcomes.[4][5][6][7][9]
- **Limitations**: No single QST modality is definitive; results should be interpreted in clinical context. Heterogeneity in QST methods and patient populations may affect generalizability.[4][5][7]

#### **Practical Guidance**

- Integrate QST into routine workflow for patients on chronic opioids and naltrexone, especially those with suspected OIH or centralized pain.
- Use standardized protocols, reference values, and regular monitoring to track treatment response and guide clinical decisions.

- Combine QST results with clinical assessment for optimal management and prognostication.

This protocol document provides evidence-based guidance for implementing QST in clinical practice and summarizes the comparative utility of CPT and DNIC/CPM for monitoring and prognosticating outcomes in OIH patients treated with naltrexone. For further details on QST standardization or integration into electronic health records, additional resources are available in the cited literature.

Would you like me to identify and summarize the most recent consensus guidelines or position statements on QST standardization and clinical interpretation, particularly regarding DNIC/CPM and CPT in opioid-induced hyperalgesia, to ensure your protocol aligns with best practices and facilitates reproducible, clinically meaningful results?

- 1. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- 2. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.
- Altered Quantitative Sensory Testing Outcome in Subjects With Opioid Therapy. Chen L, Malarick C, Seefeld L, et al. Pain. 2009;143(1-2):65-70. doi:10.1016/j.pain.2009.01.022.
- 4. Review of the Performance of Quantitative Sensory Testing Methods to Detect Hyperalgesia in Chronic Pain Patients on Long-Term Opioids. Katz NP, Paillard FC, Edwards RR. Anesthesiology. 2015;122(3):677-85. doi:10.1097/ALN.000000000000530.
- The Predictive Value of Quantitative Sensory Testing: A Systematic Review on Chronic Postoperative Pain and the Analgesic Effect of Pharmacological Therapies in Patients With Chronic Pain. Petersen KK, Vaegter HB, Stubhaug A, et al. Pain. 2021;162(1):31-44. doi:10.1097/j.pain.0000000000000019.
- Quantitative Sensory Testing and Predicting Outcomes for Musculoskeletal Pain, Disability, and Negative Affect: A Systematic Review and Meta-Analysis.
   Georgopoulos V, Akin-Akinyosoye K, Zhang W, et al. Pain. 2019;160(9):1920-1932. doi:10.1097/j.pain.000000000001590.
- 7. <u>Value of Quantitative Sensory Testing in Neurological and Pain Disorders:</u> <u>NeuPSIG Consensus</u>. Backonja MM, Attal N, Baron R, et al. Pain. 2013;154(9):1807-1819. doi:10.1016/j.pain.2013.05.047.
- 8. Quantitative Sensory Testing in the German Research Network on Neuropathic Pain (DFNS): Standardized Protocol and Reference Values. Rolke R, Baron R, Maier C, et al. Pain. 2006;123(3):231-243. doi:10.1016/j.pain.2006.01.041.

9. Can Self-Reported Pain Characteristics and Bedside Test Be Used for the Assessment of Pain Mechanisms? An Analysis of Results of Neuropathic Pain Questionnaires and Quantitative Sensory Testing. Gierthmühlen J, Schneider U, Seemann M, et al. Pain. 2019;160(9):2093-2104. doi:10.1097/j.pain.000000000001601.

#### DNIC/CPM

I am not familiar with DNIC or CPM testing. I do not know the tools or methods employed for the techniques. Please provide necessary information for me to engage these unfamiliar tests in a clinic setting. Please identify and summarize the most recent consensus guidelines or position statements on QST standardization and clinical interpretation, particularly regarding DNIC/CPM and CPT in opioid-induced hyperalgesia, to ensure my protocol aligns with best practices and facilitates reproducible, clinically meaningful results

# Step-by-Step Protocol for DNIC/CPM Testing in the Clinic

#### **Tools and Methods:**

- Pressure algometer (for pressure pain threshold, PPT)
- Thermode (for heat pain threshold, if available)
- Cold pressor setup (container, ice, water thermometer; water at 0–4°C)
- Stopwatch or timer
- Standardized pain rating scales (e.g., 0–10 NRS or VAS)

#### Procedure:

#### 1. Patient Preparation:

- Explain the procedure and obtain informed consent.
- Ensure the patient is comfortable and understands pain rating scales.

- Exclude patients with cognitive/language barriers, severe anxiety, or inability to follow instructions.[1][2]

#### 2. Baseline Test Stimulus:

- Measure baseline PPT (e.g., at the trapezius or quadriceps) or heat pain threshold using a thermode.
- Record the pain threshold and/or pain rating.

## 3. Conditioning Stimulus (CPM/DNIC):

- Apply a heterotopic noxious stimulus, most commonly the cold pressor test (immerse hand/forearm in 0–4°C water for up to 2 minutes or until intolerable). [3][4][5]
- Alternatively, use hot water immersion (46°C), ischemic occlusion, or cold pack as conditioning stimuli.[3]

## 4. Test Stimulus During Conditioning:

- While the conditioning stimulus is ongoing, re-measure PPT or heat pain threshold at the same site.
- Record the change in pain threshold or pain rating.

## 5. Calculation and Interpretation:

- CPM effect = (Pain threshold during conditioning) (Baseline pain threshold).
- A positive CPM effect indicates intact descending inhibition; a negative or absent effect suggests impaired pain modulation, often seen in chronic pain or opioid-induced hyperalgesia.[6][7][8]

#### 6. Repeat and Monitor:

- For reliability, repeat the protocol at baseline and at regular intervals (e.g., monthly) to monitor changes over time, especially after starting naltrexone or adjusting opioid therapy.[9][4]

#### Implementation Tips for Clinicians Unfamiliar with QST:

- Start with simple bedside protocols using the cold pressor test and pressure algometry, which are validated and practical for clinical use.[2][3][4]
- Use standardized instructions and reference values adjusted for age, sex, and anatomical site.[1]

- Document all results and correlate with clinical outcomes (pain scores, opioid dose, function).

# **Consensus Guidelines and Position Statements on QST Standardization and Interpretation**

- The Neuropathic Pain Special Interest Group (NeuPSIG) consensus recommends using predefined, standardized stimuli and validated algorithms for QST, including CPM/DNIC and CPT, with reference values corrected for anatomical site, age, and gender.[1]
- QST should not be used as a stand-alone diagnostic for neuropathic pain or OIH, but as a complementary tool alongside clinical assessment.[1][2]
- CPM/DNIC and CPT are reliable for monitoring changes in pain modulation and OIH, but results are influenced by patient factors (age, gender, stress, physical activity, attentional focus) and methodological variables (conditioning/test stimulus type, site).[3]
- The latest reviews emphasize the need for consistent methodologies, regular calibration of equipment, and standardized patient instructions to ensure reproducibility and clinical utility.[2][6]
- For clinical trials and routine practice, bedside QST protocols (e.g., CPT and pressure algometry) are recommended for their ease of implementation and cost-effectiveness, while laboratory QST is reserved for research settings.[2]

## **Summary Table of Best Practices:**

| Step/Element           | Recommendation/Details                                  | Reference        |
|------------------------|---------------------------------------------------------|------------------|
| Patient selection      | Exclude cognitive/language barriers, severe anxiety     | [1], [2]         |
| Baseline test stimulus | PPT or heat pain threshold                              | [3], [4],<br>[5] |
| Conditioning stimulus  | CPT (0-4°C), hot water, ischemic occlusion              | [3], [4]         |
| CPM/DNIC calculation   | Change in pain threshold during vs. before conditioning | [6], [7],<br>[8] |
| Standardization        | Use validated protocols, reference values               | [1], [2][3]      |
| Monitoring             | Repeat at regular intervals, correlate with outcomes    | [4], [9]         |
| Interpretation         | Use as adjunct to clinical assessment                   | [1], [2]         |

#### In summary:

Clinicians can implement DNIC/CPM and CPT using simple, standardized bedside protocols with pressure algometry and cold pressor setups. Follow consensus guidelines for patient selection, standardized procedures, and interpretation. Use QST as a complementary tool for monitoring OIH and treatment response in patients receiving naltrexone and opioids, ensuring reproducibility and clinical relevance by adhering to best practices.

If you need a printable protocol or patient instruction sheet, or want guidance on integrating QST results into clinical decision-making, please specify your needs.

Would you like me to summarize the most recent literature on the sensitivity and specificity of CPM/DNIC and cold pressor test protocols for detecting opioid-induced hyperalgesia in patients on naltrexone and opioids, so I can better understand their diagnostic accuracy and clinical utility in this specific population.

- Value of Quantitative Sensory Testing in Neurological and Pain Disorders: NeuPSIG Consensus. Backonja MM, Attal N, Baron R, et al. Pain. 2013;154(9):1807-1819. doi:10.1016/j.pain.2013.05.047.
- Quantitative Sensory Testing From Bench to Bedside. Hughes S, Vollert J, Freeman R, Forstenpointner J. International Review of Neurobiology. 2024;179:67-90. doi:10.1016/bs.irn.2024.10.011.
- 3. <u>Comparison of Five Conditioned Pain Modulation Paradigms and Influencing Personal Factors in Healthy Adults.</u> Mertens MG, Hermans L, Crombez G, et al. European Journal of Pain (London, England). 2021;25(1):243-256. doi:10.1002/ejp.1665.
- 4. Reliability of the Conditioned Pain Modulation Paradigm to Assess Endogenous Inhibitory Pain Pathways. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Pain Research & Management. 2012 Mar-Apr;17(2):98-102. doi:10.1155/2012/610561.
- 5. <u>An Experimental Model to Measure Excitatory and Inhibitory Pain Mechanisms in Humans</u>. Tousignant-Laflamme Y, Pagé S, Goffaux P, Marchand S. Brain Research. 2008;1230:73-9. doi:10.1016/j.brainres.2008.06.120.
- Conditioned Pain Modulation-a Comprehensive Review. Ramaswamy S, Wodehouse T. Neurophysiologie Clinique = Clinical Neurophysiology. 2021;51(3):197-208. doi:10.1016/j.neucli.2020.11.002.
- 7. The Plasticity of Descending Controls in Pain: Translational Probing. Bannister K, Dickenson AH. The Journal of Physiology. 2017;595(13):4159-4166. doi:10.1113/JP274165.

- 8. <u>Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights From Pre-Clinical Studies</u>. Pereira-Silva R, Neto FL, Martins I. International Journal of Molecular Sciences. 2025;26(1):402. doi:10.3390/ijms26010402.
- 9. Reliability and Minimal Detectable Change of Dynamic Temporal Summation and Conditioned Pain Modulation Using a Single Experimental Paradigm. Vincenot M, Beaulieu LD, Gendron L, Marchand S, Léonard G. PloS One. 2024;19(7):e0307556. doi:10.1371/journal.pone.0307556.

Please provide an explanation of how these CPM/DNIC tests can be interpreted given the mechanisms of action of the testing and please summarize the most recent literature on the sensitivity and specificity of CPM/DNIC and cold pressor test protocols for detecting opioid-induced hyperalgesia in patients on naltrexone and opioids so I can better understand their diagnostic accuracy and clinical utility in this specific population.

Also, please identify where I might purchase the tools, Pressure algometer (for pressure pain threshold, PPT) and Thermode (for heat pain threshold.

## Interpretation and Mechanisms of CPM/DNIC

Conditioned pain modulation (CPM) and diffuse noxious inhibitory control (DNIC) are psychophysical paradigms that assess the function of descending pain inhibitory pathways. Mechanistically, CPM/DNIC reflect the ability of the central nervous system—primarily via noradrenergic, serotonergic, and opioidergic systems—to suppress pain signals when a second, spatially remote noxious stimulus is applied. In healthy individuals, this results in reduced pain perception to the test stimulus during conditioning. In chronic pain states and opioid-induced hyperalgesia (OIH), CPM/DNIC responses are often blunted, indicating impaired endogenous pain inhibition and central sensitization. [1][2][3][4][5]

Recent literature highlights that CPM/DNIC can show both analgesic and hyperalgesic outcomes, depending on the underlying circuitry and receptor subtypes involved. This duality is important for interpreting test results and for their prognostic value in guiding mechanism-based pain treatment.[1][2][3]

## Sensitivity and Specificity for Detecting OIH

## - CPM/DNIC:

- CPM/DNIC are sensitive for detecting altered pain modulation in patients on chronic opioids. Oral opioid use impairs DNIC responses, even when cold pain perception

(CPT) is unchanged, making CPM/DNIC more sensitive than CPT for identifying OIH.[6] [2][3][7][4]

- CPM/DNIC paradigms reliably differentiate between opioid-treated and non-opioid-treated patients, with reduced CPM/DNIC magnitude indicating impaired descending inhibition and higher risk for OIH.[6][2][7]
- Reliability studies show excellent intrasession reliability for CPM/DNIC using cold pressor or ischemic arm tests (ICC 0.85 for CPT), and good intersession reliability for CPT-based CPM.[7]
- CPM/DNIC are influenced by patient factors (age, gender, stress, physical activity, attentional focus) and methodological variables (conditioning/test stimulus type, site).[2] [8][9]

## - Cold Pressor Test (CPT):

- CPT is practical and sensitive for monitoring changes in pain tolerance, especially in response to naltrexone therapy in OIH.[10][11]
- Meta-analyses show CPT reliably detects cold pain hypersensitivity in opioid-exposed populations, but its specificity for central pain modulation is limited.[12]
- CPT may not always distinguish OIH from other pain states, and results can be affected by confounders.[11][12]

#### - Summary:

- CPM/DNIC are more sensitive and specific than CPT for detecting OIH and impaired pain modulation in opioid-treated patients.[6][2][7][4]
- CPT is useful for tracking pain tolerance and treatment response, but CPM/DNIC provide deeper mechanistic insight and prognostic value.[1][2][3][5]

## **Tools and Purchasing Information**

## - Pressure Algometer:

- Used for measuring pressure pain threshold (PPT) in CPM/DNIC protocols.
- Commercially available from suppliers such as Wagner Instruments, Medoc, Somedic, and Bioseb. Handheld algometers are widely used in clinical and research settings.[9] [13]
- Reference intervals and reliability data are available for various anatomical sites.[9]

#### - Thermode:

- Used for assessing heat pain threshold.
- Commercially available from Medoc Advanced Medical Systems (TSA II, Pathway), Somedic, and other vendors.[14]
- Thermodes are programmable for temperature ramping and can be integrated with QST software.[14]

## - Cold Pressor Setup:

- Requires a container, ice, water thermometer (0-4°C), and timer.
- Simple and cost-effective; protocols are available for clinical use.[13]

#### **Best Practices and Guidelines**

- Use standardized protocols and reference values for QST, as recommended by NeuPSIG and recent reviews.[2][8][9]
- Combine CPM/DNIC and CPT for comprehensive assessment of OIH and pain modulation.
- Document and interpret results in the context of patient factors and clinical history.

#### **Summary Table:**

| Modality  <br>References | Mechanism/Interpretat<br> | ion   Sensitivity/ | Specificity for OIF | Tools Needed |
|--------------------------|---------------------------|--------------------|---------------------|--------------|
|                          |                           |                    |                     |              |

| CPM/DNIC | Descending inhibition, central modulation | High (impaired in OIH) | Pressure algometer, thermode | |[1][6][2][3][8][7][4][5][9][13][14]

| CPT | Pain tolerance, peripheral/central | Moderate (tracks response) | Cold pressor setup | |[12][10][11][13]

**In summary:** CPM/DNIC are mechanistically robust and sensitive for detecting OIH and impaired pain modulation in opioid-treated patients, while CPT is practical for monitoring pain tolerance and treatment response. Pressure algometers and thermodes are commercially available for clinical use. Adhering to standardized protocols and guidelines ensures reproducible, clinically meaningful results.

If you need vendor recommendations or protocol templates for specific QST devices, please specify your clinic's needs.

Would you like me to summarize the latest comparative studies or meta-analyses that directly evaluate the diagnostic accuracy (sensitivity, specificity, predictive values) of CPM/DNIC versus CPT specifically for opioid-induced hyperalgesia in patients on naltrexone and opioids, so you can better gauge their clinical utility and select the most evidence-based protocol for your practice?

- <u>Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights From Pre-Clinical Studies</u>. Pereira-Silva R, Neto FL, Martins I. International Journal of Molecular Sciences. 2025;26(1):402. doi:10.3390/ijms26010402.
- 2. <u>Conditioned Pain Modulation-a Comprehensive Review.</u> Ramaswamy S, Wodehouse T. Neurophysiologie Clinique = Clinical Neurophysiology. 2021;51(3):197-208. doi:10.1016/j.neucli.2020.11.002.
- The Plasticity of Descending Controls in Pain: Translational Probing. Bannister K, Dickenson AH. The Journal of Physiology. 2017;595(13):4159-4166. doi:10.1113/ JP274165.
- 4. The CPM Effect: Functional Assessment of the Diffuse Noxious Inhibitory Control in Humans. Leone C, Truini A. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society. 2019;36(6):430-436. doi:10.1097/WNP.00000000000599.
- Neural Mechanisms Underlying the Conditioned Pain Modulation Response: A <u>Narrative Review of Neuroimaging Studies</u>. Nahman-Averbuch H, Timmers I. Pain. 2023;164(1):e25-e46. doi:10.1097/j.pain.000000000002716.
- Oral Opioid Use Alters DNIC but Not Cold Pain Perception in Patients With Chronic Pain - New Perspective of Opioid-Induced Hyperalgesia. Ram KC, Eisenberg E, Haddad M, Pud D. Pain. 2008;139(2):431-438. doi:10.1016/ j.pain.2008.05.015.
- 7. Reliability of the Conditioned Pain Modulation Paradigm to Assess Endogenous Inhibitory Pain Pathways. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Pain Research & Management. 2012 Mar-Apr;17(2):98-102. doi:10.1155/2012/610561.
- 8. Comparison of Five Conditioned Pain Modulation Paradigms and Influencing Personal Factors in Healthy Adults. Mertens MG, Hermans L, Crombez G, et al. European Journal of Pain (London, England). 2021;25(1):243-256. doi:10.1002/ejp.1665.
- Reference Intervals and Sources of Variation of Pressure Pain Threshold for Quantitative Sensory Testing in a Japanese Population. Suzuki H, Tahara S, Mitsuda M, et al. Scientific Reports. 2023;13(1):13043. doi:10.1038/ s41598-023-40201-w.

- 10. The Effects of Low Dose Naltrexone on Opioid Induced Hyperalgesia and Fibromyalgia. Jackson D, Singh S, Zhang-James Y, Faraone S, Johnson B. Frontiers in Psychiatry. 2021;12:593842. doi:10.3389/fpsyt.2021.593842.
- Review of the Performance of Quantitative Sensory Testing Methods to Detect Hyperalgesia in Chronic Pain Patients on Long-Term Opioids. Katz NP, Paillard FC, Edwards RR. Anesthesiology. 2015;122(3):677-85. doi:10.1097/ ALN.000000000000530.
- 12. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.
- A Protocol of Manual Tests to Measure Sensation and Pain in Humans. Kostek M, Polaski A, Kolber B, et al. Journal of Visualized Experiments: JoVE. 2016; (118). doi:10.3791/54130.
- 14. <u>Determining Heat and Mechanical Pain Threshold in Inflamed Skin of Human Subjects</u>. Angst MS, Tingle M, Phillips NG, Carvalho B. Journal of Visualized Experiments: JoVE. 2009;(23):1092. doi:10.3791/1092.

Please provide vendor recommendations and protocol templates for specific QST devices, based on inexperienced clinic personnel needing to learn how to perform the tests.

And please summarize the latest comparative studies or meta-analyses that directly evaluate the diagnostic accuracy (sensitivity, specificity, predictive values) of CPM/DNIC versus CPT specifically for opioid-induced hyperalgesia in patients on naltrexone and opioids, so I can better gauge their clinical utility and select the most evidence-based protocol for my practice.

## **Recommended Vendors for Quantitative Sensory Testing Devices**

For clinics with inexperienced personnel, select vendors known for user-friendly, reliable devices and good customer support:

## - Pressure Algometers:

- Wagner Instruments (e.g., FPX 25, FDX series): Widely used in clinical research and practice, easy to operate, and referenced in QST protocols.[1][2]
- Somedic SenseLab: Offers digital algometers with data logging and training resources.
- *Medoc Advanced Medical Systems*: Provides pressure algometers and integrated QST platforms.

- Thermode (for heat pain threshold):
- *Medoc Advanced Medical Systems* (TSA II, Pathway): Gold standard for thermal QST, with intuitive software and training modules.[3]
- Somedic: Offers portable thermodes suitable for clinical use.
- Bioseb: Provides cost-effective options for basic thermal testing.

# **Protocol Templates for Training Staff**

Cold Pressor Test (CPT):

- 1. **Preparation:** Fill a container with ice water (0–4°C). Have a timer and pain rating scale (e.g., 0–10 NRS) ready.
- 2. **Instructions:** Explain the procedure and obtain consent. The patient immerses their hand/forearm in the water.

#### 3. Testing:

- Record *pain threshold* (time to first pain report) and *pain tolerance* (time to withdrawal, max 180 seconds).
- Ask the patient to rate pain intensity at intervals.
- 4. **Safety:** Stop immediately if the patient requests or shows distress.
- 5. **Documentation:** Record times, pain ratings, and any adverse reactions.

Conditioned Pain Modulation (CPM/DNIC):

#### 1. Preparation:

- Select a test stimulus (e.g., pressure pain threshold using algometer at trapezius/quadriceps).
- Prepare a conditioning stimulus (e.g., CPT or ischemic occlusion).

#### 2. Baseline Measurement:

- Measure PPT at the test site.
- 3. Conditioning Stimulus:

- Apply CPT (contralateral hand) or ischemic occlusion (blood pressure cuff inflated to 200 mmHg for 2 min).

## 4. During Conditioning:

- Re-measure PPT at the test site.

## 5. Interpretation:

- CPM effect = PPT during conditioning baseline PPT.
- Positive value: intact inhibition; negative/zero: impaired inhibition (suggests central sensitization/OIH).[2][4][5]

## 6. Training:

- Use standardized instructions and reference values. Practice with healthy volunteers before patient testing.

#### **Consensus Guidelines and Best Practices**

- Use **standardized protocols** and validated equipment.[3][6][1]
- Exclude patients with cognitive/language barriers or severe anxiety.[6]
- Document anatomical site, age, and gender for reference values.[6]
- QST is **not a stand-alone diagnostic**; interpret results in clinical context.[6]
- Regular calibration and staff training are essential for reproducibility.[3][1]

#### Comparative Diagnostic Accuracy: CPM/DNIC vs. CPT

- **CPM/DNIC** is more sensitive and specific for detecting impaired pain modulation and central sensitization (hallmarks of OIH) in opioid-treated patients. Oral opioid use impairs DNIC responses even when CPT is normal.[7]
- **CPT** is practical and sensitive for tracking pain tolerance and treatment response, but less specific for central pain modulation.[8][9]

## - Reliability:

- CPT shows excellent intrasession reliability (ICC 0.85) and good intersession reliability (ICC 0.66).[4]

- CPM/DNIC reliability is more variable (ICC 0.16–0.37), but protocols using CPT as the conditioning stimulus are superior.[10][4]
- **Meta-analyses** confirm that CPM/DNIC better differentiates opioid-induced changes in pain modulation, while CPT is best for monitoring changes in pain tolerance.[7][9]

# - Clinical Utility:

- Use both modalities for comprehensive assessment. CPM/DNIC is preferred for mechanistic insight and prognostication; CPT is ideal for routine monitoring and staff training.[3][11][6][7]

# **Summary Table**

| Modali<br>ty | Sensitivity/Specificity<br>for OIH | Reliability (ICC)                                | Clinical Utility           | Reference<br>s        |
|--------------|------------------------------------|--------------------------------------------------|----------------------------|-----------------------|
| CPM/<br>DNIC | High (central modulation)          | Variable (0.16–0.37); best with CPT              | Mechanistic/<br>prognostic | [1], [2],<br>[3], [4] |
| CPT          | Moderate (pain tolerance)          | Excellent (0.85 intrasession, 0.66 intersession) | Routine monitoring         | [3], [5],<br>[6]      |

## In summary:

- Wagner Instruments, Medoc, and Somedic are recommended vendors for algometers and thermodes.
- Use standardized, stepwise protocols for CPT and CPM/DNIC, with staff training and calibration.
- CPM/DNIC is more sensitive for central pain modulation and OIH; CPT is reliable and practical for routine use.
- Combine both for optimal clinical assessment and monitoring in patients on naltrexone and opioids.

For further details or printable protocol sheets, vendor contact information, or training resources, please specify your clinic's needs.

Would you like me to help you identify and summarize the most recent consensus guidelines or position statements from pain societies (such as IASP or EFIC) regarding the implementation and interpretation of CPM/DNIC and CPT protocols specifically in the context of opioid-induced hyperalgesia, to ensure your clinic's practices align with current expert recommendations?

- A Protocol of Manual Tests to Measure Sensation and Pain in Humans. Kostek M, Polaski A, Kolber B, et al. Journal of Visualized Experiments: JoVE. 2016; (118). doi:10.3791/54130.
- Effect of Pain Neuroscience Education Combined With Cognition-Targeted Motor Control Training on Chronic Spinal Pain: A Randomized Clinical Trial. Malfliet A, Kregel J, Coppieters I, et al. JAMA Neurology. 2018;75(7):808-817. doi:10.1001/jamaneurol.2018.0492.
- 3. Quantitative Sensory Testing From Bench to Bedside. Hughes S, Vollert J, Freeman R, Forstenpointner J. International Review of Neurobiology. 2024;179:67-90. doi:10.1016/bs.irn.2024.10.011.
- Reliability of the Conditioned Pain Modulation Paradigm to Assess Endogenous Inhibitory Pain Pathways. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Pain Research & Management. 2012 Mar-Apr;17(2):98-102. doi:10.1155/2012/610561.
- 5. <u>An Experimental Model to Measure Excitatory and Inhibitory Pain Mechanisms in Humans</u>. Tousignant-Laflamme Y, Pagé S, Goffaux P, Marchand S. Brain Research. 2008;1230:73-9. doi:10.1016/j.brainres.2008.06.120.
- 6. <u>Value of Quantitative Sensory Testing in Neurological and Pain Disorders:</u> <u>NeuPSIG Consensus</u>. Backonja MM, Attal N, Baron R, et al. Pain. 2013;154(9):1807-1819. doi:10.1016/j.pain.2013.05.047.
- 7. Oral Opioid Use Alters DNIC but Not Cold Pain Perception in Patients With Chronic Pain New Perspective of Opioid-Induced Hyperalgesia. Ram KC, Eisenberg E, Haddad M, Pud D. Pain. 2008;139(2):431-438. doi:10.1016/j.pain.2008.05.015.
- 8. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.
- 9. Evidence of Opioid-Induced Hyperalgesia in Clinical Populations After Chronic Opioid Exposure: A Systematic Review and Meta-Analysis. Higgins C, Smith BH, Matthews K. British Journal of Anaesthesia. 2019;122(6):e114-e126. doi:10.1016/j.bja.2018.09.019.
- Reliability and Minimal Detectable Change of Dynamic Temporal Summation and Conditioned Pain Modulation Using a Single Experimental Paradigm. Vincenot M, Beaulieu LD, Gendron L, Marchand S, Léonard G. PloS One. 2024;19(7):e0307556. doi:10.1371/journal.pone.0307556.
- 11. Comparison of Five Conditioned Pain Modulation Paradigms and Influencing Personal Factors in Healthy Adults. Mertens MG, Hermans L, Crombez G, et al. European Journal of Pain (London, England). 2021;25(1):243-256. doi:10.1002/ejp.1665.

What would be expected price range be to purchase the devices necessary to perform these CPM/DNIC testing procedures?

And please identify and summarize the most recent consensus guidelines or position statements from pain societies (such as IASP or EFIC) regarding the implementation and interpretation of CPM/DNIC and CPT protocols specifically in the context of opioid-induced hyperalgesia, to ensure your clinic's practices align with current expert recommendations

# **Expected Price Range for QST Devices**

- **Pressure algometers** (for pressure pain threshold, PPT): Entry-level clinical models (e.g., Wagner Instruments, Somedic) typically range from **\$400 to \$1,200 USD** per unit. These are user-friendly and suitable for clinics with inexperienced personnel. Digital models with data logging may be at the higher end of this range.
- **Thermodes** (for heat pain threshold): Devices from vendors such as Medoc (TSA II, Pathway) and Somedic are more expensive, with prices typically **\$8,000 to \$20,000 USD** per unit, depending on features and software integration. These are considered gold standard for research but may be cost-prohibitive for routine clinical use.
- **Cold pressor test (CPT) setup**: Requires only a container, ice, thermometer, and timer—cost is minimal (typically **<\$100 USD**).

For clinics new to QST, starting with a pressure algometer and CPT setup is practical and cost-effective. Thermodes are recommended for research or specialized pain centers.

---

#### **Consensus Guidelines and Position Statements**

- **NeuPSIG (IASP) Consensus**: The Neuropathic Pain Special Interest Group of the International Association for the Study of Pain (IASP) recommends QST—including CPM/DNIC and CPT—for monitoring somatosensory deficits, evoked pains, allodynia, and hyperalgesia in clinical and research settings. QST should use predefined, standardized stimuli and instructions, validated algorithms, and reference values corrected for anatomical site, age, and gender. QST is not recommended as a standalone diagnostic for neuropathic pain or OIH; interpretation must consider clinical context and patient factors (e.g., language/cognitive barriers, anxiety).[1]
- European Pain Federation (EFIC) and Recent Reviews: CPM/DNIC and CPT are recognized as reliable paradigms for assessing descending pain modulation and central sensitization. CPT and hot water immersion are most appropriate for research, while ischemic occlusion and CPT are practical for clinical settings. Influencing factors

(gender, age, stress, physical activity, attentional focus) should be considered in protocol design and interpretation.[2][3][4]

- **Reliability and Utility**: CPT and CPM/DNIC protocols using pressure algometry and cold water are validated, with excellent intrasession reliability for CPT (ICC 0.85) and good reliability for CPM with PPT as the test stimulus (ICC 0.63). CPM/DNIC is more sensitive for central pain modulation and OIH, while CPT is practical for routine monitoring.[5][6][7]
- **Clinical Application**: Guidelines recommend integrating QST into multimodal pain assessment, using standardized protocols, and interpreting results alongside clinical history and patient-reported outcomes. CPM/DNIC may serve as a phenotypic biomarker for pain and guide mechanism-based treatment in chronic pain, including opioid-induced hyperalgesia.[3][4][1]

---

### **Summary Table**

| Device/<br>Protocol | Price Range<br>(USD) | Clinical Utility         | <b>Consensus Recommendations</b>                | Reference<br>s        |
|---------------------|----------------------|--------------------------|-------------------------------------------------|-----------------------|
| Pressure            | \$400-\$1,200        | PPT, CPM/DNIC            | Standardized, validated                         | [1], [2],             |
| Thermode            | \$8,000-<br>\$20,000 | Heat pain threshold, CPM | Gold standard, research                         | [2], [3],<br>[4]      |
| Cold pressor setup  | <\$100               | CPT, CPM/DNIC            | Practical, reliable                             | [1], [3],<br>[5], [6] |
| CPM/DNIC protocols  | N/A                  | Central modulation, OIH  | Use with standardized stimuli, reference values | [3], [5],<br>[7], [8] |
| CPT protocols       | N/A                  | Pain tolerance,          | Routine monitoring, high                        | [6], [9],             |

\_\_\_

#### In summary:

- Pressure algometers are affordable and practical for clinics; thermodes are costly and best for research.
- CPT and CPM/DNIC protocols are validated and recommended by IASP/NeuPSIG and EFIC for assessing pain modulation and OIH, provided standardized methods and clinical context are used.
- CPM/DNIC is more sensitive for central pain modulation; CPT is reliable for routine monitoring.

For further details on device selection, protocol templates, or training resources, contact vendors such as Wagner Instruments, Medoc, or Somedic, and refer to NeuPSIG consensus guidelines for QST standardization.[1]

If you need protocol templates or training materials for inexperienced staff, or want guidance on integrating QST into your clinic workflow, please specify your needs.

Would you like me to summarize the most recent peer-reviewed studies comparing the diagnostic accuracy and clinical utility of CPM/DNIC and CPT protocols specifically for detecting opioid-induced hyperalgesia in real-world clinical populations, so you can ensure your clinic's practices are evidence-based and up to date?

- Value of Quantitative Sensory Testing in Neurological and Pain Disorders: NeuPSIG Consensus. Backonja MM, Attal N, Baron R, et al. Pain. 2013;154(9):1807-1819. doi:10.1016/j.pain.2013.05.047.
- 2. Comparison of Five Conditioned Pain Modulation Paradigms and Influencing Personal Factors in Healthy Adults. Mertens MG, Hermans L, Crombez G, et al. European Journal of Pain (London, England). 2021;25(1):243-256. doi:10.1002/ejp.1665.
- Conditioned Pain Modulation-a Comprehensive Review. Ramaswamy S, Wodehouse T. Neurophysiologie Clinique = Clinical Neurophysiology. 2021;51(3):197-208. doi:10.1016/j.neucli.2020.11.002.
- 4. Role of Endogenous Pain Modulation in Chronic Pain Mechanisms and Treatment. Yarnitsky D. Pain. 2015;156 Suppl 1:S24-S31. doi:10.1097/01.j.pain.0000460343.46847.58.
- Reliability and Minimal Detectable Change of Dynamic Temporal Summation and Conditioned Pain Modulation Using a Single Experimental Paradigm. Vincenot M, Beaulieu LD, Gendron L, Marchand S, Léonard G. PloS One. 2024;19(7):e0307556. doi:10.1371/journal.pone.0307556.
- Reliability of the Conditioned Pain Modulation Paradigm to Assess Endogenous Inhibitory Pain Pathways. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Pain Research & Management. 2012 Mar-Apr;17(2):98-102. doi:10.1155/2012/610561.
- Test-Retest Reliability of Pressure Pain Threshold and Heat Pain Threshold as
   <u>Test Stimuli for Evaluation of Conditioned Pain Modulation</u>. Kovacevic M, Klicov
   L, Vuklis D, Neblett R, Knezevic A. Neurophysiologie Clinique = Clinical
   Neurophysiology. 2021;51(5):433-442. doi:10.1016/j.neucli.2021.06.005.
- 8. Effect of Pain Neuroscience Education Combined With Cognition-Targeted Motor Control Training on Chronic Spinal Pain: A Randomized Clinical Trial. Malfliet A, Kregel J, Coppieters I, et al. JAMA Neurology. 2018;75(7):808-817. doi:10.1001/jamaneurol.2018.0492.

- A Protocol of Manual Tests to Measure Sensation and Pain in Humans. Kostek M, Polaski A, Kolber B, et al. Journal of Visualized Experiments: JoVE. 2016; (118). doi:10.3791/54130.
- 10. <u>Hyperalgesia in Patients With a History of Opioid Use Disorder: A Systematic Review and Meta-Analysis</u>. Trøstheim M, Eikemo M. JAMA Psychiatry. 2024;81(11):1108-1117. doi:10.1001/jamapsychiatry.2024.2176.

Are there any specific adverse effects associated with long-term ultra-low-dose naltrexone use in chronic pain?

Ultra-low-dose naltrexone (ULDN), when used long-term in patients receiving chronic opioid therapy for chronic non-cancer pain, has not been associated with significant or unique adverse effects in clinical trials or observational studies. The safety profile of ULDN is comparable to opioid monotherapy and low-dose naltrexone (LDN), with no increase in opioid withdrawal, organ toxicity, or serious adverse events reported at these doses.

Clinical trials of Oxytrex (oxycodone plus ULDN, 1–2 µg naltrexone per dose) found that the incidence of side effects—including constipation, somnolence, and pruritus—was similar or reduced compared to oxycodone alone, and physical dependence was significantly less with ULDN.[1][2][3] No increase in withdrawal symptoms or opioid-related adverse events was observed. These findings are supported by preclinical studies showing that ULDN attenuates opioid-induced glial activation and tolerance without additional toxicity.[4]

For LDN (0.1–4.5 mg/day), meta-analyses and systematic reviews report mild adverse events such as vivid dreams, headache, and gastrointestinal symptoms, but no organ system toxicity, medication withdrawal, or abuse potential.[5][6][7] While LDN is

associated with a slightly higher rate of mild adverse events compared to placebo (IRR = 1.4), rates are similar to active comparators and remain low overall.[5]

No long-term organ toxicity, hepatotoxicity, or neuropsychiatric complications have been reported with ULDN or LDN in chronic pain populations. The FDA has not identified safety concerns for naltrexone-containing opioid formulations such as Embeda.[8]

**In summary:** Long-term use of ULDN in chronic opioid therapy is well tolerated, with no significant or unique adverse effects identified in clinical studies. Routine monitoring for standard opioid-related side effects is recommended, but no additional safety concerns are expected at ultra-low doses.

If you need guidance on monitoring protocols or patient selection for ULDN, please refer to the previous recommendations.

Would you like me to review the latest evidence on the efficacy of ultra-low-dose naltrexone in reducing opioid tolerance and improving pain outcomes in chronic non-cancer pain patients, compared to opioid monotherapy?

- Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
   Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/j.jpain.2005.01.356.
- Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- Oxytrex Minimizes Physical Dependence While Providing Effective Analgesia: A Randomized Controlled Trial in Low Back Pain. Webster LR, Butera PG, Moran LV, et al. The Journal of Pain. 2006;7(12):937-46. doi:10.1016/ j.jpain.2006.05.005.
- 4. <u>Ultra-Low Dose Naltrexone Attenuates Chronic Morphine-Induced Gliosis in Rats</u>. Mattioli TA, Milne B, Cahill CM. Molecular Pain. 2010;6:22. doi:10.1186/1744-8069-6-22.
- 5. Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/s11916-025-01411-1.
- 6. The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn's Disease, and Other Chronic Pain Disorders. Patten DK, Schultz BG, Berlau DJ. Pharmacotherapy. 2018;38(3):382-389. doi:10.1002/phar.2086.

- 7. <u>Low-Dose Naltrexone Treatment of Familial Benign Pemphigus (Hailey-Hailey Disease)</u>. Ibrahim O, Hogan SR, Vij A, Fernandez AP. JAMA Dermatology. 2017;153(10):1015-1017. doi:10.1001/jamadermatol.2017.2445.
- 8. <u>FDA Orange Book</u>. FDA Orange Book.

# Are there any drug interactions reported with ultra-low-dose naltrexone in chronic opioid therapy?

Ultra-low-dose naltrexone (ULDN), when used in combination with chronic opioid therapy for chronic non-cancer pain, has not been associated with clinically significant drug interactions in published clinical trials or observational studies.

Clinical trials of Oxytrex (oxycodone plus ULDN) and morphine/naltrexone formulations (e.g., Embeda) have shown that ULDN does not precipitate opioid withdrawal, does not block opioid analgesia, and does not require opioid dose escalation to overcome antagonism at these ultra-low doses.[1][2][3][4][5] The safety profile and incidence of adverse events are comparable to opioid monotherapy, and no unique drug interactions have been reported in these studies.

Preclinical and clinical data confirm that ULDN potentiates opioid analgesia and reduces tolerance and hyperalgesia without interfering with opioid efficacy or causing withdrawal.[1][5][6][7] This is in contrast to standard-dose naltrexone, which can precipitate withdrawal and block opioid effects if administered to patients actively using opioids.[8][9]

A large cohort study of low-dose naltrexone (LDN) users in Norway found a reduction in opioid consumption after starting LDN, but did not report adverse drug interactions or increased use of other analgesics.[10] The study authors suggest that warnings about naltrexone's opioid antagonism may have led some patients to avoid opioids, but no pharmacokinetic or pharmacodynamic interactions were observed at low or ultra-low doses.

**In summary:** ULDN, at doses used in clinical protocols (typically 0.002–0.004 mg/day), does not interact adversely with opioids in chronic pain management and does not precipitate withdrawal or block analgesia. No clinically significant drug interactions have been reported in the literature for ULDN combined with chronic opioid therapy.

If higher doses of naltrexone are used, or if patients are opioid-dependent, there is a risk of precipitated withdrawal and loss of analgesia, but this is not seen with ULDN.

Would you like a summary of monitoring protocols or patient selection criteria to further minimize any potential risks when combining ULDN with opioids?

Would you like me to review the latest randomized controlled trials or meta-analyses evaluating the long-term efficacy and safety of ULDN combined with chronic opioid therapy, particularly regarding outcomes like opioid tolerance, hyperalgesia, and overall pain control?

- Adding Ultralow-Dose Naltrexone to Oxycodone Enhances and Prolongs
   Analgesia: A Randomized, Controlled Trial of Oxytrex. Chindalore VL, Craven RA, Yu KP, et al. The Journal of Pain. 2005;6(6):392-9. doi:10.1016/j.jpain.2005.01.356.
- 2. FDA Orange Book. FDA Orange Book.
- Oxytrex: An Oxycodone and Ultra-Low-Dose Naltrexone Formulation. Webster LR. Expert Opinion on Investigational Drugs. 2007;16(8):1277-83. doi:10.1517/13543784.16.8.1277.
- 4. Oxytrex Minimizes Physical Dependence While Providing Effective Analgesia: A Randomized Controlled Trial in Low Back Pain. Webster LR, Butera PG, Moran LV, et al. The Journal of Pain. 2006;7(12):937-46. doi:10.1016/j.jpain.2006.05.005.
- Oxycodone Plus Ultra-Low-Dose Naltrexone Attenuates Neuropathic Pain and Associated Mu-Opioid Receptor-Gs Coupling. Largent-Milnes TM, Guo W, Wang HY, Burns LH, Vanderah TW. The Journal of Pain. 2008;9(8):700-13. doi:10.1016/j.jpain.2008.03.005.
- 6. Paradoxical Effects of the Opioid Antagonist Naltrexone on Morphine Analgesia, Tolerance, and Reward in Rats. Powell KJ, Abul-Husn NS, Jhamandas A, et al. The Journal of Pharmacology and Experimental Therapeutics. 2002;300(2):588-96. doi:10.1124/jpet.300.2.588.
- 7. <u>Ultra-Low Dose Naltrexone Attenuates Chronic Morphine-Induced Gliosis in Rats</u>. Mattioli TA, Milne B, Cahill CM. Molecular Pain. 2010;6:22. doi:10.1186/1744-8069-6-22.
- 8. <u>Treatment of Opioid Use Disorder in the General Hospital</u>. Margo C. Funk MD MA, Sara Nash MD, Allison Smith MD, et al. American Psychiatric Association (2022).
- The American Psychiatric Association Practice Guideline for the Pharmacological Treatment of Patients With Alcohol Use Disorder. Victor I. Reus MD, Laura J. Fochtmann MD MBI, Oscar Bukstein MD MPH, et al. American Psychiatric Association (2018).
- Low-Dose Naltrexone and Opioid Consumption: A Drug Utilization Cohort Study Based on Data From the Norwegian Prescription Database. Raknes G, Småbrekke L. Pharmacoepidemiology and Drug Safety. 2017;26(6):685-693. doi:10.1002/pds.4201.
- In reviewing protocols for VLDN and LDN therapy, the term "centralized pain syndromes" was used. Please provide a list of conditions considered centralized pain syndrome.

**Centralized pain syndromes** are conditions in which pain is primarily driven by central nervous system mechanisms—such as central sensitization, altered pain processing, and neuroinflammation—rather than by ongoing peripheral tissue damage or inflammation. These syndromes are characterized by widespread or disproportionate pain, often accompanied by fatigue, sleep disturbance, and other neuropsychiatric symptoms.

Based on the latest clinical reviews and scoping/meta-analyses, the following medical conditions are classified as centralized pain syndromes and have been studied in the context of low-dose or very low-dose naltrexone (LDN/VLDN) therapy:

- Fibromyalgia
- Complex Regional Pain Syndrome (CRPS)
- Chronic low back pain (especially with nociplastic features)
- Chronic widespread pain
- Chronic pelvic pain/interstitial cystitis
- Temporomandibular disorders (TMD) and orofacial pain
- Chronic headaches (including migraine and tension-type headache)
- Chronic fatigue syndrome/myalgic encephalomyelitis
- Multiple sclerosis (pain component)
- Diabetic neuropathy (centralized component)
- Chronic musculoskeletal pain with central sensitization
- Long COVID/post-viral syndromes (with neuroinflammatory pain features)
- Irritable bowel syndrome and other functional gastrointestinal disorders

These conditions are supported by multiple reviews and meta-analyses as having a significant component of central sensitization and neuroinflammation, making them candidates for therapies like LDN/VLDN that target glial cell activation and central pain processing. [1][2][3][4][5][6][7][8][9][10][11][12]

**In summary:** Centralized pain syndromes include fibromyalgia, CRPS, chronic low back pain, chronic pelvic pain, TMD/orofacial pain, chronic headaches, chronic fatigue

syndrome, multiple sclerosis (pain), diabetic neuropathy (centralized), chronic musculoskeletal pain, long COVID, and irritable bowel syndrome. These are the primary conditions for which LDN/VLDN is being studied and used in clinical practice.

Would you like me to summarize the current evidence from randomized controlled trials and meta-analyses regarding the efficacy and safety of LDN/VLDN specifically for these centralized pain syndromes? This could help guide protocol development and clinical decision-making.

- Low-Dose Naltrexone's Utility for Non-Cancer Centralized Pain Conditions: A Scoping Review. Rupp A, Young E, Chadwick AL. Pain Medicine (Malden, Mass.). 2023;24(11):1270-1281. doi:10.1093/pm/pnad074.
- 2. The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain. Younger J, Parkitny L, McLain D. Clinical Rheumatology. 2014;33(4):451-9. doi:10.1007/s10067-014-2517-2.
- The Safety and Efficacy of Low-Dose Naltrexone in the Management of Chronic Pain and Inflammation in Multiple Sclerosis, Fibromyalgia, Crohn's Disease, and Other Chronic Pain Disorders. Patten DK, Schultz BG, Berlau DJ. Pharmacotherapy. 2018;38(3):382-389. doi:10.1002/phar.2086.
- 4. <u>Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review.</u> Kim PS, Fishman MA. Current Pain and Headache Reports. 2020;24(10):64. doi:10.1007/s11916-020-00898-0.
- Low Dose Naltrexone in the Management of Chronic Pain Syndrome: A Meta-Analysis of Randomized Controlled Clinical Trials. Hegde NC, Mishra A, V D, et al. Current Pain and Headache Reports. 2025;29(1):96. doi:10.1007/ s11916-025-01411-1.
- 6. Effect of Naltrexone on Spinal and Supraspinal Pain Mechanisms and Functional Capacity in Women With Fibromyalgia: Exploratory Outcomes From the Randomized Placebo-Controlled FINAL Trial. Bruun KD, Christensen R, Amris K, et al. CNS Drugs. 2025;39(7):685-692. doi:10.1007/s40263-025-01183-7.
- 7. The Utilization of Low Dose Naltrexone for Chronic Pain. Poliwoda S, Noss B, Truong GTD, et al. CNS Drugs. 2023;37(8):663-670. doi:10.1007/s40263-023-01018-3.
- 8. <u>Use of Low-Dose Naltrexone in the Management of Chronic Pain Conditions: A Systematic Review</u>. Hatfield E, Phillips K, Swidan S, Ashman L. Journal of the American Dental Association (1939). 2020;151(12):891-902.e1. doi:10.1016/j.adaj.2020.08.019.
- 9. Resource Document on the Neuropsychiatric Symptoms of Subacute and Chronic Long COVID. Aisha Gillan MD, Melissa Peace MD, Davin Quinn MD, Jon Levenson MD, Thida Thant MD. American Psychiatric Association (2024).
- Low-Dose Naltrexone Use for Patients With Chronic Regional Pain Syndrome: A <u>Systematic Literature Review</u>. Soin A, Soin Y, Dann T, et al. Pain Physician. 2021;24(4):E393-E406.

- 11. Nociplastic Pain: Towards an Understanding of Prevalent Pain Conditions. Fitzcharles MA, Cohen SP, Clauw DJ, et al. Lancet (London, England). 2021;397(10289):2098-2110. doi:10.1016/S0140-6736(21)00392-5.
- 12. Treatment of Complex Regional Pain Syndrome (CRPS) Using Low Dose Naltrexone (LDN). Chopra P, Cooper MS. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology. 2013;8(3):470-6. doi:10.1007/s11481-013-9451-y.